Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

01-06-2017

Platelet-targeted pharmacologic treatments as anti-cancer therapy

Authors: P. Gresele, S. Momi, M. Malvestiti, M. Sebastiano

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

Platelets act as multifunctional cells participating in immune response, inflammation, allergy, tissue regeneration, and lymphoangiogenesis. Among the best-established aspects of a role of platelets in non-hemostatic or thrombotic disorders, there is their participation in cancer invasion and metastasis. The interaction of many different cancer cells with platelets leads to platelet activation, and on the other hand platelet activation is strongly instrumental to the pro-carcinogenic and pro-metastatic activities of platelets. It is thus obvious that over the last years a lot of interest has focused on the possible chemopreventive effect of platelet-targeted pharmacologic treatments. This article gives an overview of the platelet-targeted pharmacologic approaches that have been attempted in the prevention of cancer development, progression, and metastasis, including the application of anti-platelet drugs currently used for cardiovascular disease and of new and novel pharmacologic strategies. Despite the fact that very promising results have been obtained with some of these approaches in pre-clinical models, with the exclusion of aspirin, clinical evidence of a beneficial effect of anti-platelet agents in cancer is however still largely missing. Future studies with platelet-targeted drugs in cancer must carefully deal with design issues, and in particular with the careful selection of patients, and/or explore novel platelet targets in order to provide a solution to the critical issue of the risk/benefit profile of long-term anti-platelet therapy in the prevention of cancer progression and dissemination.
Literature
1.
go back to reference Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56(3), 387–437.PubMedCrossRef Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56(3), 387–437.PubMedCrossRef
2.
go back to reference Iniguez, M. A., Cacheiro-Llaguno, C., Cuesta, N., Diaz-Munoz, M. D., & Fresno, M. (2008). Prostanoid function and cardiovascular disease. Archives of Physiology and Biochemistry, 114(3), 201–209.PubMedCrossRef Iniguez, M. A., Cacheiro-Llaguno, C., Cuesta, N., Diaz-Munoz, M. D., & Fresno, M. (2008). Prostanoid function and cardiovascular disease. Archives of Physiology and Biochemistry, 114(3), 201–209.PubMedCrossRef
3.
go back to reference Gresele, P., Deckmyn, H., Nenci, G. G., & Vermylen, J. (1991). Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends in Pharmacological Sciences, 12(4), 158–163.PubMedCrossRef Gresele, P., Deckmyn, H., Nenci, G. G., & Vermylen, J. (1991). Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends in Pharmacological Sciences, 12(4), 158–163.PubMedCrossRef
4.
go back to reference Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacological Therapy, 118(1), 18–35.CrossRef Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacological Therapy, 118(1), 18–35.CrossRef
5.
go back to reference Vane, J. R. (1972). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature: New Biology, 231(25), 232–235. Vane, J. R. (1972). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature: New Biology, 231(25), 232–235.
6.
go back to reference Roth, G. J., Stanford, N., & Majerus, P. W. (1975). Acetylation of prostaglandin synthase by aspirin. Proceedings of the National Academy of Sciences USA, 72(8), 3073–3076.CrossRef Roth, G. J., Stanford, N., & Majerus, P. W. (1975). Acetylation of prostaglandin synthase by aspirin. Proceedings of the National Academy of Sciences USA, 72(8), 3073–3076.CrossRef
7.
go back to reference Gasic, G. J., Gasic, T. B., & Murphy, S. (1972). Anti-metastatic effect of aspirin. Lancet, 2(7783), 932–933.PubMedCrossRef Gasic, G. J., Gasic, T. B., & Murphy, S. (1972). Anti-metastatic effect of aspirin. Lancet, 2(7783), 932–933.PubMedCrossRef
8.
go back to reference Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Anti-metastatic effect associated with platelet reduction. Proceeding of the National Academy of Science USA, 61(1), 46–52.CrossRef Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Anti-metastatic effect associated with platelet reduction. Proceeding of the National Academy of Science USA, 61(1), 46–52.CrossRef
9.
10.
go back to reference Bennett, A., & Del Tacca, M. (1975). Proceedings: prostaglandins in human colonic carcinoma. Gut, 16(5), 409.PubMed Bennett, A., & Del Tacca, M. (1975). Proceedings: prostaglandins in human colonic carcinoma. Gut, 16(5), 409.PubMed
11.
go back to reference Reddy, B. S., Rao, C. V., Rivenson, A., & Kelloff, G. (1993). Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis, 14(8), 1493–1497.PubMedCrossRef Reddy, B. S., Rao, C. V., Rivenson, A., & Kelloff, G. (1993). Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis, 14(8), 1493–1497.PubMedCrossRef
12.
go back to reference Duperron, C., & Castonguay, A. (1997). Chemopreventive efficacies of aspirin and sulindac against lung tumorigenesis in A/J mice. Carcinogenesis, 18(5), 1001–1006.PubMedCrossRef Duperron, C., & Castonguay, A. (1997). Chemopreventive efficacies of aspirin and sulindac against lung tumorigenesis in A/J mice. Carcinogenesis, 18(5), 1001–1006.PubMedCrossRef
13.
go back to reference Tian, Y., Ye, Y., Gao, W., et al. (2011). Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. International Journal of Colorectal Disease, 26(1), 13–22.PubMedCrossRef Tian, Y., Ye, Y., Gao, W., et al. (2011). Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. International Journal of Colorectal Disease, 26(1), 13–22.PubMedCrossRef
14.
go back to reference Vad, N. M., Kudugunti, S. K., Wang, H., Bhat, G. J., & Moridani, M. Y. (2014). Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumour Biology, 35(5), 4967–4976.PubMedCrossRef Vad, N. M., Kudugunti, S. K., Wang, H., Bhat, G. J., & Moridani, M. Y. (2014). Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumour Biology, 35(5), 4967–4976.PubMedCrossRef
15.
go back to reference Cathomas, G. (2014). PIK3CA in colorectal cancer. Frontiers in Oncology, 4, 1–4.CrossRef Cathomas, G. (2014). PIK3CA in colorectal cancer. Frontiers in Oncology, 4, 1–4.CrossRef
16.
go back to reference Okumura, H., Uchikado, Y., Setoyama, T., et al. (2014). Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy. Surgery Today, 44(3), 421–428.PubMedCrossRef Okumura, H., Uchikado, Y., Setoyama, T., et al. (2014). Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy. Surgery Today, 44(3), 421–428.PubMedCrossRef
17.
go back to reference Reimers, M. S., Bastiaannet, E., Langley, R. E., et al. (2014). Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA International Medicine, 174(5), 732–739.CrossRef Reimers, M. S., Bastiaannet, E., Langley, R. E., et al. (2014). Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA International Medicine, 174(5), 732–739.CrossRef
18.
go back to reference Henrich, K. O., Bauer, T., Schulte, J., et al. (2011). CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Research, 71(8), 3142–3151.PubMedCrossRef Henrich, K. O., Bauer, T., Schulte, J., et al. (2011). CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Research, 71(8), 3142–3151.PubMedCrossRef
19.
go back to reference Mikami, J., Kurokawa, Y., Takahashi, T., et al. (2016). Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer, 19(3), 817–826.PubMedCrossRef Mikami, J., Kurokawa, Y., Takahashi, T., et al. (2016). Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer, 19(3), 817–826.PubMedCrossRef
20.
go back to reference Guillem-Llobat, P., Dovizio, M., Bruno, A., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef Guillem-Llobat, P., Dovizio, M., Bruno, A., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477.PubMedPubMedCentralCrossRef
21.
go back to reference Uluçkan, O., Eagleton, M. C., Floyd, D. H., et al. (2008). APT102, a novel adpase, cooperates with aspirin to disrupt bone metastasis in mice. Journal of Cellular Biochemistry, 104(4), 1311–1323.PubMedPubMedCentralCrossRef Uluçkan, O., Eagleton, M. C., Floyd, D. H., et al. (2008). APT102, a novel adpase, cooperates with aspirin to disrupt bone metastasis in mice. Journal of Cellular Biochemistry, 104(4), 1311–1323.PubMedPubMedCentralCrossRef
22.
go back to reference Kune, G. A., Kune, S., & Watson, L. F. (1988). Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Research, 48(15), 4399–4404.PubMed Kune, G. A., Kune, S., & Watson, L. F. (1988). Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Research, 48(15), 4399–4404.PubMed
23.
go back to reference Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527.PubMedCrossRef Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncology, 13(5), 518–527.PubMedCrossRef
24.
go back to reference Baron, J. A., Cole, B. F., & Sandler, R. S. (2003). A randomized trial of aspirin to prevent colorectal adenomas. New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef Baron, J. A., Cole, B. F., & Sandler, R. S. (2003). A randomized trial of aspirin to prevent colorectal adenomas. New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef
25.
go back to reference Sandler, R. S., Halabi, S., & Baron, J. A. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef Sandler, R. S., Halabi, S., & Baron, J. A. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef
26.
go back to reference Logan, R.F., Grainge, M.J., & Shepherd, V.C., et al.; (2008) ukCAP Trial Group. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology, 134(1), 29–38. Logan, R.F., Grainge, M.J., & Shepherd, V.C., et al.; (2008) ukCAP Trial Group. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology, 134(1), 29–38.
27.
go back to reference Benamouzig, R., Deyra, J., Martin, A., et al. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology, 125(2), 328–336.PubMedCrossRef Benamouzig, R., Deyra, J., Martin, A., et al. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology, 125(2), 328–336.PubMedCrossRef
28.
go back to reference Cole, B. F., Logan, R. F., Halabi, S., et al. (2009). Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. Journal of the National Cancer Institute, 101(4), 256–266.PubMedCrossRef Cole, B. F., Logan, R. F., Halabi, S., et al. (2009). Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. Journal of the National Cancer Institute, 101(4), 256–266.PubMedCrossRef
29.
go back to reference Burn, J., Bishop, D. T., Mecklin, J. P., & CAPP2 Investigators. (2008). Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. New England Journal of Medicine, 359(24), 2567–2578.PubMedCrossRef Burn, J., Bishop, D. T., Mecklin, J. P., & CAPP2 Investigators. (2008). Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. New England Journal of Medicine, 359(24), 2567–2578.PubMedCrossRef
30.
go back to reference Cooke, N. M., Spillane, C. D., Sheils, O., O'Leary, J., & Kenny, D. (2015). Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer, 15, 627.PubMedPubMedCentralCrossRef Cooke, N. M., Spillane, C. D., Sheils, O., O'Leary, J., & Kenny, D. (2015). Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer, 15, 627.PubMedPubMedCentralCrossRef
31.
go back to reference Antithrombotic Trialists’ Collaboration. (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. British Medical Journal, 324(7329), 71–86.CrossRef Antithrombotic Trialists’ Collaboration. (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. British Medical Journal, 324(7329), 71–86.CrossRef
32.
go back to reference Gresele, P. (2013). Antiplatelet agents in clinical practice and their haemorrhagic risk. Blood Transfusion, 11(3), 349–356.PubMedPubMedCentral Gresele, P. (2013). Antiplatelet agents in clinical practice and their haemorrhagic risk. Blood Transfusion, 11(3), 349–356.PubMedPubMedCentral
33.
go back to reference Stürmer, T., Glynn, R. J., Lee, I. M., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1998). Aspirin use and colorectal cancer: post-trial follow-up data from the Physicians’ Health Study. Annals of Internal Medicine, 128(9), 713–720.PubMedCrossRef Stürmer, T., Glynn, R. J., Lee, I. M., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1998). Aspirin use and colorectal cancer: post-trial follow-up data from the Physicians’ Health Study. Annals of Internal Medicine, 128(9), 713–720.PubMedCrossRef
34.
go back to reference Rothwell, P. M., Wilson, M., & Elwin, C. E. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376(9754), 1741–1750.PubMedCrossRef Rothwell, P. M., Wilson, M., & Elwin, C. E. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376(9754), 1741–1750.PubMedCrossRef
35.
go back to reference Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41.PubMedCrossRef Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41.PubMedCrossRef
36.
go back to reference Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 379(9826), 1591–1601.PubMedCrossRef Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 379(9826), 1591–1601.PubMedCrossRef
37.
go back to reference Rothwell, P. M., Price, J. F., Fowkes, F. G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612.PubMedCrossRef Rothwell, P. M., Price, J. F., Fowkes, F. G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612.PubMedCrossRef
38.
go back to reference Thun, M. J., Jacobs, E. J., & Patrono, C. (2012). The role of aspirin in cancer prevention. Nature Reviews Clinical Oncology, 9(5), 259–267.PubMedCrossRef Thun, M. J., Jacobs, E. J., & Patrono, C. (2012). The role of aspirin in cancer prevention. Nature Reviews Clinical Oncology, 9(5), 259–267.PubMedCrossRef
39.
go back to reference Chubak, J., Whitlock, E. P., Williams, S. B., et al. (2016). Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 164(12), 814–825.PubMedCrossRef Chubak, J., Whitlock, E. P., Williams, S. B., et al. (2016). Aspirin for the prevention of cancer incidence and mortality: systematic evidence reviews for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 164(12), 814–825.PubMedCrossRef
40.
go back to reference Gresele, P., Momi, S., & Falcinelli, E. (2011). Anti-platelet therapy: phosphodiesterase inhibitors. British Journal of Clinical Pharmacology, 72(4), 634–646.PubMedPubMedCentralCrossRef Gresele, P., Momi, S., & Falcinelli, E. (2011). Anti-platelet therapy: phosphodiesterase inhibitors. British Journal of Clinical Pharmacology, 72(4), 634–646.PubMedPubMedCentralCrossRef
41.
go back to reference Faxon, D.P., Creager, M.A., Smith, S.C., et al., (2004) American Heart Association. Atherosclerotic vascular disease conference: executive summary: atherosclerotic vascular disease conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation, 109(21), 2595–2604. Faxon, D.P., Creager, M.A., Smith, S.C., et al., (2004) American Heart Association. Atherosclerotic vascular disease conference: executive summary: atherosclerotic vascular disease conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation, 109(21), 2595–2604.
42.
go back to reference Murata, K., Kameyama, M., Fukui, F., et al. (1999). Phosphodiesterase type III inhibitor, cilostazol, inhibits colon cancer cell motility. Clinical and Experimental Metastasis, 17(6), 525–530.PubMedCrossRef Murata, K., Kameyama, M., Fukui, F., et al. (1999). Phosphodiesterase type III inhibitor, cilostazol, inhibits colon cancer cell motility. Clinical and Experimental Metastasis, 17(6), 525–530.PubMedCrossRef
43.
go back to reference Uzawa, K., Kasamatsu, A., Baba, T., et al. (2013). Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells. Cancer Medicine, 2(1), 40–49.PubMedPubMedCentralCrossRef Uzawa, K., Kasamatsu, A., Baba, T., et al. (2013). Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells. Cancer Medicine, 2(1), 40–49.PubMedPubMedCentralCrossRef
44.
go back to reference Okoshi, H., Hakomori, S., Nisar, M., et al. (1991). Cell membrane signaling as target in cancer therapy II: inhibitory effect of N,N,N-trimethylsphingosine on metastatic potential of murine B16 melanoma cell line through blocking of tumor cell-dependent platelet aggregation. Cancer Research, 51(22), 6019–6025.PubMed Okoshi, H., Hakomori, S., Nisar, M., et al. (1991). Cell membrane signaling as target in cancer therapy II: inhibitory effect of N,N,N-trimethylsphingosine on metastatic potential of murine B16 melanoma cell line through blocking of tumor cell-dependent platelet aggregation. Cancer Research, 51(22), 6019–6025.PubMed
45.
go back to reference Inufusa, H., Adachi, T., Nakamura, M., Shindo, K., Yasutomi, M., & Kimura, Y. (1995). Inhibition of experimental metastasis of human adenocarcinoma by cilostazol, a platelet phosphodiesterase inhibitor. Oncology Report, 2(6), 1079–1083. Inufusa, H., Adachi, T., Nakamura, M., Shindo, K., Yasutomi, M., & Kimura, Y. (1995). Inhibition of experimental metastasis of human adenocarcinoma by cilostazol, a platelet phosphodiesterase inhibitor. Oncology Report, 2(6), 1079–1083.
46.
go back to reference Akcan, A., Kucuk, C., Ok, E., Canoz, O., Muhtaroglu, S., et al. (2006). The effect of amrinone on liver regeneration in experimental hepatic resection model. The Journal of Surgical Research, 130(1), 66–72.PubMedCrossRef Akcan, A., Kucuk, C., Ok, E., Canoz, O., Muhtaroglu, S., et al. (2006). The effect of amrinone on liver regeneration in experimental hepatic resection model. The Journal of Surgical Research, 130(1), 66–72.PubMedCrossRef
47.
go back to reference Savai, R., Pullamsetti, S. S., Banat, G. A., et al. (2010). Targeting cancer with phosphodiesterase inhibitors. Expert Opinion on Investigational Drugs, 19(1), 117–131.PubMedCrossRef Savai, R., Pullamsetti, S. S., Banat, G. A., et al. (2010). Targeting cancer with phosphodiesterase inhibitors. Expert Opinion on Investigational Drugs, 19(1), 117–131.PubMedCrossRef
48.
go back to reference Strowitzki, M. J., Dold, S., von Heesen, M., et al. (2014). The phosphodiesterase 3 inhibitor cilostazol does not stimulate growth of colorectal liver metastases after major hepatectomy. Clinical and Experimental Metastasis, 31(7), 795–803.PubMedCrossRef Strowitzki, M. J., Dold, S., von Heesen, M., et al. (2014). The phosphodiesterase 3 inhibitor cilostazol does not stimulate growth of colorectal liver metastases after major hepatectomy. Clinical and Experimental Metastasis, 31(7), 795–803.PubMedCrossRef
49.
go back to reference Gresele, P., Zoja, C., Deckmyn, H., Arnout, J., Vermylen, J., & Verstraete, M. (1983). Dipyridamole inhibits platelet aggregation in whole blood. Thrombosis and Haemostasis, 50(4), 852–856.PubMed Gresele, P., Zoja, C., Deckmyn, H., Arnout, J., Vermylen, J., & Verstraete, M. (1983). Dipyridamole inhibits platelet aggregation in whole blood. Thrombosis and Haemostasis, 50(4), 852–856.PubMed
50.
go back to reference Gresele, P., Arnout, J., Deckmyn, H., & Vermylen, J. (1986). Mechanism of the antiplatelet action of dipyridamole in whole blood: modulation of adenosine concentration and activity. Thrombosis and Haemostasis, 55(1), 12–18.PubMed Gresele, P., Arnout, J., Deckmyn, H., & Vermylen, J. (1986). Mechanism of the antiplatelet action of dipyridamole in whole blood: modulation of adenosine concentration and activity. Thrombosis and Haemostasis, 55(1), 12–18.PubMed
51.
go back to reference Gresele, P., Arnout, J., & Vermylen, J. (1987). Dipyridamole inhibits leukotriene B4 synthesis. Thrombosis and Haemostasis, 57(2), 235.PubMed Gresele, P., Arnout, J., & Vermylen, J. (1987). Dipyridamole inhibits leukotriene B4 synthesis. Thrombosis and Haemostasis, 57(2), 235.PubMed
52.
go back to reference Deckmyn, H., Gresele, P., Arnout, J., Todisco, A., & Vermylen, J. (1984). Prolonging prostacyclin production by nafazatrom or dipyridamole. Lancet, 2(8399), 410–411.PubMedCrossRef Deckmyn, H., Gresele, P., Arnout, J., Todisco, A., & Vermylen, J. (1984). Prolonging prostacyclin production by nafazatrom or dipyridamole. Lancet, 2(8399), 410–411.PubMedCrossRef
53.
go back to reference Tzanakakis, G. N., Agarwal, K. C., & Vezeridis, M. P. (1993). Prevention of human pancreatic cancer cell-induced hepatic metastasis in nude mice by dipyridamole and its analog RA-233. Cancer, 71(8), 2466–2471.PubMedCrossRef Tzanakakis, G. N., Agarwal, K. C., & Vezeridis, M. P. (1993). Prevention of human pancreatic cancer cell-induced hepatic metastasis in nude mice by dipyridamole and its analog RA-233. Cancer, 71(8), 2466–2471.PubMedCrossRef
54.
go back to reference Desai, P. B., Duan, J., Sridhar, R., & Damle, B. D. (1997). Reversal of doxorubicin resistance in multidrug resistant melanoma cells in vitro and in vivo by dipyridamole. Methods and Findings in Experimental Clinical Pharmacology, 19(4), 231–239. Desai, P. B., Duan, J., Sridhar, R., & Damle, B. D. (1997). Reversal of doxorubicin resistance in multidrug resistant melanoma cells in vitro and in vivo by dipyridamole. Methods and Findings in Experimental Clinical Pharmacology, 19(4), 231–239.
55.
go back to reference Spano, D., Marshall, J. C., Marino, N., et al. (2013). Dipyridamole prevents triple-negative breast-cancer progression. Clinical and Experimental Metastasis, 30(1), 47–68.PubMedCrossRef Spano, D., Marshall, J. C., Marino, N., et al. (2013). Dipyridamole prevents triple-negative breast-cancer progression. Clinical and Experimental Metastasis, 30(1), 47–68.PubMedCrossRef
56.
go back to reference Goda, A. E., Yoshida, T., Horinaka, M., et al. (2008). Mechanisms of enhancement of TRAIL tumoricidal activity against human cancer cells of different origin by dipyridamole. Oncogene, 27(24), 3435–3445.PubMedCrossRef Goda, A. E., Yoshida, T., Horinaka, M., et al. (2008). Mechanisms of enhancement of TRAIL tumoricidal activity against human cancer cells of different origin by dipyridamole. Oncogene, 27(24), 3435–3445.PubMedCrossRef
57.
go back to reference Shalinsky, D. R., Andreeff, M., & Howell, S. B. (1990). Modulation of drug sensitivity by dipyridamole in multidrug resistant tumor cells in vitro. Cancer Research, 50(23), 7537–7543.PubMed Shalinsky, D. R., Andreeff, M., & Howell, S. B. (1990). Modulation of drug sensitivity by dipyridamole in multidrug resistant tumor cells in vitro. Cancer Research, 50(23), 7537–7543.PubMed
58.
go back to reference Rhodes, E. L., Misch, K. J., Edwards, J. M., & Jarrett, P. E. (1985). Dipyridamole for treatment of melanoma. Lancet, 1(8430), 693.PubMedCrossRef Rhodes, E. L., Misch, K. J., Edwards, J. M., & Jarrett, P. E. (1985). Dipyridamole for treatment of melanoma. Lancet, 1(8430), 693.PubMedCrossRef
59.
go back to reference Kohnoe, S., Maehara, Y., Takahashi, I., Emi, Y., Baba, H., & Sugimachi, K. (1998). Treatment of advanced gastric cancer with 5-fluorouracil and cisplatin in combination with dipyridamole. International Journal of Oncology, 13(6), 1203–1206.PubMed Kohnoe, S., Maehara, Y., Takahashi, I., Emi, Y., Baba, H., & Sugimachi, K. (1998). Treatment of advanced gastric cancer with 5-fluorouracil and cisplatin in combination with dipyridamole. International Journal of Oncology, 13(6), 1203–1206.PubMed
60.
go back to reference Todd, K. E., Gloor, B., Lane, J. S., Isacoff, W. H., & Reber, H. A. (1998). Resection of locally advanced pancreatic cancer after downstaging with continuous-infusion 5-fluorouracil, mitomycin-C, leucovorin, and dipyridamole. Journal of Gastrointestinal Surgery, 2(2), 159–166.PubMedCrossRef Todd, K. E., Gloor, B., Lane, J. S., Isacoff, W. H., & Reber, H. A. (1998). Resection of locally advanced pancreatic cancer after downstaging with continuous-infusion 5-fluorouracil, mitomycin-C, leucovorin, and dipyridamole. Journal of Gastrointestinal Surgery, 2(2), 159–166.PubMedCrossRef
61.
go back to reference Isacoff, W. H., Bendetti, J. K., Barstis, J. J., Jazieh, A. R., Macdonald, J. S., & Philip, P. A. (2007). Phase II trial of infusional fluorouracil, leucovorin, mitomycin, and dipyridamole in locally advanced unresectable pancreatic adenocarcinoma: SWOG S9700. Journal of Clinical Oncology, 25(13), 1665–1669.PubMedCrossRef Isacoff, W. H., Bendetti, J. K., Barstis, J. J., Jazieh, A. R., Macdonald, J. S., & Philip, P. A. (2007). Phase II trial of infusional fluorouracil, leucovorin, mitomycin, and dipyridamole in locally advanced unresectable pancreatic adenocarcinoma: SWOG S9700. Journal of Clinical Oncology, 25(13), 1665–1669.PubMedCrossRef
62.
go back to reference Cusack, N. J., & Hourani, S. M. O. (2000). Platelet P2 receptors: from curiosity to clinical targets. Journal of Autonomous Nervous System, 81(1–3), 37–43.CrossRef Cusack, N. J., & Hourani, S. M. O. (2000). Platelet P2 receptors: from curiosity to clinical targets. Journal of Autonomous Nervous System, 81(1–3), 37–43.CrossRef
63.
go back to reference Burnstock, G. (1972). Purinergic nerves. Pharmacological Reviews, 24(3), 509–581.PubMed Burnstock, G. (1972). Purinergic nerves. Pharmacological Reviews, 24(3), 509–581.PubMed
64.
go back to reference Hollopeter, G., Jantzen, H. M., Vincent, D., et al. (2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 409(6817), 202–207.PubMedCrossRef Hollopeter, G., Jantzen, H. M., Vincent, D., et al. (2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 409(6817), 202–207.PubMedCrossRef
65.
go back to reference Andre, P., Delaney, S. M., La Rocca, T., et al. (2003). P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. Journal of Clinical Investigation, 112(3), 398–406.PubMedPubMedCentralCrossRef Andre, P., Delaney, S. M., La Rocca, T., et al. (2003). P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. Journal of Clinical Investigation, 112(3), 398–406.PubMedPubMedCentralCrossRef
66.
go back to reference Dangelmaier, C., Jin, J., Smith, J. B., & Kunapuli, S. P. (2001). Potentiation of thromboxane A2-induced platelet secretion by Gi signaling through the phosphoinositide-3 kinase pathway. Thrombosis and Haemostasis, 85(2), 341–348.PubMed Dangelmaier, C., Jin, J., Smith, J. B., & Kunapuli, S. P. (2001). Potentiation of thromboxane A2-induced platelet secretion by Gi signaling through the phosphoinositide-3 kinase pathway. Thrombosis and Haemostasis, 85(2), 341–348.PubMed
67.
go back to reference Dorsam, R. T., Kim, S., Jin, J., & Kunapuli, S. P. (2002). Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. Journal of Biological Chemistry, 277(49), 47588–47595.PubMedCrossRef Dorsam, R. T., Kim, S., Jin, J., & Kunapuli, S. P. (2002). Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. Journal of Biological Chemistry, 277(49), 47588–47595.PubMedCrossRef
68.
go back to reference Dorsam, R. T., & Kunapuli, S. P. (2004). Central role of the P2Y12 receptor in platelet activation. Journal of Clinical Investigation, 113(3), 340–345.PubMedPubMedCentralCrossRef Dorsam, R. T., & Kunapuli, S. P. (2004). Central role of the P2Y12 receptor in platelet activation. Journal of Clinical Investigation, 113(3), 340–345.PubMedPubMedCentralCrossRef
69.
go back to reference van Gestel, M. A., Heemskerk, J. W., Slaaf, D. W., et al. (2003). In vivo blockade of platelet ADP receptor P2Y12 reduces embolus and thrombus formation but not thrombus stability. Arteriosclerosis Thrombosis and Vascular Biology, 23(3), 518–523.CrossRef van Gestel, M. A., Heemskerk, J. W., Slaaf, D. W., et al. (2003). In vivo blockade of platelet ADP receptor P2Y12 reduces embolus and thrombus formation but not thrombus stability. Arteriosclerosis Thrombosis and Vascular Biology, 23(3), 518–523.CrossRef
70.
go back to reference Woulfe, D., Jiang, H., Mortensen, R., Yang, J., & Brass, L. F. (2002). Activation of Rap1B by G(i) family members in platelets. Journal of Biological Chemistry, 277(26), 23382–23390.PubMedCrossRef Woulfe, D., Jiang, H., Mortensen, R., Yang, J., & Brass, L. F. (2002). Activation of Rap1B by G(i) family members in platelets. Journal of Biological Chemistry, 277(26), 23382–23390.PubMedCrossRef
72.
go back to reference Di Virgilio, F. (2012). Purines, purinergic receptors, and cancer. Cancer Research, 72(21), 5441–5447.PubMedCrossRef Di Virgilio, F. (2012). Purines, purinergic receptors, and cancer. Cancer Research, 72(21), 5441–5447.PubMedCrossRef
73.
go back to reference Aymeric, L., Apetoh, L., Ghiringhelli, F., et al. (2010). Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Research, 70(3), 855–858.PubMedCrossRef Aymeric, L., Apetoh, L., Ghiringhelli, F., et al. (2010). Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Research, 70(3), 855–858.PubMedCrossRef
74.
go back to reference Boukerche, H., Berthier-Vergnes, O., Penin, F., et al. (1994). Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. British Journal of Haematology, 87(4), 763–772.PubMedCrossRef Boukerche, H., Berthier-Vergnes, O., Penin, F., et al. (1994). Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. British Journal of Haematology, 87(4), 763–772.PubMedCrossRef
75.
go back to reference Ordinas, A., Díaz-Ricart, M., Almirall, L., & Bastida, E. (1990). The role of platelets in cancer metastasis. Blood Coagulation and Fibrinolysis, 1(6), 707–711.PubMed Ordinas, A., Díaz-Ricart, M., Almirall, L., & Bastida, E. (1990). The role of platelets in cancer metastasis. Blood Coagulation and Fibrinolysis, 1(6), 707–711.PubMed
77.
go back to reference Coupland, L. A., & Parish, C. R. (2014). Platelets, selectins, and the control of tumor metastasis. Seminars in Oncology, 41(3), 422–434.PubMedCrossRef Coupland, L. A., & Parish, C. R. (2014). Platelets, selectins, and the control of tumor metastasis. Seminars in Oncology, 41(3), 422–434.PubMedCrossRef
78.
go back to reference Johansson, J., Tabor, V., Wikell, A., Jalkanen, S., & Fuxe, J. (2015). TGF-β1-induced epithelial-mesenchymal transition promotes monocyte/macrophage properties in breast cancer cells. Frontiers in Oncology, 5, 3.PubMedPubMedCentralCrossRef Johansson, J., Tabor, V., Wikell, A., Jalkanen, S., & Fuxe, J. (2015). TGF-β1-induced epithelial-mesenchymal transition promotes monocyte/macrophage properties in breast cancer cells. Frontiers in Oncology, 5, 3.PubMedPubMedCentralCrossRef
79.
go back to reference Contractor, H., & Ruparelia, N. (2012). Advances in antiplatelet therapy for acute coronary syndromes. Postgraduate Medical Journal, 88(1041), 391–396.PubMedCrossRef Contractor, H., & Ruparelia, N. (2012). Advances in antiplatelet therapy for acute coronary syndromes. Postgraduate Medical Journal, 88(1041), 391–396.PubMedCrossRef
80.
go back to reference Collet, J. P., Hulot, J. S., Pena, A., et al. (2009). Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet, 373(9660), 309–317.PubMedCrossRef Collet, J. P., Hulot, J. S., Pena, A., et al. (2009). Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet, 373(9660), 309–317.PubMedCrossRef
81.
go back to reference Herbert, J. M., & Savi, P. (2003). P2Y12, a new platelet ADP receptor, target of clopidogrel. Seminars in Vascular Medicine, 3(2), 113–122.PubMedCrossRef Herbert, J. M., & Savi, P. (2003). P2Y12, a new platelet ADP receptor, target of clopidogrel. Seminars in Vascular Medicine, 3(2), 113–122.PubMedCrossRef
82.
go back to reference Kazui, M., Nishiya, Y., Ishizuka, T., et al. (2010). Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metabolism and Disposition, 38(1), 92–99.PubMedCrossRef Kazui, M., Nishiya, Y., Ishizuka, T., et al. (2010). Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metabolism and Disposition, 38(1), 92–99.PubMedCrossRef
83.
go back to reference Pereillo, J. M., Maftouh, M., Andrieu, A., et al. (2002). Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metabolism and Disposition, 30(11), 1288–1295.PubMedCrossRef Pereillo, J. M., Maftouh, M., Andrieu, A., et al. (2002). Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metabolism and Disposition, 30(11), 1288–1295.PubMedCrossRef
84.
go back to reference Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21(2), 85–93.PubMedCrossRef Bambace, N. M., Levis, J. E., & Holmes, C. E. (2010). The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 21(2), 85–93.PubMedCrossRef
85.
go back to reference Klein-Soyer, C., Céraline, J., Orvain, C., de la Salle, C., Bergerat, J. P., & Cazenave, J. P. (1997). Angiogenesis inhibitor SR 25989 upregulates thrombospondin-1 expression in human vascular endothelial cells and foreskin fibroblasts. Biology of the Cell, 89(4), 295–307.PubMedCrossRef Klein-Soyer, C., Céraline, J., Orvain, C., de la Salle, C., Bergerat, J. P., & Cazenave, J. P. (1997). Angiogenesis inhibitor SR 25989 upregulates thrombospondin-1 expression in human vascular endothelial cells and foreskin fibroblasts. Biology of the Cell, 89(4), 295–307.PubMedCrossRef
86.
go back to reference Ma, H., Hara, A., Xiao, C. Y., et al. (2001). Increased bleeding tendency and decreased susceptibility to thromboembolism in mice lacking the prostaglandin E2 receptor subtype EP3. Circulation, 104(10), 1176–1180.PubMedCrossRef Ma, H., Hara, A., Xiao, C. Y., et al. (2001). Increased bleeding tendency and decreased susceptibility to thromboembolism in mice lacking the prostaglandin E2 receptor subtype EP3. Circulation, 104(10), 1176–1180.PubMedCrossRef
87.
go back to reference Sitia, G., Aiolfi, R., Di Lucia, P., et al. (2012). Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proceeding of the National Academy of Sciences U S A, 109(32), E2165–E2172.CrossRef Sitia, G., Aiolfi, R., Di Lucia, P., et al. (2012). Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proceeding of the National Academy of Sciences U S A, 109(32), E2165–E2172.CrossRef
88.
go back to reference Pandey, A., Sarangi, S., Chien, K., et al. (2014). Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery. Nanotechnology, 25(44), 445101.PubMedCrossRef Pandey, A., Sarangi, S., Chien, K., et al. (2014). Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery. Nanotechnology, 25(44), 445101.PubMedCrossRef
89.
go back to reference Roop, R. P., Naughton, M. J., Van Poznak, C., et al. (2013). A randomized phase II trial investigating the effect of platelet function inhibition on circulating tumor cells in patients with metastatic breast cancer. Clinical Breast Cancer, 13(6), 409–415.PubMedPubMedCentralCrossRef Roop, R. P., Naughton, M. J., Van Poznak, C., et al. (2013). A randomized phase II trial investigating the effect of platelet function inhibition on circulating tumor cells in patients with metastatic breast cancer. Clinical Breast Cancer, 13(6), 409–415.PubMedPubMedCentralCrossRef
90.
go back to reference Choe, K. S., Correa, D., Jani, A. B., & Liauw, S. L. (2010). The use of anticoagulants improves biochemical control of localized prostate cancer treated with radiotherapy. Cancer, 116(7), 1820–1826.PubMedCrossRef Choe, K. S., Correa, D., Jani, A. B., & Liauw, S. L. (2010). The use of anticoagulants improves biochemical control of localized prostate cancer treated with radiotherapy. Cancer, 116(7), 1820–1826.PubMedCrossRef
91.
go back to reference Hicks, B. M., Murray, L. J., Hughes, C., & Cardwell, C. R. (2015). Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiological Drug Safety, 24(8), 830–840.CrossRef Hicks, B. M., Murray, L. J., Hughes, C., & Cardwell, C. R. (2015). Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiological Drug Safety, 24(8), 830–840.CrossRef
92.
go back to reference Husted, S., Emanuelsson, H., Heptinstall, S., et al. (2006). Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. European Heart Journal, 27(9), 1038–1047.PubMedCrossRef Husted, S., Emanuelsson, H., Heptinstall, S., et al. (2006). Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. European Heart Journal, 27(9), 1038–1047.PubMedCrossRef
93.
go back to reference Teng, R., Oliver, S., Hayes, M. A., & Butler, K. (2010). Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metabolism and Disposable, 38(9), 1514–1521.CrossRef Teng, R., Oliver, S., Hayes, M. A., & Butler, K. (2010). Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metabolism and Disposable, 38(9), 1514–1521.CrossRef
94.
go back to reference Gebremeskel, S., LeVatte, T., Liwski, R. S., Johnston, B., & Bezuhly, M. (2015). The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. International Journal of Cancer, 136(1), 234–240.PubMedCrossRef Gebremeskel, S., LeVatte, T., Liwski, R. S., Johnston, B., & Bezuhly, M. (2015). The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. International Journal of Cancer, 136(1), 234–240.PubMedCrossRef
95.
go back to reference Bonaca, M. P., Bhatt, D. L., Cohen, M. P. H., et al. (2015). Long-term use of ticagrelor in patients with prior myocardial infarction. New England Journal of Medicine, 372(19), 1791–1800.PubMedCrossRef Bonaca, M. P., Bhatt, D. L., Cohen, M. P. H., et al. (2015). Long-term use of ticagrelor in patients with prior myocardial infarction. New England Journal of Medicine, 372(19), 1791–1800.PubMedCrossRef
96.
go back to reference Serebruany, V. L., Cherepanov, V., Cabrera-Fuentes, H. A., & Kim, M. H. (2015). Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thrombosis and Haemostasis, 114(6), 1104–1112.PubMedCrossRef Serebruany, V. L., Cherepanov, V., Cabrera-Fuentes, H. A., & Kim, M. H. (2015). Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thrombosis and Haemostasis, 114(6), 1104–1112.PubMedCrossRef
97.
go back to reference Serebruany, V. L., Dinicolantonio, J. J., Can, M. M., Pershukov, I. V., & Kuliczkowski, W. (2013). Gastrointestinal adverse events after dual antiplatelet therapy: clopidogrel is safer than ticagrelor, but prasugrel data are lacking or inconclusive. Cardiology, 126(1), 35–40.PubMedCrossRef Serebruany, V. L., Dinicolantonio, J. J., Can, M. M., Pershukov, I. V., & Kuliczkowski, W. (2013). Gastrointestinal adverse events after dual antiplatelet therapy: clopidogrel is safer than ticagrelor, but prasugrel data are lacking or inconclusive. Cardiology, 126(1), 35–40.PubMedCrossRef
98.
go back to reference Unger, E. F. (2009). Weighing benefits and risks—the FDA’s review of prasugrel. New England Journal of Medicine, 361(10), 942–945.PubMedCrossRef Unger, E. F. (2009). Weighing benefits and risks—the FDA’s review of prasugrel. New England Journal of Medicine, 361(10), 942–945.PubMedCrossRef
99.
go back to reference Floyd, J. S., & Serebruany, V. L. (2010). Prasugrel as a potential cancer promoter: review of the unpublished data. Archives of Internal Medicine, 170(12), 1078–1080.PubMedCrossRef Floyd, J. S., & Serebruany, V. L. (2010). Prasugrel as a potential cancer promoter: review of the unpublished data. Archives of Internal Medicine, 170(12), 1078–1080.PubMedCrossRef
100.
go back to reference Roe, M.T., Cyr, D.D., Eckart, D., et al.; (2016) TRILOGY ACS Investigators. Ascertainment, classification, and impact of neoplasm detection during prolonged treatment with dual antiplatelet therapy with prasugrel vs clopidogrel following acute coronary syndrome. European Heart Journal, 37(4), 412–422. Roe, M.T., Cyr, D.D., Eckart, D., et al.; (2016) TRILOGY ACS Investigators. Ascertainment, classification, and impact of neoplasm detection during prolonged treatment with dual antiplatelet therapy with prasugrel vs clopidogrel following acute coronary syndrome. European Heart Journal, 37(4), 412–422.
101.
go back to reference Mauri, L., Kereiakes, D.J., Yeh, R.W., et al. (2014). DAPT Study Investigators. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. New England Journal of Medicine, 371(23), 2155–2166. Mauri, L., Kereiakes, D.J., Yeh, R.W., et al. (2014). DAPT Study Investigators. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. New England Journal of Medicine, 371(23), 2155–2166.
102.
go back to reference Kotronias, R. A., Kwok, C. S., Wong, C. W., Kinnaird, T., Zaman, A., & Mamas, M. A. (2017). Cancer event rate and mortality with thienopyridines: a systematic review and meta-analysis. Drug Safety, 40(3), 229–240.PubMedCrossRef Kotronias, R. A., Kwok, C. S., Wong, C. W., Kinnaird, T., Zaman, A., & Mamas, M. A. (2017). Cancer event rate and mortality with thienopyridines: a systematic review and meta-analysis. Drug Safety, 40(3), 229–240.PubMedCrossRef
103.
104.
go back to reference Shattil, S. J., Kashiwagi, H., & Pampori, N. (1998). Integrin signaling: the platelet paradigm. Blood, 91(8), 2645–2657.PubMed Shattil, S. J., Kashiwagi, H., & Pampori, N. (1998). Integrin signaling: the platelet paradigm. Blood, 91(8), 2645–2657.PubMed
105.
go back to reference Schrör, K., & Weber, A. (2003). Comparative pharmacology of GP IIb/IIIa antagonists. Journal of Thrombosis and Thrombolysis, 15(5), 71–80.PubMedCrossRef Schrör, K., & Weber, A. (2003). Comparative pharmacology of GP IIb/IIIa antagonists. Journal of Thrombosis and Thrombolysis, 15(5), 71–80.PubMedCrossRef
106.
go back to reference Salame, M., Verheye, S., More, R., King 3rd, S. B., & Chronos, N. (1999). GPIIbIIIa inhibitors as adjunctive therapy in acute myocardial infarction. International Journal of Cardiology, 69(3), 231–236.PubMedCrossRef Salame, M., Verheye, S., More, R., King 3rd, S. B., & Chronos, N. (1999). GPIIbIIIa inhibitors as adjunctive therapy in acute myocardial infarction. International Journal of Cardiology, 69(3), 231–236.PubMedCrossRef
107.
go back to reference Ahrens, I., Bode, C., & Zirlik, A. (2014). Anticoagulation during and after acute coronary syndrome. Hämostaseologie, 34(1), 72–77.PubMedCrossRef Ahrens, I., Bode, C., & Zirlik, A. (2014). Anticoagulation during and after acute coronary syndrome. Hämostaseologie, 34(1), 72–77.PubMedCrossRef
108.
go back to reference Clezardin, P., Drouin, J., Morel-Kopp, M. C., et al. (1993). Role of platelet membrane glycoproteins Ib/IX and IIb/IIIa, and of platelet alpha-granule proteins in platelet aggregation induced by human osteosarcoma cells. Cancer Research, 53(19), 4695–4700.PubMed Clezardin, P., Drouin, J., Morel-Kopp, M. C., et al. (1993). Role of platelet membrane glycoproteins Ib/IX and IIb/IIIa, and of platelet alpha-granule proteins in platelet aggregation induced by human osteosarcoma cells. Cancer Research, 53(19), 4695–4700.PubMed
109.
go back to reference Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.PubMedCrossRef Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.PubMedCrossRef
110.
go back to reference Bakewell, S. J., Nestor, P., Prasad, S., et al. (2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Science U S A, 100(24), 14205–14210.CrossRef Bakewell, S. J., Nestor, P., Prasad, S., et al. (2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Science U S A, 100(24), 14205–14210.CrossRef
112.
go back to reference Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A., & DeGrado, W. F. (1997). Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. Journal of Biological Chemistry, 272(13), 8137–8140.PubMedCrossRef Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A., & DeGrado, W. F. (1997). Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. Journal of Biological Chemistry, 272(13), 8137–8140.PubMedCrossRef
113.
go back to reference Wilder, R. L. (2002). Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Annals of Rheumatisms Disease, 61(Suppl 2), 96–99.CrossRef Wilder, R. L. (2002). Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Annals of Rheumatisms Disease, 61(Suppl 2), 96–99.CrossRef
114.
go back to reference Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264(5158), 569–571.PubMedCrossRef Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264(5158), 569–571.PubMedCrossRef
115.
go back to reference Kumar, C. C. (2003). Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Current Drug Targets, 4(2), 123–131.PubMedCrossRef Kumar, C. C. (2003). Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Current Drug Targets, 4(2), 123–131.PubMedCrossRef
116.
go back to reference Weber, M. R., Zuka, M., Lorger, M., et al. (2016). Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thrombosis Research, 140(Suppl 1), S27–S36.PubMedPubMedCentralCrossRef Weber, M. R., Zuka, M., Lorger, M., et al. (2016). Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thrombosis Research, 140(Suppl 1), S27–S36.PubMedPubMedCentralCrossRef
117.
go back to reference Tesfamariam, B. (2016). Involvement of platelets in tumor cell metastasis. Pharmacological. Therapy, 157, 112–119.CrossRef Tesfamariam, B. (2016). Involvement of platelets in tumor cell metastasis. Pharmacological. Therapy, 157, 112–119.CrossRef
118.
go back to reference Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., et al. (2012). Engagement of alpha(IIb)beta(3) (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., et al. (2012). Engagement of alpha(IIb)beta(3) (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef
119.
go back to reference Gomes, N., Vassy, J., Lebos, C., Arbeille, B., Legrand, C., & Fauvel-Lafeve, F. (2004). Breast adenocarcinoma cell adhesion to the vascular subendothelium in whole blood and under flow conditions: effects of alphavbeta3 and alphaIIbbeta3 antagonists. Clinical and Experimental Metastasis, 21(6), 553–561.PubMedCrossRef Gomes, N., Vassy, J., Lebos, C., Arbeille, B., Legrand, C., & Fauvel-Lafeve, F. (2004). Breast adenocarcinoma cell adhesion to the vascular subendothelium in whole blood and under flow conditions: effects of alphavbeta3 and alphaIIbbeta3 antagonists. Clinical and Experimental Metastasis, 21(6), 553–561.PubMedCrossRef
120.
go back to reference Harris, T. D., Kalogeropoulos, S., Nguyen, T., et al. (2003). Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biotherapy and Radiopharmaceuticals, 18(4), 627–641.PubMedCrossRef Harris, T. D., Kalogeropoulos, S., Nguyen, T., et al. (2003). Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biotherapy and Radiopharmaceuticals, 18(4), 627–641.PubMedCrossRef
121.
go back to reference Amirkhosravi, A., Mousa, S. A., Amaya, M., et al. (2003). Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thrombosis and Haemostasis, 90(3), 549–554.PubMed Amirkhosravi, A., Mousa, S. A., Amaya, M., et al. (2003). Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thrombosis and Haemostasis, 90(3), 549–554.PubMed
122.
go back to reference Sheu, J. R., Lin, C. H., Chung, J.l., Teng, C. M., & Huang, T. F. (1992). Triflavin, an Arg-Gly-Asp containing snake venom peptide, inhibits aggregation of human platelets induced by human hepatoma cell line. Thrombosis Research, 66(6), 679–691. Sheu, J. R., Lin, C. H., Chung, J.l., Teng, C. M., & Huang, T. F. (1992). Triflavin, an Arg-Gly-Asp containing snake venom peptide, inhibits aggregation of human platelets induced by human hepatoma cell line. Thrombosis Research, 66(6), 679–691.
123.
go back to reference Chiang, H. S., Swaim, M. W., & Huang, T. F. (1994). Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin. British Journal of Haematology, 87(2), 325–331.PubMedCrossRef Chiang, H. S., Swaim, M. W., & Huang, T. F. (1994). Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin. British Journal of Haematology, 87(2), 325–331.PubMedCrossRef
124.
go back to reference Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Science U S A, 98(6), 3352–3357.CrossRef Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Science U S A, 98(6), 3352–3357.CrossRef
125.
go back to reference Sobel, M., Fish, W. R., Toma, N., et al. (2001). Heparin modulates integrin function in human platelets. Journal of Vascular Surgery, 33(3), 587–594.PubMedCrossRef Sobel, M., Fish, W. R., Toma, N., et al. (2001). Heparin modulates integrin function in human platelets. Journal of Vascular Surgery, 33(3), 587–594.PubMedCrossRef
126.
go back to reference Zhang, C., Liu, Y., Gao, Y., et al. (2009). Modified heparins inhibit integrin alpha(IIb)beta(3) mediated adhesion of melanoma cells to platelets in vitro and in vivo. International Journal of Cancer, 125(9), 2058–2065.PubMedCrossRef Zhang, C., Liu, Y., Gao, Y., et al. (2009). Modified heparins inhibit integrin alpha(IIb)beta(3) mediated adhesion of melanoma cells to platelets in vitro and in vivo. International Journal of Cancer, 125(9), 2058–2065.PubMedCrossRef
127.
go back to reference Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical and Cancer Research, 6(8), 3056–3061. Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical and Cancer Research, 6(8), 3056–3061.
128.
go back to reference Patel, S., Jenkins, J., Papadopolous, N., et al. (2001). Pilot study of vitaxin—an angiogenesis inhibitor—in patients with advanced leiomyosarcomas. Cancer, 92(5), 1347–1348.PubMedCrossRef Patel, S., Jenkins, J., Papadopolous, N., et al. (2001). Pilot study of vitaxin—an angiogenesis inhibitor—in patients with advanced leiomyosarcomas. Cancer, 92(5), 1347–1348.PubMedCrossRef
129.
go back to reference Posey, J., Khazaeli, M., Del Grosso, A., et al. (2001). A pilot trial of vitaxin, a humanized anti-vitronectin receptor (anti-αvβ3) antibody in patients with metastatic cancer. Cancer Biotherapy and Radiopharmaceuticals, 16(2), 125–132.PubMedCrossRef Posey, J., Khazaeli, M., Del Grosso, A., et al. (2001). A pilot trial of vitaxin, a humanized anti-vitronectin receptor (anti-αvβ3) antibody in patients with metastatic cancer. Cancer Biotherapy and Radiopharmaceuticals, 16(2), 125–132.PubMedCrossRef
130.
go back to reference Cai, W., Wu, Y., Chen, K., Cao, Q., Tice, D., & Chen, X. (2006). In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Research, 66(19), 9673–9681.PubMedCrossRef Cai, W., Wu, Y., Chen, K., Cao, Q., Tice, D., & Chen, X. (2006). In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Research, 66(19), 9673–9681.PubMedCrossRef
131.
go back to reference Hersey, P., Sosman, J., O'Day, S., et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, +/− dacarbazine in patients with stage IV metastatic melanoma. Cancer, 116(6), 1526–1534.PubMedCrossRef Hersey, P., Sosman, J., O'Day, S., et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, +/− dacarbazine in patients with stage IV metastatic melanoma. Cancer, 116(6), 1526–1534.PubMedCrossRef
132.
go back to reference Delbaldo, C., Raymond, E., Vera, K., et al. (2008). Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Investigational New Drugs, 26(1), 35–43.PubMedCrossRef Delbaldo, C., Raymond, E., Vera, K., et al. (2008). Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Investigational New Drugs, 26(1), 35–43.PubMedCrossRef
133.
go back to reference Dyke, C. M. (1999). Safety of glycoprotein IIb-IIIa inhibitors: a heart surgeon’s perspective. American Heart Journal, 138(4 pt 2), 307–316.PubMedCrossRef Dyke, C. M. (1999). Safety of glycoprotein IIb-IIIa inhibitors: a heart surgeon’s perspective. American Heart Journal, 138(4 pt 2), 307–316.PubMedCrossRef
134.
go back to reference Gulba, D. C., Huber, K., Moll, S., & Dietz, R. (1998). Platelet inhibition: new agents, new strategies, new trials. Fibrinolysis and Proteolysis, 12(Suppl2), 13–23. Gulba, D. C., Huber, K., Moll, S., & Dietz, R. (1998). Platelet inhibition: new agents, new strategies, new trials. Fibrinolysis and Proteolysis, 12(Suppl2), 13–23.
135.
go back to reference Tam, S., Sassoli, P., Jordan, R., & Nakada, M. (1998). Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of lycoprotein IIb/IIIa αvβ3 integrins. Circulation, 98(11), 1085–1091.PubMedCrossRef Tam, S., Sassoli, P., Jordan, R., & Nakada, M. (1998). Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of lycoprotein IIb/IIIa αvβ3 integrins. Circulation, 98(11), 1085–1091.PubMedCrossRef
136.
go back to reference Antoniucci, D. (2007). Differences among GP IIb/IIIa inhibitors: different clinical benefits in non-ST-segment elevation acute coronary syndrome percutaneous coronary intervention patients. European Heart Journal, 9, A32–A36.CrossRef Antoniucci, D. (2007). Differences among GP IIb/IIIa inhibitors: different clinical benefits in non-ST-segment elevation acute coronary syndrome percutaneous coronary intervention patients. European Heart Journal, 9, A32–A36.CrossRef
137.
go back to reference Casserly, I., & Topol, E. (2002). Glycoprotein IIb/IIIa-antagonists—from bench to practice. Cellular and Molecular Life Sciences, 59(3), 478–500.PubMedCrossRef Casserly, I., & Topol, E. (2002). Glycoprotein IIb/IIIa-antagonists—from bench to practice. Cellular and Molecular Life Sciences, 59(3), 478–500.PubMedCrossRef
138.
go back to reference Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1999). Blockade of GPIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets, 10(5), 285–292.PubMedCrossRef Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1999). Blockade of GPIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets, 10(5), 285–292.PubMedCrossRef
139.
go back to reference Trikha, M., Zhou, Z., Timar, J., et al. (2002). Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Research, 62(10), 2824–2833.PubMed Trikha, M., Zhou, Z., Timar, J., et al. (2002). Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Research, 62(10), 2824–2833.PubMed
140.
go back to reference Tcheng, J. (2000). Clinical challenges of platelet glycoprotein IIb/IIIa receptor inhibitor therapy: bleeding, reversal, thrombocytopenia, and retreatment. American Heart Journal, 139(2 pt 2), S38–S45.PubMedCrossRef Tcheng, J. (2000). Clinical challenges of platelet glycoprotein IIb/IIIa receptor inhibitor therapy: bleeding, reversal, thrombocytopenia, and retreatment. American Heart Journal, 139(2 pt 2), S38–S45.PubMedCrossRef
141.
go back to reference Kononczuk, J., Surazynski, A., Czyzewska, U., et al. (2015). αIIbβ3-integrin ligands: abciximab and eptifibatide as proapoptotic factors in MCF-7 human breast cancer cells. Current Drug Targets, 16(13), 1429–1437.PubMedCrossRef Kononczuk, J., Surazynski, A., Czyzewska, U., et al. (2015). αIIbβ3-integrin ligands: abciximab and eptifibatide as proapoptotic factors in MCF-7 human breast cancer cells. Current Drug Targets, 16(13), 1429–1437.PubMedCrossRef
142.
go back to reference Karlheinz, P. (2005). Antiplatelet drugs. In M. S. Runge (Ed.), Principles of molecular cardiology (Vol. 105, pp. 203–218). Totowa: Human Press. Karlheinz, P. (2005). Antiplatelet drugs. In M. S. Runge (Ed.), Principles of molecular cardiology (Vol. 105, pp. 203–218). Totowa: Human Press.
143.
go back to reference Peter, K. (2005). Principles of molecular cardiology. Totowa: Humana Press. Peter, K. (2005). Principles of molecular cardiology. Totowa: Humana Press.
144.
go back to reference Davì, G., Santilli, F., & Vazzana, N. (2012). Thromboxane receptors antagonists and/or synthase inhibitors. Handbook of Experimental Pharmacology, 210, 261–286.CrossRef Davì, G., Santilli, F., & Vazzana, N. (2012). Thromboxane receptors antagonists and/or synthase inhibitors. Handbook of Experimental Pharmacology, 210, 261–286.CrossRef
145.
go back to reference Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–114.PubMedCrossRef Honn, K. V. (1983). Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clinical and Experimental Metastasis, 1(2), 103–114.PubMedCrossRef
146.
go back to reference Ogletree, M. L. (1987). Overview of physiological and pathophysiological effects of thromboxane A2. Federation Proceedings, 46(1), 133–138.PubMed Ogletree, M. L. (1987). Overview of physiological and pathophysiological effects of thromboxane A2. Federation Proceedings, 46(1), 133–138.PubMed
147.
go back to reference Nie, D., Lamberti, M., Zacharek, A., et al. (2000). Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochemical and Biophysical Research Communication, 267, 245–251.CrossRef Nie, D., Lamberti, M., Zacharek, A., et al. (2000). Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochemical and Biophysical Research Communication, 267, 245–251.CrossRef
148.
go back to reference de Leval, X., Benoit, V., Delarge, J., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins and Leukotriene Essential Fatty Acids, 68(1), 55–59.CrossRef de Leval, X., Benoit, V., Delarge, J., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins and Leukotriene Essential Fatty Acids, 68(1), 55–59.CrossRef
149.
go back to reference Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Research, 46(10), 5061–5063.PubMed Mehta, P., Lawson, D., Ward, M. B., Lee-Ambrose, L., & Kimura, A. (1986). Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Research, 46(10), 5061–5063.PubMed
150.
go back to reference Yokoyama, I., Hayashi, S., Kobayashi, T., et al. (1995). Prevention of experimental hepatic metastasis with thromboxane synthase inhibitor. Research and Experimental Medicine, 195(4), 209–215.CrossRef Yokoyama, I., Hayashi, S., Kobayashi, T., et al. (1995). Prevention of experimental hepatic metastasis with thromboxane synthase inhibitor. Research and Experimental Medicine, 195(4), 209–215.CrossRef
151.
go back to reference Vezza, R., Roberti, R., Nenci, G. G., & Gresele, P. (1993). Prostaglandin E2 potentiates platelet aggregation by priming protein kinase C. Blood, 82(9), 2704–2713.PubMed Vezza, R., Roberti, R., Nenci, G. G., & Gresele, P. (1993). Prostaglandin E2 potentiates platelet aggregation by priming protein kinase C. Blood, 82(9), 2704–2713.PubMed
152.
go back to reference Fabre, J. E., Nguyen, M. T., Athirakul, K., et al. (2001). Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. Journal of Clinical Investigation, 107(5), 603–610.PubMedPubMedCentralCrossRef Fabre, J. E., Nguyen, M. T., Athirakul, K., et al. (2001). Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. Journal of Clinical Investigation, 107(5), 603–610.PubMedPubMedCentralCrossRef
153.
go back to reference Gross, S., Tilly, P., Hentsch, D., et al. (2007). Vascular-wall produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. Journal of Experimental Medicine, 204(2), 311–320.PubMedPubMedCentralCrossRef Gross, S., Tilly, P., Hentsch, D., et al. (2007). Vascular-wall produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. Journal of Experimental Medicine, 204(2), 311–320.PubMedPubMedCentralCrossRef
154.
go back to reference Gresele, P., Blockmans, D., Deckmyn, H., & Vermylen, J. (1988). Adenylate cyclase activation determines the effect of thromboxane synthase inhibitors on platelet aggregation in vitro. Comparison of platelets from responders and nonresponders. Journal of Pharmacological and Experimental Therapeutics, 246(1), 301–307. Gresele, P., Blockmans, D., Deckmyn, H., & Vermylen, J. (1988). Adenylate cyclase activation determines the effect of thromboxane synthase inhibitors on platelet aggregation in vitro. Comparison of platelets from responders and nonresponders. Journal of Pharmacological and Experimental Therapeutics, 246(1), 301–307.
155.
go back to reference Singh, J., Zeller, W., Zhou, N., et al. (2009). Antagonists of the EP3 receptor for prostaglandin E2 are novel antiplatelet agents that do not prolong bleeding. ACS Chemical Biology, 4(2), 115–126.PubMedCrossRef Singh, J., Zeller, W., Zhou, N., et al. (2009). Antagonists of the EP3 receptor for prostaglandin E2 are novel antiplatelet agents that do not prolong bleeding. ACS Chemical Biology, 4(2), 115–126.PubMedCrossRef
156.
go back to reference Fox, S. C., May, J. A., Johnson, A., et al. (2013). Effects on platelet function of an EP3 receptor antagonist used alone and in combination with a P2Y12 antagonist both in vitro and ex vivo in human volunteers. Platelets, 24(5), 392–400.PubMedCrossRef Fox, S. C., May, J. A., Johnson, A., et al. (2013). Effects on platelet function of an EP3 receptor antagonist used alone and in combination with a P2Y12 antagonist both in vitro and ex vivo in human volunteers. Platelets, 24(5), 392–400.PubMedCrossRef
157.
go back to reference Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedCrossRef Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedCrossRef
158.
go back to reference Dogne, J. M., Hanson, J., & Pratico, D. (2005). Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends in Pharmacological Science, 26(12), 639–644.CrossRef Dogne, J. M., Hanson, J., & Pratico, D. (2005). Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends in Pharmacological Science, 26(12), 639–644.CrossRef
159.
go back to reference Fetalvero, K. M., Martin, K. A., & Hwa, J. (2007). Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins and Other Lipid Mediators, 82(1–4), 109–118.PubMedCrossRef Fetalvero, K. M., Martin, K. A., & Hwa, J. (2007). Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins and Other Lipid Mediators, 82(1–4), 109–118.PubMedCrossRef
160.
go back to reference Keith, R. L., & Geraci, M. W. (2006). Prostacyclin in lung cancer. J Thoracic Oncology, 1(6), 503–505.CrossRef Keith, R. L., & Geraci, M. W. (2006). Prostacyclin in lung cancer. J Thoracic Oncology, 1(6), 503–505.CrossRef
161.
go back to reference Grommes, C., Landreth, G. E., & Heneka, M. T. (2004). Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncology, 5(7), 419–429.PubMedCrossRef Grommes, C., Landreth, G. E., & Heneka, M. T. (2004). Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncology, 5(7), 419–429.PubMedCrossRef
162.
go back to reference Nemenoff, R. A., Meyer, A. M., Hudish, T. M., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor gamma. Cancer Prevention Research, 1(5), 349–356.PubMedPubMedCentralCrossRef Nemenoff, R. A., Meyer, A. M., Hudish, T. M., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor gamma. Cancer Prevention Research, 1(5), 349–356.PubMedPubMedCentralCrossRef
163.
go back to reference He, P., Borland, M. G., Zhu, B., et al. (2008). Effect of ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in human lung cancer cell lines. Toxicology, 254(1–2), 112–117 26.PubMedPubMedCentralCrossRef He, P., Borland, M. G., Zhu, B., et al. (2008). Effect of ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in human lung cancer cell lines. Toxicology, 254(1–2), 112–117 26.PubMedPubMedCentralCrossRef
164.
go back to reference Pedchenko, T. V., Gonzalez, A. L., Wang, D., DuBois, R. N., & Massion, P. P. (2008). Peroxisome proliferator-activated receptor beta/delta expression and activation in lung cancer. American Journal of Respiratory Cell and Molecular Biology, 39(6), 689–696.PubMedPubMedCentralCrossRef Pedchenko, T. V., Gonzalez, A. L., Wang, D., DuBois, R. N., & Massion, P. P. (2008). Peroxisome proliferator-activated receptor beta/delta expression and activation in lung cancer. American Journal of Respiratory Cell and Molecular Biology, 39(6), 689–696.PubMedPubMedCentralCrossRef
165.
go back to reference Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMed Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMed
166.
go back to reference Menter, D. G., Onoda, J. M., Moilanen, D., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. Journal of the National Cancer Institute, 78(5), 961–969.PubMed Menter, D. G., Onoda, J. M., Moilanen, D., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. Journal of the National Cancer Institute, 78(5), 961–969.PubMed
167.
go back to reference Honn, V. H., Cicone, B., & Skoff, A. (1980). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.CrossRef Honn, V. H., Cicone, B., & Skoff, A. (1980). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.CrossRef
168.
go back to reference Cuneo, K. C., Fu, A., Osusky, K. L., & Geng, L. (2007). Effects of vascular endothelial growth factor receptor inhibitor SU5416 and prostacyclin on murine lung metastasis. Anti-Cancer Drugs, 18(3), 349–355.PubMedCrossRef Cuneo, K. C., Fu, A., Osusky, K. L., & Geng, L. (2007). Effects of vascular endothelial growth factor receptor inhibitor SU5416 and prostacyclin on murine lung metastasis. Anti-Cancer Drugs, 18(3), 349–355.PubMedCrossRef
169.
go back to reference Keith, R. L., Miller, Y. E., Hoshikawa, Y., et al. (2002). Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer. Cancer Research, 62(3), 734–740.PubMed Keith, R. L., Miller, Y. E., Hoshikawa, Y., et al. (2002). Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer. Cancer Research, 62(3), 734–740.PubMed
170.
go back to reference Keith, R. L., Miller, Y. E., Hudish, T. M., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64(16), 5897–5904.PubMedCrossRef Keith, R. L., Miller, Y. E., Hudish, T. M., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64(16), 5897–5904.PubMedCrossRef
171.
go back to reference Honn, K. V., Meyer, J., Neagos, G., Henderson, T., Westley, C., & Ratanatharathorn, V. (1982). Control of tumor growth and metastasis with prostacyclin and thromboxane synthetase inhibitors: evidence for a new antitumor and antimetastatic agent (BAY G 6575). In G. A. Jamieson (Ed.), Interaction of platelets and tumor cells (pp. 295–331). New York: Alan R. Uss. Honn, K. V., Meyer, J., Neagos, G., Henderson, T., Westley, C., & Ratanatharathorn, V. (1982). Control of tumor growth and metastasis with prostacyclin and thromboxane synthetase inhibitors: evidence for a new antitumor and antimetastatic agent (BAY G 6575). In G. A. Jamieson (Ed.), Interaction of platelets and tumor cells (pp. 295–331). New York: Alan R. Uss.
172.
go back to reference Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24, 1412–1422.PubMedCrossRef Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24, 1412–1422.PubMedCrossRef
173.
go back to reference Keith, R. L., Blatchford, P. J., Kittelson, J., et al. (2011). Oral iloprost improves endobronchial dysplasia in former smokers. Cancer Prevention Research, 4(6), 793–802.PubMedPubMedCentralCrossRef Keith, R. L., Blatchford, P. J., Kittelson, J., et al. (2011). Oral iloprost improves endobronchial dysplasia in former smokers. Cancer Prevention Research, 4(6), 793–802.PubMedPubMedCentralCrossRef
174.
go back to reference Mascaux, C., Feser, W. J., Lewis, M. T., et al. (2013). Endobronchial miRNAs as biomarkers in lung cancer chemoprevention. Cancer Prevention Research, 6(2), 100–108.PubMedCrossRef Mascaux, C., Feser, W. J., Lewis, M. T., et al. (2013). Endobronchial miRNAs as biomarkers in lung cancer chemoprevention. Cancer Prevention Research, 6(2), 100–108.PubMedCrossRef
175.
go back to reference Gibbins, J. M., Okuma, M., Farndale, R., Barnes, M., & Watson, S. P. (1997). Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Letters, 413, 255–259.PubMedCrossRef Gibbins, J. M., Okuma, M., Farndale, R., Barnes, M., & Watson, S. P. (1997). Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Letters, 413, 255–259.PubMedCrossRef
176.
go back to reference Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., & Zirngibl, H. (2000). Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRgamma chain. Journal of Biological Chemistry, 275(31), 23998–24002.PubMedCrossRef Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., & Zirngibl, H. (2000). Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRgamma chain. Journal of Biological Chemistry, 275(31), 23998–24002.PubMedCrossRef
177.
go back to reference Nieswandt, B., Schulte, V., Bergmeier, W., et al. (2001). Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. Journal of Experimental Medicine, 193(4), 459–469.PubMedPubMedCentralCrossRef Nieswandt, B., Schulte, V., Bergmeier, W., et al. (2001). Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. Journal of Experimental Medicine, 193(4), 459–469.PubMedPubMedCentralCrossRef
178.
go back to reference Nieswandt, B., Brakebusch, C., Bergmeier, W., et al. (2001). Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO Journal, 20(9), 2120–2130.PubMedPubMedCentralCrossRef Nieswandt, B., Brakebusch, C., Bergmeier, W., et al. (2001). Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO Journal, 20(9), 2120–2130.PubMedPubMedCentralCrossRef
179.
go back to reference Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N., & Clemetson, K. J. (1999). The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. Journal of Biological Chemistry, 274(8), 29019–29024.PubMedCrossRef Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N., & Clemetson, K. J. (1999). The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. Journal of Biological Chemistry, 274(8), 29019–29024.PubMedCrossRef
180.
go back to reference Jandrot-Perrus, M., Busfield, S., Lagrue, A. H., et al. (2000). Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood, 96(5), 1798–1807.PubMed Jandrot-Perrus, M., Busfield, S., Lagrue, A. H., et al. (2000). Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood, 96(5), 1798–1807.PubMed
181.
go back to reference Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. Journal of Clinical Investigation, 84(5), 1440–1445.PubMedPubMedCentralCrossRef Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. Journal of Clinical Investigation, 84(5), 1440–1445.PubMedPubMedCentralCrossRef
182.
go back to reference Watson, S. P., Asazuma, N., Atkinson, B., et al. (2001). The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thrombosis and Haemostasis, 86, 276–288.PubMed Watson, S. P., Asazuma, N., Atkinson, B., et al. (2001). The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thrombosis and Haemostasis, 86, 276–288.PubMed
183.
go back to reference Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal of Thrombosis and Haemostasis, 7(10), 1713–1717.PubMedCrossRef Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal of Thrombosis and Haemostasis, 7(10), 1713–1717.PubMedCrossRef
184.
go back to reference Ungerer, M., Rosport, K., Bultmann, A., et al. (2011). Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation, 123(17), 891–1899.CrossRef Ungerer, M., Rosport, K., Bultmann, A., et al. (2011). Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation, 123(17), 891–1899.CrossRef
185.
go back to reference Dovizio, M., Maier, T. J., Alberti, S., et al. (2013). Pharmacological inhibition of platelet–tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40.PubMedCrossRef Dovizio, M., Maier, T. J., Alberti, S., et al. (2013). Pharmacological inhibition of platelet–tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40.PubMedCrossRef
186.
187.
go back to reference Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature, 407(6801), 258–264.PubMedCrossRef Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature, 407(6801), 258–264.PubMedCrossRef
189.
go back to reference Daniel, T., Gibbs, V. C., Milfay, D., et al. (1986). Thrombin stimulates c-sis gene expression in microvascular endothelial cells. Journal of Biological Chemistry, 261(21), 9579–9582.PubMed Daniel, T., Gibbs, V. C., Milfay, D., et al. (1986). Thrombin stimulates c-sis gene expression in microvascular endothelial cells. Journal of Biological Chemistry, 261(21), 9579–9582.PubMed
190.
go back to reference DeMichele, M., & Minnear, F. (1992). Modulation of vascular endothelial permeability by thrombin. Seminars in Thrombosis and Hemostasis, 18(3), 287–295.PubMedCrossRef DeMichele, M., & Minnear, F. (1992). Modulation of vascular endothelial permeability by thrombin. Seminars in Thrombosis and Hemostasis, 18(3), 287–295.PubMedCrossRef
191.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54(5), 793–806.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Ciarelli, J. J., et al. (1993). Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 54(5), 793–806.PubMedCrossRef
192.
go back to reference Nierodzik, M., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed Nierodzik, M., Kajumo, F., & Karpatkin, S. (1992). Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and metastasis in vivo. Cancer Research, 52(12), 3267–3272.PubMed
193.
go back to reference Chen, L. B., & Buchanan, J. M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proceedings of the National Academy of Science U S A, 72(1), 131–135.CrossRef Chen, L. B., & Buchanan, J. M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proceedings of the National Academy of Science U S A, 72(1), 131–135.CrossRef
194.
go back to reference Szaba, F. M., & Smiley, S. T. (2002). Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood, 99, 1053–1059.PubMedPubMedCentralCrossRef Szaba, F. M., & Smiley, S. T. (2002). Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood, 99, 1053–1059.PubMedPubMedCentralCrossRef
195.
go back to reference Sugama, Y., Tiruppathi, C., Offakidevi, K., Andersen, T. T., Fenton 2nd, J. W., & Malik, A. B. (1992). Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. Journal of Cell Biology, 119(4), 935–944.PubMedCrossRef Sugama, Y., Tiruppathi, C., Offakidevi, K., Andersen, T. T., Fenton 2nd, J. W., & Malik, A. B. (1992). Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. Journal of Cell Biology, 119(4), 935–944.PubMedCrossRef
196.
go back to reference Chiang, H. S., Yang, R. S., & Huang, T. F. (1996). Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin. British Journal of Cancer, 73(7), 902–908.PubMedPubMedCentralCrossRef Chiang, H. S., Yang, R. S., & Huang, T. F. (1996). Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin. British Journal of Cancer, 73(7), 902–908.PubMedPubMedCentralCrossRef
197.
go back to reference Radjabi, A. R., Sawada, K., Jagadeeswaran, S., et al. (2008). Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. Journal of Biological Chemistry, 283(5), 2822–2834.PubMedCrossRef Radjabi, A. R., Sawada, K., Jagadeeswaran, S., et al. (2008). Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. Journal of Biological Chemistry, 283(5), 2822–2834.PubMedCrossRef
198.
go back to reference Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 110(5), 355–362.CrossRef Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 110(5), 355–362.CrossRef
199.
go back to reference Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3(8), 1800–1814.PubMedCrossRef Coughlin, S. R. (2005). Protease-activated receptors in hemostasis, thrombosis and vascular biology. Journal of Thrombosis and Haemostasis, 3(8), 1800–1814.PubMedCrossRef
200.
go back to reference Huang, Z., Miao, X., Luan, Y., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Thrombosis and Haemostasis, 13(3), 465–476.CrossRef Huang, Z., Miao, X., Luan, Y., et al. (2015). PAR1-stimulated platelet releasate promotes angiogenic activities of endothelial progenitor cells more potently than PAR4-stimulated platelet releasate. Thrombosis and Haemostasis, 13(3), 465–476.CrossRef
201.
go back to reference Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20(34), 11977–11984.PubMedPubMedCentralCrossRef Sedda, S., Marafini, I., Caruso, R., Pallone, F., & Monteleone, G. (2014). Proteinase activated-receptors-associated signaling in the control of gastric cancer. World Journal of Gastroenterology, 20(34), 11977–11984.PubMedPubMedCentralCrossRef
202.
go back to reference Albrektsen, T., Sorensen, B. B., Hjorto, G. M., Fleckner, J., Rao, L. V., & Petersen, L. C. (2007). Transcriptional program induced by factor VIIa tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. Journal of Thrombosis and Haemostasis, 5(8), 1588–1597.PubMedPubMedCentralCrossRef Albrektsen, T., Sorensen, B. B., Hjorto, G. M., Fleckner, J., Rao, L. V., & Petersen, L. C. (2007). Transcriptional program induced by factor VIIa tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. Journal of Thrombosis and Haemostasis, 5(8), 1588–1597.PubMedPubMedCentralCrossRef
203.
go back to reference Zhou, W., Hashimoto, K., Goleniewska, K., et al. (2007). Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. Journal of Immunology, 178(2), 702–710.CrossRef Zhou, W., Hashimoto, K., Goleniewska, K., et al. (2007). Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. Journal of Immunology, 178(2), 702–710.CrossRef
204.
go back to reference Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45(6), 2287–2294.PubMed Otsuki, T., Fujimoto, D., Hirono, Y., Goi, T., & Yamaguchi, A. (2014). Thrombin conducts epithelial mesenchymal transition via protease activated receptor 1 in human gastric cancer. International Journal of Oncology, 45(6), 2287–2294.PubMed
205.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2010). The activation of proteinase-activated receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion. Biomedical Central Cancer, 10, 443–458. Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., Matsukawa, S., & Yamaguchi, A. (2010). The activation of proteinase-activated receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion. Biomedical Central Cancer, 10, 443–458.
206.
go back to reference Uzunoglu, F. G., Yavari, N., Bohn, B. A., et al. (2013). C-X-C motif receptor 2, endostatin and proteinase-activated receptor 1 polymorphisms as prognostic factors in NSCLC. Lung Cancer, 81(1), 123–129.PubMedCrossRef Uzunoglu, F. G., Yavari, N., Bohn, B. A., et al. (2013). C-X-C motif receptor 2, endostatin and proteinase-activated receptor 1 polymorphisms as prognostic factors in NSCLC. Lung Cancer, 81(1), 123–129.PubMedCrossRef
207.
go back to reference Kaufmann, R., Junker, U., Junker, K., et al. (2002). The serine proteinase thrombin promotes migration of human renal carcinoma cells by a PKA-dependent mechanism. Cancer Letters, 180(2), 183–190.PubMedCrossRef Kaufmann, R., Junker, U., Junker, K., et al. (2002). The serine proteinase thrombin promotes migration of human renal carcinoma cells by a PKA-dependent mechanism. Cancer Letters, 180(2), 183–190.PubMedCrossRef
208.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (2004). Role of thrombin in angiogenesis and tumor progression. Seminars in Thrombosis and Hemostasis, 30(1), 63–69.PubMedCrossRef
209.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68(3), 233–245.PubMedCrossRef Wojtukiewicz, M. Z., Tang, D. G., Nelson, K. K., Walz, D. A., Diglio, C. A., & Honn, K. V. (1992). Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thrombosis Research, 68(3), 233–245.PubMedCrossRef
210.
go back to reference Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed Zhu, Q., Luo, J., Wang, T., Ren, J., Hu, K., & Wu, G. (2012). The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncology Reports, 28(1), 255–261.PubMed
211.
go back to reference Even-Ram, S. C., Maoz, M., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef Even-Ram, S. C., Maoz, M., et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. Journal of Biological Chemistry, 276(14), 10952–10962.PubMedCrossRef
212.
go back to reference Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2015). Integrin αvβ5 as a biomarker for the assessment of nonsmall cell lung cancer metastasis and overall survival. Clinical Respiratory Journal, 9(4), 457–467.PubMedCrossRef Bai, S. Y., Xu, N., Chen, C., Song, Y. L., Hu, J., & Bai, C. X. (2015). Integrin αvβ5 as a biomarker for the assessment of nonsmall cell lung cancer metastasis and overall survival. Clinical Respiratory Journal, 9(4), 457–467.PubMedCrossRef
213.
go back to reference Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., & Yamaguchi, A. (2008). Prognostic value of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer. Anticancer Research, 28(2A), 847–854.PubMed Fujimoto, D., Hirono, Y., Goi, T., Katayama, K., & Yamaguchi, A. (2008). Prognostic value of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer. Anticancer Research, 28(2A), 847–854.PubMed
214.
go back to reference Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120(3), 303–313.PubMedCrossRef Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120(3), 303–313.PubMedCrossRef
215.
go back to reference Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedPubMedCentralCrossRef Nierodzik, M., Plotkin, A., Kajumo, F., & Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. Journal of Clinical Investigation, 87(1), 229–236.PubMedPubMedCentralCrossRef
216.
go back to reference Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., & Honn, K. V. (1995). Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Research, 55(3), 698–704.PubMed
217.
go back to reference Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.PubMed
218.
go back to reference Huang, Y. Q., Li, J.-J., Hu, L., & Karpatkin, S. (2002). Thrombin induces the synthesis of VEGF and angiopoietin-2 (Ang-2). Blood, 99(5), 1646–1650.PubMedCrossRef Huang, Y. Q., Li, J.-J., Hu, L., & Karpatkin, S. (2002). Thrombin induces the synthesis of VEGF and angiopoietin-2 (Ang-2). Blood, 99(5), 1646–1650.PubMedCrossRef
219.
go back to reference Mohle, R., Green, D., Moore, M., Nachman, R., & Rafii, S. (1997). Constitutive production and thrombin-induced release of VEGF by human megakaryocytes and platelets. Proceeding of the National Academy of Sciences USA, 94(2), 663–668.CrossRef Mohle, R., Green, D., Moore, M., Nachman, R., & Rafii, S. (1997). Constitutive production and thrombin-induced release of VEGF by human megakaryocytes and platelets. Proceeding of the National Academy of Sciences USA, 94(2), 663–668.CrossRef
220.
go back to reference Li, J.-J., Huang, Y.-Q., Basch, R., & Karpatkin, S. (2001). Thrombin induces the release of angiopoietin-1 from platelets. Thrombosis and Haemostasis, 85(2), 204–206.PubMed Li, J.-J., Huang, Y.-Q., Basch, R., & Karpatkin, S. (2001). Thrombin induces the release of angiopoietin-1 from platelets. Thrombosis and Haemostasis, 85(2), 204–206.PubMed
221.
go back to reference Belting, M., Dorrell, M. I., Sandgren, S., et al. (2004). Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nature Medicine, 10(5), 502–509.PubMedCrossRef Belting, M., Dorrell, M. I., Sandgren, S., et al. (2004). Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nature Medicine, 10(5), 502–509.PubMedCrossRef
222.
go back to reference Trivedi, V., Boire, A., Tchernychev, B., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedPubMedCentralCrossRef Trivedi, V., Boire, A., Tchernychev, B., et al. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell, 137(2), 332–343.PubMedPubMedCentralCrossRef
223.
go back to reference Sebastiano, M., Momi, S., Falcinelli, E., Bury, L., Hoylaerts, M. F., & Gresele, P. (2017). A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood, 129(7), 883–895.PubMedCrossRef Sebastiano, M., Momi, S., Falcinelli, E., Bury, L., Hoylaerts, M. F., & Gresele, P. (2017). A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood, 129(7), 883–895.PubMedCrossRef
224.
go back to reference Jurasz, P., Sawicki, G., Duszyk, M., et al. (2001). Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Research, 61(1), 376–382.PubMed Jurasz, P., Sawicki, G., Duszyk, M., et al. (2001). Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Research, 61(1), 376–382.PubMed
225.
go back to reference Martin, C., Mahon, G., Klinger, M. B., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef Martin, C., Mahon, G., Klinger, M. B., et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 20(16), 1953–1963.PubMedCrossRef
226.
go back to reference Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362.PubMedCrossRef Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362.PubMedCrossRef
227.
go back to reference Even-Ram, S., Uziely, B., Cohen, P., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef Even-Ram, S., Uziely, B., Cohen, P., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.PubMedCrossRef
228.
go back to reference Bar-Shavit, R., Turm, H., Salah, Z., Maoz, M., Cohen, I., Weiss, E., et al. (2011). PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. International Union of Biochemistry and Molecular Biology Life, 63(6), 397–402.PubMedCrossRef Bar-Shavit, R., Turm, H., Salah, Z., Maoz, M., Cohen, I., Weiss, E., et al. (2011). PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. International Union of Biochemistry and Molecular Biology Life, 63(6), 397–402.PubMedCrossRef
229.
go back to reference Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., et al. (2003). Human protease-activated receptor-1 expression in malignant epithelia: a role in invasiveness. Ateriosclerosis Thrombosis and Vascular Biology, 23(6), 940–944.CrossRef Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., et al. (2003). Human protease-activated receptor-1 expression in malignant epithelia: a role in invasiveness. Ateriosclerosis Thrombosis and Vascular Biology, 23(6), 940–944.CrossRef
230.
go back to reference Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., et al. (2003). Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. Federation of American Societies for Experimental Biology Journal, 17(2), 163–174.PubMedCrossRef Yin, Y. J., Salah, Z., Grisaru-Granovsky, S., et al. (2003). Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. Federation of American Societies for Experimental Biology Journal, 17(2), 163–174.PubMedCrossRef
231.
go back to reference Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedPubMedCentralCrossRef Zigler, M., Kamiya, T., Brantley, E. C., Villares, G. J., & Bar-Eli, M. (2011). PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Research, 71(21), 6561–6566.PubMedPubMedCentralCrossRef
232.
go back to reference Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66(1), 307–314.PubMedCrossRef Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66(1), 307–314.PubMedCrossRef
233.
go back to reference Tsopanoglou, N. E., & Maragoudakis, M. E. (2007). Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Seminars in Thrombosis and Hemostasis, 33(7), 680–687.PubMedCrossRef Tsopanoglou, N. E., & Maragoudakis, M. E. (2007). Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Seminars in Thrombosis and Hemostasis, 33(7), 680–687.PubMedCrossRef
234.
go back to reference Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapy, 318(1), 246–254.CrossRef Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., & Tsopanoglou, N. E. (2006). Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. Journal of Pharmacology and Experimental Therapy, 318(1), 246–254.CrossRef
235.
go back to reference Gurbel, P. A., Bliden, K. P., Turner, S. E., et al. (2016). Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscleriosclerosis Thrombosis and Vascular Biology, 36(1), 189–197. Gurbel, P. A., Bliden, K. P., Turner, S. E., et al. (2016). Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscleriosclerosis Thrombosis and Vascular Biology, 36(1), 189–197.
236.
go back to reference Yang, E., Boire, A., Agarwal, A., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Research, 69(15), 6223–6231.PubMedPubMedCentralCrossRef Yang, E., Boire, A., Agarwal, A., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Research, 69(15), 6223–6231.PubMedPubMedCentralCrossRef
237.
go back to reference Cisowski, J., O'Callaghan, K., Kuliopulos, A., et al. (2011). Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. American Journal of Pathology, 179(1), 513–523. Cisowski, J., O'Callaghan, K., Kuliopulos, A., et al. (2011). Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. American Journal of Pathology, 179(1), 513–523.
238.
go back to reference Agarwal, A., Covic, L., Sevigny, L. M., Kaneider, N. C., Lazarides, K., Azabdaftari, G., et al. (2008). Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Molecular Cancer Therapeutics, 7(9), 2746–2757.PubMedPubMedCentralCrossRef Agarwal, A., Covic, L., Sevigny, L. M., Kaneider, N. C., Lazarides, K., Azabdaftari, G., et al. (2008). Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Molecular Cancer Therapeutics, 7(9), 2746–2757.PubMedPubMedCentralCrossRef
239.
go back to reference Justus, C. R., & Yang, L. V. (2015). GPR4 decreases B16F10 melanoma cell spreading and regulates focal adhesion dynamics through the G13/Rho signaling pathway. Experimental Cell Research, 334(1), 100–113.PubMedCrossRef Justus, C. R., & Yang, L. V. (2015). GPR4 decreases B16F10 melanoma cell spreading and regulates focal adhesion dynamics through the G13/Rho signaling pathway. Experimental Cell Research, 334(1), 100–113.PubMedCrossRef
240.
go back to reference Bian, D., Mahanivong, C., Yu, J., et al. (2006). The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene, 25(15), 2234–2244.PubMedCrossRef Bian, D., Mahanivong, C., Yu, J., et al. (2006). The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene, 25(15), 2234–2244.PubMedCrossRef
241.
go back to reference Lan, T., Wang, H., Zhang, Z., et al. (2017). Downregulation of β-arrestin 1 suppresses glioblastoma cell growth and glycolysis via inhibition of Src signaling. Experimental Cell Research, 4827(17), 30251–30253. Lan, T., Wang, H., Zhang, Z., et al. (2017). Downregulation of β-arrestin 1 suppresses glioblastoma cell growth and glycolysis via inhibition of Src signaling. Experimental Cell Research, 4827(17), 30251–30253.
242.
go back to reference Duan, X., Kong, Z., Liu, Y., et al. (2015). β-Arrestin2 contributes to cell viability and proliferation via the down-regulation of FOXO1 in castration-resistant prostate cancer. Journal of Cellular Physiology, 230(10), 2371–2381.PubMedCrossRef Duan, X., Kong, Z., Liu, Y., et al. (2015). β-Arrestin2 contributes to cell viability and proliferation via the down-regulation of FOXO1 in castration-resistant prostate cancer. Journal of Cellular Physiology, 230(10), 2371–2381.PubMedCrossRef
243.
go back to reference Kotula, J. W., Sun, J., Li, M., et al. (2014). Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PloS One, 9(4), e93441.PubMedPubMedCentralCrossRef Kotula, J. W., Sun, J., Li, M., et al. (2014). Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PloS One, 9(4), e93441.PubMedPubMedCentralCrossRef
244.
go back to reference Xu, P., Zuo, H., Chen, B., et al. (2017). Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Scientific Reports, 7, 42632.PubMedPubMedCentralCrossRef Xu, P., Zuo, H., Chen, B., et al. (2017). Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Scientific Reports, 7, 42632.PubMedPubMedCentralCrossRef
245.
go back to reference Sarkar, S., Alam, M. A., Shaw, J., & Dasgupta, A. K. (2013). Drug delivery using platelet cancer cell interaction. Pharmacological Research, 30(11), 2785–2794.CrossRef Sarkar, S., Alam, M. A., Shaw, J., & Dasgupta, A. K. (2013). Drug delivery using platelet cancer cell interaction. Pharmacological Research, 30(11), 2785–2794.CrossRef
246.
go back to reference Xu, P., Zuo, H., Zhou, R., et al. (2017). Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Oncotarget. doi:10.18632/oncotarget.16871. Xu, P., Zuo, H., Zhou, R., et al. (2017). Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Oncotarget. doi:10.​18632/​oncotarget.​16871.
247.
go back to reference Li, J., Sharkey, C. C., Wun, B., Liesveld, J. L., & King, M. R. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 228, 38–47.PubMedPubMedCentralCrossRef Li, J., Sharkey, C. C., Wun, B., Liesveld, J. L., & King, M. R. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 228, 38–47.PubMedPubMedCentralCrossRef
248.
go back to reference Li, J., Ai, Y., Wang, L., et al. (2016). Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 76, 52–65.PubMedCrossRef Li, J., Ai, Y., Wang, L., et al. (2016). Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 76, 52–65.PubMedCrossRef
249.
go back to reference Hu, Q., Quian, C., Sun, W., et al. (2016). Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 28(43), 9573–9580. Hu, Q., Quian, C., Sun, W., et al. (2016). Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 28(43), 9573–9580.
250.
go back to reference Żmigrodzka, M., Guzera, M., Miśkiewicz, A., Jagielski, D., & Winnicka, A. (2016). The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biology, 37(11), 14391–14401.PubMedPubMedCentralCrossRef Żmigrodzka, M., Guzera, M., Miśkiewicz, A., Jagielski, D., & Winnicka, A. (2016). The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biology, 37(11), 14391–14401.PubMedPubMedCentralCrossRef
251.
go back to reference Amison, R., Page, C., & Pitchford, S. C. (2012). Pharmacological modulation of the inflammatory actions of platelets. Handbook of Experimental Pharmacology, 210, 447–468.CrossRef Amison, R., Page, C., & Pitchford, S. C. (2012). Pharmacological modulation of the inflammatory actions of platelets. Handbook of Experimental Pharmacology, 210, 447–468.CrossRef
252.
go back to reference Carboni, E., Tschudi, K., Nam, J., Lu, X., & Ma, A. W. (2014). Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech, 15(3), 762–771.PubMedPubMedCentralCrossRef Carboni, E., Tschudi, K., Nam, J., Lu, X., & Ma, A. W. (2014). Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech, 15(3), 762–771.PubMedPubMedCentralCrossRef
253.
254.
go back to reference Gresele, P., Momi, S., Pitchford, S. C., & Page, C. P. (2008). Platelets in respiratory disorders and inflammatory conditions. In P. Gresele, V. Fuster, J. A. Lòpez, C. P. Page, & J. Vermylen (Eds.), Platelets in hematologic and cardiovascular disorders, A clinical handbook (pp. 323–340). Cambridge, UK: Cambridge University Press. Gresele, P., Momi, S., Pitchford, S. C., & Page, C. P. (2008). Platelets in respiratory disorders and inflammatory conditions. In P. Gresele, V. Fuster, J. A. Lòpez, C. P. Page, & J. Vermylen (Eds.), Platelets in hematologic and cardiovascular disorders, A clinical handbook (pp. 323–340). Cambridge, UK: Cambridge University Press.
255.
go back to reference Gresele, P., Falcinelli, E., & Momi, S. (2008). Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends in Pharmacological Sciences, 29(7), 352–360.PubMedCrossRef Gresele, P., Falcinelli, E., & Momi, S. (2008). Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends in Pharmacological Sciences, 29(7), 352–360.PubMedCrossRef
256.
go back to reference Menter, D. G., Davis, J. S., Tucker, S. C., et al. (2017). Platelets: “first responders” in cancer progression and metastasis. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1111–1132). Switzerland: Springer, Cham.CrossRef Menter, D. G., Davis, J. S., Tucker, S. C., et al. (2017). Platelets: “first responders” in cancer progression and metastasis. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1111–1132). Switzerland: Springer, Cham.CrossRef
257.
go back to reference Ware, J., & Post, S. R. (2017). Platelets and inflammatory disorders of connective tissue. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1133–1137). Switzerland: Springer, Cham.CrossRef Ware, J., & Post, S. R. (2017). Platelets and inflammatory disorders of connective tissue. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1133–1137). Switzerland: Springer, Cham.CrossRef
258.
go back to reference Momi, S., Pitchford, S. C., Gresle, P., & Page, C. P. (2017). Platelets and airway diseases. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1149–1168). Switzerland: Springer, Cham.CrossRef Momi, S., Pitchford, S. C., Gresle, P., & Page, C. P. (2017). Platelets and airway diseases. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1149–1168). Switzerland: Springer, Cham.CrossRef
259.
go back to reference Andre, P. (2017). Targeting intraplatelet signaling pathways as potential antithrombotic strategy. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1341–1360). Switzerland: Springer, Cham.CrossRef Andre, P. (2017). Targeting intraplatelet signaling pathways as potential antithrombotic strategy. In P. Gresele, N. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelet in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1341–1360). Switzerland: Springer, Cham.CrossRef
Metadata
Title
Platelet-targeted pharmacologic treatments as anti-cancer therapy
Authors
P. Gresele
S. Momi
M. Malvestiti
M. Sebastiano
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9679-8

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue

ReviewPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine