Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2018

01-12-2018 | NON-THEMATIC REVIEW

Perspectives on the role of brain cellular players in cancer-associated brain metastasis: translational approach to understand molecular mechanism of tumor progression

Authors: Masoom Raza, Peeyush Prasad, Pragya Gupta, Naveen Kumar, Taruna Sharma, Mandeep Rana, Aaron Goldman, Seema Sehrawat

Published in: Cancer and Metastasis Reviews | Issue 4/2018

Login to get access

Abstract

Brain metastasis is one of the leading causes of death among cancer patients. Cancer cells migrate to various sites and harbor different niche in the body which help cancer cells in their survival. The brain is one of the safest place where cancer cells are protected from immune cells. Breast, lung, and melanoma cancer cells have high propensity to migrate towards the brain. To enter the brain, cancer cells have to cross the blood brain barrier. Survival and finding new niche in the brain are directed by several mechanisms in which different cellular players take part such as astrocytes, microglia, Schwann cells, satellite cells, oligodendrocytes, and ependymal cells. Usually, cancer cells highjack the machinery of brain cellular players to survive in the brain environment. It has been shown that co-culture of M2 macrophage with cancer cells leads to increased proliferation and survival of cancer cells. One of the challenges of understanding brain metastasis is appropriate model system to understand dynamic interaction of cancer cells and brain cellular players. To meet this challenge, microfluidic-based devices are employed which can mimic the dynamic conditions as well as can be used for culturing human cells for personalized therapy. In this review, we have systematically reviewed the current status of the role of cellular players in brain metastasis along with explaining how translational approach of microfluidics can be employed for finding new drug target as well as biomarker for brain metastasis. Finally, we have also commented on the mechanism of action of drugs against brain metastasis.
Literature
1.
go back to reference Lassman, A. B., & DeAngelis, L. M. (2003). Brain metastases. Neurologic Clinics, 21(1), 1–23.PubMed Lassman, A. B., & DeAngelis, L. M. (2003). Brain metastases. Neurologic Clinics, 21(1), 1–23.PubMed
2.
go back to reference Murrell, D., Foster, PJ., and Chambers, Ann F. (2014). Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. Medical Biophysics Publications. Paper 36. Murrell, D., Foster, PJ., and Chambers, Ann F. (2014). Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. Medical Biophysics Publications. Paper 36.
3.
go back to reference Nayak, L., Lee, E. Q., & Wen, P. Y. (2012). Epidemiology of brain metastases. Current Oncology Reports, 14(1), 48–54.PubMed Nayak, L., Lee, E. Q., & Wen, P. Y. (2012). Epidemiology of brain metastases. Current Oncology Reports, 14(1), 48–54.PubMed
4.
go back to reference Markwell, S. M., & Weed, S. A. (2015). Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers, 7(1), 382–406.PubMedPubMedCentral Markwell, S. M., & Weed, S. A. (2015). Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers, 7(1), 382–406.PubMedPubMedCentral
5.
go back to reference Miller, S., Senior, P. V., Prakash, M., Apostolopoulos, V., Sakkal, S., & Nurgali, K. (2016). Leukocyte populations and IL-6 in the tumor microenvironment of an orthotopic colorectal cancer model. Acta Biochimica et Biophysica Sinica, 48(4), 334–341.PubMedPubMedCentral Miller, S., Senior, P. V., Prakash, M., Apostolopoulos, V., Sakkal, S., & Nurgali, K. (2016). Leukocyte populations and IL-6 in the tumor microenvironment of an orthotopic colorectal cancer model. Acta Biochimica et Biophysica Sinica, 48(4), 334–341.PubMedPubMedCentral
6.
go back to reference Place, A. E., Huh, S. J., & Polyak, K. (2011). The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Research, 13(6), 227.PubMed Place, A. E., Huh, S. J., & Polyak, K. (2011). The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Research, 13(6), 227.PubMed
7.
go back to reference Hoshide, R., & Jandial, R. (2017). The role of the neural niche in brain metastasis. Clinical & Experimental Metastasis, 1–8. Hoshide, R., & Jandial, R. (2017). The role of the neural niche in brain metastasis. Clinical & Experimental Metastasis, 1–8.
8.
go back to reference Madden, K. S., Szpunar, M. J., & Brown, E. B. (2011). β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Research and Treatment, 130(3), 747–758.PubMedPubMedCentral Madden, K. S., Szpunar, M. J., & Brown, E. B. (2011). β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Research and Treatment, 130(3), 747–758.PubMedPubMedCentral
9.
go back to reference Wong, H. P. S., Yu, L., Lam, E. K. Y., Tai, E. K. K., Wu, W. K. K., & Cho, C.-H. (2007). Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation. Toxicological Sciences, 97(2), 279–287.PubMed Wong, H. P. S., Yu, L., Lam, E. K. Y., Tai, E. K. K., Wu, W. K. K., & Cho, C.-H. (2007). Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation. Toxicological Sciences, 97(2), 279–287.PubMed
10.
go back to reference DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirström, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.PubMedPubMedCentral DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirström, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.PubMedPubMedCentral
11.
go back to reference DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9(4), 212.PubMed DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9(4), 212.PubMed
12.
go back to reference Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.PubMed Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.PubMed
13.
go back to reference Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., Nadal, C., Gomis, R. R., Manova-Todorova, K., & Massagué, J. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446(7137), 765–770.PubMed Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., Nadal, C., Gomis, R. R., Manova-Todorova, K., & Massagué, J. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446(7137), 765–770.PubMed
14.
go back to reference Reymond, N., d'Água, B. B., & Ridley, A. J. (2013). Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 13(12), 858–870.PubMed Reymond, N., d'Água, B. B., & Ridley, A. J. (2013). Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 13(12), 858–870.PubMed
15.
go back to reference Chen, Q., Zhang, X. H.-F., & Massagué, J. (2011). Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 20(4), 538–549.PubMedPubMedCentral Chen, Q., Zhang, X. H.-F., & Massagué, J. (2011). Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 20(4), 538–549.PubMedPubMedCentral
16.
go back to reference Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Massagué, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.PubMedPubMedCentral Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Massagué, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.PubMedPubMedCentral
17.
go back to reference Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews Clinical Oncology, 8(6), 344–356.PubMedPubMedCentral Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews Clinical Oncology, 8(6), 344–356.PubMedPubMedCentral
18.
go back to reference Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119(1), 7–35.PubMed Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119(1), 7–35.PubMed
19.
go back to reference Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H.-F., Lee, D. J., Chaft, J. E., Kris, M. G., Huse, J. T., Brogi, E., & Massagué, J. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentral Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H.-F., Lee, D. J., Chaft, J. E., Kris, M. G., Huse, J. T., Brogi, E., & Massagué, J. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentral
20.
go back to reference Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist, 11(5), 400–407.PubMed Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist, 11(5), 400–407.PubMed
21.
go back to reference Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32(12), 638–647.PubMedPubMedCentral Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32(12), 638–647.PubMedPubMedCentral
22.
go back to reference Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., S. Jacob, L., Patwa, R., Shah, H., Xu, K., Cross, J. R., & Massagué, J. (2016). Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentral Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., S. Jacob, L., Patwa, R., Shah, H., Xu, K., Cross, J. R., & Massagué, J. (2016). Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentral
24.
go back to reference Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.PubMed Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.PubMed
25.
go back to reference Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.PubMed Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.PubMed
26.
go back to reference Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.PubMed Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.PubMed
27.
go back to reference Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441(7097), 1075–1079.PubMed Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441(7097), 1075–1079.PubMed
28.
go back to reference Gomi, H., Yokoyama, T., & Itohara, S. (2010). Role of GFAP in morphological retention and distribution of reactive astrocytes induced by scrapie encephalopathy in mice. Brain Research, 1312, 156–167.PubMed Gomi, H., Yokoyama, T., & Itohara, S. (2010). Role of GFAP in morphological retention and distribution of reactive astrocytes induced by scrapie encephalopathy in mice. Brain Research, 1312, 156–167.PubMed
29.
go back to reference Li, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A. C., Nodin, C., Ståhlberg, A., Aprico, K., Larsson, K., Yabe, T., Moons, L., Fotheringham, A., Davies, I., Carmeliet, P., Schwartz, J. P., Pekna, M., Kubista, M., Blomstrand, F., Maragakis, N., Nilsson, M., & Pekny, M. (2008). Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow & Metabolism, 28(3), 468–481. Li, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A. C., Nodin, C., Ståhlberg, A., Aprico, K., Larsson, K., Yabe, T., Moons, L., Fotheringham, A., Davies, I., Carmeliet, P., Schwartz, J. P., Pekna, M., Kubista, M., Blomstrand, F., Maragakis, N., Nilsson, M., & Pekny, M. (2008). Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow & Metabolism, 28(3), 468–481.
31.
go back to reference Leitinger, N., & Schulman, I. G. (2013). Phenotypic polarization of macrophages in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(6), 1120–1126.PubMedPubMedCentral Leitinger, N., & Schulman, I. G. (2013). Phenotypic polarization of macrophages in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(6), 1120–1126.PubMedPubMedCentral
32.
go back to reference Ellert-Miklaszewska, A., Dabrowski, M., Lipko, M., Sliwa, M., Maleszewska, M., & Kaminska, B. (2013). Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia, 61(7), 1178–1190.PubMed Ellert-Miklaszewska, A., Dabrowski, M., Lipko, M., Sliwa, M., Maleszewska, M., & Kaminska, B. (2013). Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia, 61(7), 1178–1190.PubMed
33.
go back to reference Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One, 6(8), e23902.PubMedPubMedCentral Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One, 6(8), e23902.PubMedPubMedCentral
34.
go back to reference Takeda, K., & Akira, S. (2000). STAT family of transcription factors in cytokine-mediated biological responses. Cytokine & Growth Factor Reviews, 11(3), 199–207. Takeda, K., & Akira, S. (2000). STAT family of transcription factors in cytokine-mediated biological responses. Cytokine & Growth Factor Reviews, 11(3), 199–207.
35.
go back to reference Wei, J., Gabrusiewicz, K., & Heimberger, A. (2013). The controversial role of microglia in malignant gliomas. Clinical and Developmental Immunology, 2013, 285246.PubMedPubMedCentral Wei, J., Gabrusiewicz, K., & Heimberger, A. (2013). The controversial role of microglia in malignant gliomas. Clinical and Developmental Immunology, 2013, 285246.PubMedPubMedCentral
36.
go back to reference Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.PubMedPubMedCentral Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.PubMedPubMedCentral
37.
go back to reference Juedes, A. E., & Ruddle, N. H. (2001). Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. The Journal of Immunology, 166(8), 5168–5175.PubMed Juedes, A. E., & Ruddle, N. H. (2001). Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. The Journal of Immunology, 166(8), 5168–5175.PubMed
38.
go back to reference Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., & Matre, R. (1994). Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 56(6), 732–740.PubMed Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., & Matre, R. (1994). Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 56(6), 732–740.PubMed
39.
go back to reference Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology, 164(12), 6166–6173.PubMed Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology, 164(12), 6166–6173.PubMed
40.
go back to reference Pace, J., & Russell, S. (1981). Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. The Journal of Immunology, 126(5), 1863–1867.PubMed Pace, J., & Russell, S. (1981). Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. The Journal of Immunology, 126(5), 1863–1867.PubMed
41.
go back to reference Feng, X., Szulzewsky, F., Yerevanian, A., Chen, Z., Heinzmann, D., Rasmussen, R. D., et al. (2015). Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 6(17), 15077.PubMedPubMedCentral Feng, X., Szulzewsky, F., Yerevanian, A., Chen, Z., Heinzmann, D., Rasmussen, R. D., et al. (2015). Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 6(17), 15077.PubMedPubMedCentral
42.
go back to reference Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMed Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMed
43.
go back to reference Brantley, E. C., & Benveniste, E. N. (2008). Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Molecular Cancer Research, 6(5), 675–684.PubMed Brantley, E. C., & Benveniste, E. N. (2008). Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Molecular Cancer Research, 6(5), 675–684.PubMed
44.
go back to reference Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mulé, J., Kerr, W. G., Jove, R., Pardoll, D., & Yu, H. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 11(12), 1314–1321.PubMed Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mulé, J., Kerr, W. G., Jove, R., Pardoll, D., & Yu, H. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 11(12), 1314–1321.PubMed
45.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.PubMed Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.PubMed
46.
go back to reference Komohara, Y., Ohnishi, K., Kuratsu, J., & Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. The Journal of Pathology, 216(1), 15–24.PubMed Komohara, Y., Ohnishi, K., Kuratsu, J., & Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. The Journal of Pathology, 216(1), 15–24.PubMed
47.
go back to reference Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386.PubMed Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386.PubMed
48.
go back to reference Zhou, W., & Slingerland, J. M. (2014). Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nature Reviews Cancer, 14(1), 26–38.PubMed Zhou, W., & Slingerland, J. M. (2014). Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nature Reviews Cancer, 14(1), 26–38.PubMed
50.
go back to reference Kaiser, J. (2010). Cancer’s circulation problem. American Association for the Advancement of Science. Kaiser, J. (2010). Cancer’s circulation problem. American Association for the Advancement of Science.
51.
go back to reference Holmes, K., Roberts, O. L., Thomas, A. M., & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling, 19(10), 2003–2012.PubMed Holmes, K., Roberts, O. L., Thomas, A. M., & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling, 19(10), 2003–2012.PubMed
52.
go back to reference Chung, A. S., Lee, J., & Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Reviews Cancer, 10(7), 505–514.PubMed Chung, A. S., Lee, J., & Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Reviews Cancer, 10(7), 505–514.PubMed
53.
go back to reference Brusselmans, K., Bono, F., Collen, D., Herbert, J.-M., Carmeliet, P., & Dewerchin, M. (2005). A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. Journal of Biological Chemistry, 280(5), 3493–3499.PubMed Brusselmans, K., Bono, F., Collen, D., Herbert, J.-M., Carmeliet, P., & Dewerchin, M. (2005). A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. Journal of Biological Chemistry, 280(5), 3493–3499.PubMed
54.
go back to reference Gerber, H.-P., Malik, A. K., Solar, G. P., Sherman, D., Liang, X. H., Meng, G., Hong, K., Marsters, J. C., & Ferrara, N. (2002). VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 417(6892), 954–958.PubMed Gerber, H.-P., Malik, A. K., Solar, G. P., Sherman, D., Liang, X. H., Meng, G., Hong, K., Marsters, J. C., & Ferrara, N. (2002). VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 417(6892), 954–958.PubMed
56.
go back to reference Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., & Blau, H. M. (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221), 502–506.PubMedPubMedCentral Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., & Blau, H. M. (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221), 502–506.PubMedPubMedCentral
57.
go back to reference Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., Shi, Q., McLendon, R. E., Bigner, D. D., & Rich, J. N. (2006). Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.PubMed Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., Shi, Q., McLendon, R. E., Bigner, D. D., & Rich, J. N. (2006). Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.PubMed
58.
go back to reference Zhao, D., Pan, C., Sun, J., Gilbert, C., Drews-Elger, K., Azzam, D., et al. (2015). VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 34(24), 3107–3119.PubMed Zhao, D., Pan, C., Sun, J., Gilbert, C., Drews-Elger, K., Azzam, D., et al. (2015). VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 34(24), 3107–3119.PubMed
59.
go back to reference De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255(5047), 989–991.PubMed De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255(5047), 989–991.PubMed
60.
go back to reference Fong, G.-H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66–70. Fong, G.-H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66–70.
61.
go back to reference Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X.-F., Breitman, M. L., & Schuh, A. C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62–66.PubMed Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X.-F., Breitman, M. L., & Schuh, A. C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62–66.PubMed
62.
go back to reference Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling? In control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371.PubMed Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling? In control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371.PubMed
63.
go back to reference Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., Moudry, P., Bartek Jr., J., Fischer, W., Lukas, J., Rich, J. N., & Bartek, J. (2012). Autocrine VEGF–VEGFR2–neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. Journal of Experimental Medicine, 209(3), 507–520.PubMed Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., Moudry, P., Bartek Jr., J., Fischer, W., Lukas, J., Rich, J. N., & Bartek, J. (2012). Autocrine VEGF–VEGFR2–neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. Journal of Experimental Medicine, 209(3), 507–520.PubMed
66.
go back to reference Ebos, J. M., Lee, C. R., & Kerbel, R. S. (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clinical Cancer Research, 15(16), 5020–5025.PubMedPubMedCentral Ebos, J. M., Lee, C. R., & Kerbel, R. S. (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clinical Cancer Research, 15(16), 5020–5025.PubMedPubMedCentral
67.
go back to reference Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A. A., Rolland, F., Demkow, T., Hutson, T. E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., & Bukowski, R. M. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356(2), 125–134.PubMed Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A. A., Rolland, F., Demkow, T., Hutson, T. E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., & Bukowski, R. M. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356(2), 125–134.PubMed
68.
go back to reference Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S. T., Chen, I., Bycott, P. W., Baum, C. M., & Figlin, R. A. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine, 356(2), 115–124.PubMed Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S. T., Chen, I., Bycott, P. W., Baum, C. M., & Figlin, R. A. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine, 356(2), 115–124.PubMed
71.
go back to reference Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. The International Journal of Biochemistry & Cell Biology, 31(10), 1037–1051. Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. The International Journal of Biochemistry & Cell Biology, 31(10), 1037–1051.
72.
go back to reference Furitsu, T., Tsujimura, T., Tono, T., Ikeda, H., Kitayama, H., Koshimizu, U., Sugahara, H., Butterfield, J. H., Ashman, L. K., & Kanayama, Y. (1993). Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. The Journal of Clinical Investigation, 92(4), 1736–1744.PubMedPubMedCentral Furitsu, T., Tsujimura, T., Tono, T., Ikeda, H., Kitayama, H., Koshimizu, U., Sugahara, H., Butterfield, J. H., Ashman, L. K., & Kanayama, Y. (1993). Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. The Journal of Clinical Investigation, 92(4), 1736–1744.PubMedPubMedCentral
73.
go back to reference Yavuz, A. S., Lipsky, P. E., Yavuz, S., Metcalfe, D. D., & Akin, C. (2002). Evidence for the involvement of a hematopoietic progenitor cell in systemic mastocytosis from single-cell analysis of mutations in the c-kit gene. Blood, 100(2), 661–665.PubMed Yavuz, A. S., Lipsky, P. E., Yavuz, S., Metcalfe, D. D., & Akin, C. (2002). Evidence for the involvement of a hematopoietic progenitor cell in systemic mastocytosis from single-cell analysis of mutations in the c-kit gene. Blood, 100(2), 661–665.PubMed
74.
go back to reference Yarden, Y., Kuang, W.-J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T., et al. (1987). Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. The EMBO Journal, 6(11), 3341–3351.PubMedPubMedCentral Yarden, Y., Kuang, W.-J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T., et al. (1987). Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. The EMBO Journal, 6(11), 3341–3351.PubMedPubMedCentral
75.
go back to reference Giebel, L., Strunk, K., Holmes, S., & Spritz, R. (1992). Organization and nucleotide sequence of the human KIT (mast/stem cell growth factor receptor) proto-oncogene. Oncogene, 7(11), 2207–2217.PubMed Giebel, L., Strunk, K., Holmes, S., & Spritz, R. (1992). Organization and nucleotide sequence of the human KIT (mast/stem cell growth factor receptor) proto-oncogene. Oncogene, 7(11), 2207–2217.PubMed
76.
go back to reference Caruana, G., Cambareri, A. C., & Ashman, L. K. (1999). Isoforms of c-kit differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene, 18(40), 5573–5581.PubMed Caruana, G., Cambareri, A. C., & Ashman, L. K. (1999). Isoforms of c-kit differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene, 18(40), 5573–5581.PubMed
77.
go back to reference Heldin, C.-H., Östman, A., & Rönnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1378(1), F79–F113. Heldin, C.-H., Östman, A., & Rönnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1378(1), F79–F113.
78.
go back to reference Heldin, C.-H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79(4), 1283–1316.PubMed Heldin, C.-H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79(4), 1283–1316.PubMed
79.
go back to reference Dibb, N. J., Dilworth, S. M., & Mol, C. D. (2004). Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nature Reviews Cancer, 4(9), 718–727.PubMed Dibb, N. J., Dilworth, S. M., & Mol, C. D. (2004). Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nature Reviews Cancer, 4(9), 718–727.PubMed
80.
go back to reference Chen, Z., Xu, X., & Hu, J. (2016). Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma, 63(2), 173–182.PubMed Chen, Z., Xu, X., & Hu, J. (2016). Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma, 63(2), 173–182.PubMed
81.
go back to reference Borea, P. A., Gessi, S., Merighi, S., & Varani, K. (2016). Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends in Pharmacological Sciences, 37(6), 419–434.PubMed Borea, P. A., Gessi, S., Merighi, S., & Varani, K. (2016). Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends in Pharmacological Sciences, 37(6), 419–434.PubMed
82.
go back to reference Antonioli, L., Blandizzi, C., Pacher, P., & Haskó, G. (2013). Immunity, inflammation and cancer: a leading role for adenosine. Nature Reviews Cancer, 13(12), 842–857.PubMed Antonioli, L., Blandizzi, C., Pacher, P., & Haskó, G. (2013). Immunity, inflammation and cancer: a leading role for adenosine. Nature Reviews Cancer, 13(12), 842–857.PubMed
83.
go back to reference Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2017). Pathologic overproduction: the bad side of adenosine. British Journal of Pharmacology., 174, 1945–1960.PubMedPubMedCentral Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2017). Pathologic overproduction: the bad side of adenosine. British Journal of Pharmacology., 174, 1945–1960.PubMedPubMedCentral
84.
go back to reference Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.PubMed Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.PubMed
85.
go back to reference Herbst, R. S., & Shin, D. M. (2002). Monoclonal antibodies to target epidermal growth factor receptor–positive tumors. Cancer, 94(5), 1593–1611.PubMed Herbst, R. S., & Shin, D. M. (2002). Monoclonal antibodies to target epidermal growth factor receptor–positive tumors. Cancer, 94(5), 1593–1611.PubMed
86.
go back to reference Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4(12), 988–1004.PubMed Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4(12), 988–1004.PubMed
87.
go back to reference Nishinaka, T., & Yabe-Nishimura, C. (2001). EGF receptor-ERK pathway is the major signaling pathway that mediates upregulation of aldose reductase expression under oxidative stress. Free Radical Biology and Medicine, 31(2), 205–216.PubMed Nishinaka, T., & Yabe-Nishimura, C. (2001). EGF receptor-ERK pathway is the major signaling pathway that mediates upregulation of aldose reductase expression under oxidative stress. Free Radical Biology and Medicine, 31(2), 205–216.PubMed
88.
go back to reference Kumar, N., Prasad, P., Jash, E., Jayasundar, S., Singh, I., Alam, N., Murmu, N., Somashekhar, S. P., Goldman, A., & Sehrawat, S. (2018). cAMP regulated EPAC1 supports microvascular density, angiogenic and metastatic properties in a model of triple negative breast cancer. Carcinogenesis. https://doi.org/10.1093/carcin/bgy090. Kumar, N., Prasad, P., Jash, E., Jayasundar, S., Singh, I., Alam, N., Murmu, N., Somashekhar, S. P., Goldman, A., & Sehrawat, S. (2018). cAMP regulated EPAC1 supports microvascular density, angiogenic and metastatic properties in a model of triple negative breast cancer. Carcinogenesis. https://​doi.​org/​10.​1093/​carcin/​bgy090.
89.
go back to reference Majumder, B., Baraneedharan, U., Thiyagarajan, S., Radhakrishnan, P., Narasimhan, H., Dhandapani, M., Brijwani, N., Pinto, D. D., Prasath, A., Shanthappa, B. U., Thayakumar, A., Surendran, R., Babu, G. K., Shenoy, A. M., Kuriakose, M. A., Bergthold, G., Horowitz, P., Loda, M., Beroukhim, R., Agarwal, S., Sengupta, S., Sundaram, M., & Majumder, P. K. (2015). Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nature Communications, 6, 6169. https://doi.org/10.1038/ncomms7169.CrossRefPubMedPubMedCentral Majumder, B., Baraneedharan, U., Thiyagarajan, S., Radhakrishnan, P., Narasimhan, H., Dhandapani, M., Brijwani, N., Pinto, D. D., Prasath, A., Shanthappa, B. U., Thayakumar, A., Surendran, R., Babu, G. K., Shenoy, A. M., Kuriakose, M. A., Bergthold, G., Horowitz, P., Loda, M., Beroukhim, R., Agarwal, S., Sengupta, S., Sundaram, M., & Majumder, P. K. (2015). Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nature Communications, 6, 6169. https://​doi.​org/​10.​1038/​ncomms7169.CrossRefPubMedPubMedCentral
91.
go back to reference Stott, S. L., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., Rothenberg, S. M., Shah, A. M., Smas, M. E., Korir, G. K., Floyd, F. P., Gilman, A. J., Lord, J. B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee, R. J., Isselbacher, K. J., Maheswaran, S., Haber, D. A., & Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences, 107(43), 18392–18397. https://doi.org/10.1073/pnas.1012539107.CrossRef Stott, S. L., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., Rothenberg, S. M., Shah, A. M., Smas, M. E., Korir, G. K., Floyd, F. P., Gilman, A. J., Lord, J. B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee, R. J., Isselbacher, K. J., Maheswaran, S., Haber, D. A., & Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences, 107(43), 18392–18397. https://​doi.​org/​10.​1073/​pnas.​1012539107.CrossRef
92.
go back to reference Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., Barany, F., & Soper, S. A. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83(6), 2301–2309. https://doi.org/10.1021/ac103172y.CrossRefPubMedPubMedCentral Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., Barany, F., & Soper, S. A. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83(6), 2301–2309. https://​doi.​org/​10.​1021/​ac103172y.CrossRefPubMedPubMedCentral
97.
go back to reference TruongVo, T. N., Kennedy, R. M., Chen, H., Chen, A., Berndt, A., Agarwal, M., Zhu, L., Nakshatri, H., Wallace, J., Na, S., Yokota, H., & Ryu, J. E. (2017). Microfluidic channel for characterizing normal and breast cancer cells. Journal of Micromechanics and Microengineering, 27(3), 035017. TruongVo, T. N., Kennedy, R. M., Chen, H., Chen, A., Berndt, A., Agarwal, M., Zhu, L., Nakshatri, H., Wallace, J., Na, S., Yokota, H., & Ryu, J. E. (2017). Microfluidic channel for characterizing normal and breast cancer cells. Journal of Micromechanics and Microengineering, 27(3), 035017.
103.
go back to reference Higashimori, H., & Yang, Y. (2012). Imaging analysis of neuron to glia interaction in microfluidic culture platform (MCP)-based neuronal axon and glia co-culture system. Journal of Visualized Experiments: JoVE, 68, 4448. https://doi.org/10.3791/4448.CrossRef Higashimori, H., & Yang, Y. (2012). Imaging analysis of neuron to glia interaction in microfluidic culture platform (MCP)-based neuronal axon and glia co-culture system. Journal of Visualized Experiments: JoVE, 68, 4448. https://​doi.​org/​10.​3791/​4448.CrossRef
Metadata
Title
Perspectives on the role of brain cellular players in cancer-associated brain metastasis: translational approach to understand molecular mechanism of tumor progression
Authors
Masoom Raza
Peeyush Prasad
Pragya Gupta
Naveen Kumar
Taruna Sharma
Mandeep Rana
Aaron Goldman
Seema Sehrawat
Publication date
01-12-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9766-5

Other articles of this Issue 4/2018

Cancer and Metastasis Reviews 4/2018 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine