Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2017

Open Access 01-03-2017

Precision medicine driven by cancer systems biology

Author: Fabian V. Filipp

Published in: Cancer and Metastasis Reviews | Issue 1/2017

Login to get access

Abstract

Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.
Literature
2.
go back to reference Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770. doi:10.1038/ng1590.PubMedCrossRef Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770. doi:10.​1038/​ng1590.PubMedCrossRef
3.
go back to reference Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141. doi:10.1073/pnas.0508889103.PubMedPubMedCentralCrossRef Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141. doi:10.​1073/​pnas.​0508889103.PubMedPubMedCentralCrossRef
6.
go back to reference Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512.PubMedCrossRef Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512.PubMedCrossRef
7.
go back to reference Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. doi:10.1038/35057062.PubMedCrossRef Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. doi:10.​1038/​35057062.PubMedCrossRef
10.
go back to reference Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., et al. (1996). Accessing genetic information with high-density DNA arrays. Science, 274(5287), 610–614.PubMedCrossRef Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., et al. (1996). Accessing genetic information with high-density DNA arrays. Science, 274(5287), 610–614.PubMedCrossRef
11.
go back to reference Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280(5366), 1077–1082.PubMedCrossRef Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280(5366), 1077–1082.PubMedCrossRef
15.
go back to reference Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.1038/nature08658.PubMedCrossRef Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.​1038/​nature08658.PubMedCrossRef
16.
go back to reference T. C. G. A. Research Network (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. doi:10.1038/nature11252. T. C. G. A. Research Network (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. doi:10.​1038/​nature11252.
17.
go back to reference T. C. G. A. Research Network. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417), 519–525. doi:10.1038/nature11404. T. C. G. A. Research Network. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417), 519–525. doi:10.​1038/​nature11404.
18.
19.
go back to reference Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., et al. (2011). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139. doi:10.1038/ng.1026.PubMedCrossRef Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., et al. (2011). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139. doi:10.​1038/​ng.​1026.PubMedCrossRef
22.
24.
30.
go back to reference Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073. doi:10.1038/nature09534.PubMedCrossRef Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073. doi:10.​1038/​nature09534.PubMedCrossRef
31.
32.
go back to reference Natarajan, P., Gold, N. B., Bick, A. G., McLaughlin, H., Kraft, P., Rehm, H. L., et al. (2016). Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Science Translational Medicine, 8(364), 364ra151. doi:10.1126/scitranslmed.aag2367.PubMedCrossRef Natarajan, P., Gold, N. B., Bick, A. G., McLaughlin, H., Kraft, P., Rehm, H. L., et al. (2016). Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Science Translational Medicine, 8(364), 364ra151. doi:10.​1126/​scitranslmed.​aag2367.PubMedCrossRef
35.
go back to reference Juengst, E., McGowan, M. L., Fishman, J. R., & Settersten Jr., R. A. (2016). From “personalized” to “precision” medicine: the ethical and social implications of rhetorical reform in genomic medicine. The Hastings Center Report, 46(5), 21–33. doi:10.1002/hast.614.PubMedPubMedCentralCrossRef Juengst, E., McGowan, M. L., Fishman, J. R., & Settersten Jr., R. A. (2016). From “personalized” to “precision” medicine: the ethical and social implications of rhetorical reform in genomic medicine. The Hastings Center Report, 46(5), 21–33. doi:10.​1002/​hast.​614.PubMedPubMedCentralCrossRef
37.
go back to reference Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.1038/ng1054.PubMedCrossRef Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.​1038/​ng1054.PubMedCrossRef
38.
39.
go back to reference Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(2), 107–114. doi:10.1056/NEJMoa1203421.PubMedCrossRef Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(2), 107–114. doi:10.​1056/​NEJMoa1203421.PubMedCrossRef
40.
41.
go back to reference Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.1056/NEJMoa1406037.PubMedCrossRef Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.​1056/​NEJMoa1406037.PubMedCrossRef
42.
go back to reference Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi:10.1056/NEJMoa1412690.PubMedCrossRef Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi:10.​1056/​NEJMoa1412690.PubMedCrossRef
44.
go back to reference Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122–133. doi:10.1056/NEJMoa1302369.PubMedCrossRef Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122–133. doi:10.​1056/​NEJMoa1302369.PubMedCrossRef
45.
go back to reference Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372(21), 2006–2017. doi:10.1056/NEJMoa1414428.PubMedCrossRef Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372(21), 2006–2017. doi:10.​1056/​NEJMoa1414428.PubMedCrossRef
46.
go back to reference Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi:10.1056/NEJMoa1504030.PubMedCrossRef Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi:10.​1056/​NEJMoa1504030.PubMedCrossRef
51.
go back to reference Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.1016/S0140-6736(12)60868-X.PubMedCrossRef Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.​1016/​S0140-6736(12)60868-X.PubMedCrossRef
52.
go back to reference Krepler, C., Xiao, M., Sproesser, K., Brafford, P. A., Shannan, B., Beqiri, M., et al. (2016). Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clinical Cancer Research, 22(7), 1592–1602. doi:10.1158/1078-0432.CCR-15-1762.PubMedCrossRef Krepler, C., Xiao, M., Sproesser, K., Brafford, P. A., Shannan, B., Beqiri, M., et al. (2016). Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clinical Cancer Research, 22(7), 1592–1602. doi:10.​1158/​1078-0432.​CCR-15-1762.PubMedCrossRef
53.
go back to reference Wagle, N., Van Allen, E. M., Treacy, D. J., Frederick, D. T., Cooper, Z. A., Taylor-Weiner, A., et al. (2014). MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discovery, 4(1), 61–68. doi:10.1158/2159-8290.CD-13-0631.PubMedCrossRef Wagle, N., Van Allen, E. M., Treacy, D. J., Frederick, D. T., Cooper, Z. A., Taylor-Weiner, A., et al. (2014). MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discovery, 4(1), 61–68. doi:10.​1158/​2159-8290.​CD-13-0631.PubMedCrossRef
54.
go back to reference Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.1056/NEJMoa1408868.PubMedCrossRef Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.​1056/​NEJMoa1408868.PubMedCrossRef
55.
go back to reference Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8372–8377. doi:10.1073/pnas.1533209100.PubMedPubMedCentralCrossRef Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8372–8377. doi:10.​1073/​pnas.​1533209100.PubMedPubMedCentralCrossRef
56.
go back to reference Yuan, J., Gnjatic, S., Li, H., Powel, S., Gallardo, H. F., Ritter, E., et al. (2008). CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20410–20415. doi:10.1073/pnas.0810114105.PubMedPubMedCentralCrossRef Yuan, J., Gnjatic, S., Li, H., Powel, S., Gallardo, H. F., Ritter, E., et al. (2008). CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20410–20415. doi:10.​1073/​pnas.​0810114105.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526. doi:10.1056/NEJMoa1104621.PubMedCrossRef Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526. doi:10.​1056/​NEJMoa1104621.PubMedCrossRef
59.
go back to reference Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., Dummer, R., Wolchok, J. D., Schmidt, H., et al. (2016). Prolonged survival in stage III melanoma with Ipilimumab adjuvant therapy. The New England Journal of Medicine, 375(19), 1845–1855. doi:10.1056/NEJMoa1611299.PubMedCrossRef Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., Dummer, R., Wolchok, J. D., Schmidt, H., et al. (2016). Prolonged survival in stage III melanoma with Ipilimumab adjuvant therapy. The New England Journal of Medicine, 375(19), 1845–1855. doi:10.​1056/​NEJMoa1611299.PubMedCrossRef
60.
go back to reference Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320–330. doi:10.1056/NEJMoa1412082.PubMedCrossRef Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320–330. doi:10.​1056/​NEJMoa1412082.PubMedCrossRef
61.
go back to reference Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521–2532. doi:10.1056/NEJMoa1503093.PubMedCrossRef Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521–2532. doi:10.​1056/​NEJMoa1503093.PubMedCrossRef
62.
go back to reference Ribas, A., Puzanov, I., Dummer, R., Schadendorf, D., Hamid, O., Robert, C., et al. (2015). Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. The Lancet Oncology, 16(8), 908–918. doi:10.1016/S1470-2045(15)00083-2.PubMedCrossRef Ribas, A., Puzanov, I., Dummer, R., Schadendorf, D., Hamid, O., Robert, C., et al. (2015). Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. The Lancet Oncology, 16(8), 908–918. doi:10.​1016/​S1470-2045(15)00083-2.PubMedCrossRef
63.
go back to reference Chen, G., McQuade, J. L., Panka, D. J., Hudgens, C. W., Amin-Mansour, A., Mu, X. J., et al. (2016). Clinical, molecular, and immune analysis of dabrafenib-trametinib combination treatment for BRAF inhibitor-refractory metastatic melanoma: a phase 2 clinical trial. JAMA Oncology, 2(8), 1056–1064. doi:10.1001/jamaoncol.2016.0509.PubMedPubMedCentralCrossRef Chen, G., McQuade, J. L., Panka, D. J., Hudgens, C. W., Amin-Mansour, A., Mu, X. J., et al. (2016). Clinical, molecular, and immune analysis of dabrafenib-trametinib combination treatment for BRAF inhibitor-refractory metastatic melanoma: a phase 2 clinical trial. JAMA Oncology, 2(8), 1056–1064. doi:10.​1001/​jamaoncol.​2016.​0509.PubMedPubMedCentralCrossRef
64.
go back to reference van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., et al. (2013). Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of Clinical Oncology, 31(32), e439–e442. doi:10.1200/JCO.2012.47.7521.PubMedCrossRef van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., et al. (2013). Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of Clinical Oncology, 31(32), e439–e442. doi:10.​1200/​JCO.​2012.​47.​7521.PubMedCrossRef
67.
72.
go back to reference Verdegaal, E. M., de Miranda, N. F., Visser, M., Harryvan, T., van Buuren, M. M., Andersen, R. S., et al. (2016). Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature, 536(7614), 91–95. doi:10.1038/nature18945.PubMedCrossRef Verdegaal, E. M., de Miranda, N. F., Visser, M., Harryvan, T., van Buuren, M. M., Andersen, R. S., et al. (2016). Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature, 536(7614), 91–95. doi:10.​1038/​nature18945.PubMedCrossRef
74.
go back to reference Robbins, P. F., Lu, Y. C., El-Gamil, M., Li, Y. F., Gross, C., Gartner, J., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747–752. doi:10.1038/nm.3161.PubMedPubMedCentralCrossRef Robbins, P. F., Lu, Y. C., El-Gamil, M., Li, Y. F., Gross, C., Gartner, J., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747–752. doi:10.​1038/​nm.​3161.PubMedPubMedCentralCrossRef
75.
go back to reference Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., et al. (2015). Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803–808. doi:10.1126/science.aaa3828.PubMedPubMedCentralCrossRef Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., et al. (2015). Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803–808. doi:10.​1126/​science.​aaa3828.PubMedPubMedCentralCrossRef
77.
go back to reference Gros, A., Parkhurst, M. R., Tran, E., Pasetto, A., Robbins, P. F., Ilyas, S., et al. (2016). Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature Medicine, 22(4), 433–438. doi:10.1038/nm.4051.PubMedCrossRef Gros, A., Parkhurst, M. R., Tran, E., Pasetto, A., Robbins, P. F., Ilyas, S., et al. (2016). Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature Medicine, 22(4), 433–438. doi:10.​1038/​nm.​4051.PubMedCrossRef
78.
go back to reference Stronen, E., Toebes, M., Kelderman, S., van Buuren, M. M., Yang, W., van Rooij, N., et al. (2016). Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 352(6291), 1337–1341. doi:10.1126/science.aaf2288.PubMedCrossRef Stronen, E., Toebes, M., Kelderman, S., van Buuren, M. M., Yang, W., van Rooij, N., et al. (2016). Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 352(6291), 1337–1341. doi:10.​1126/​science.​aaf2288.PubMedCrossRef
80.
go back to reference Gupta, S. K., Jaitly, T., Schmitz, U., Schuler, G., Wolkenhauer, O., & Vera, J. (2016). Personalized cancer immunotherapy using systems medicine approaches. Briefings in Bioinformatics, 17(3), 453–467. doi:10.1093/bib/bbv046.PubMedCrossRef Gupta, S. K., Jaitly, T., Schmitz, U., Schuler, G., Wolkenhauer, O., & Vera, J. (2016). Personalized cancer immunotherapy using systems medicine approaches. Briefings in Bioinformatics, 17(3), 453–467. doi:10.​1093/​bib/​bbv046.PubMedCrossRef
81.
go back to reference Santos, G., Nikolov, S., Lai, X., Eberhardt, M., Dreyer, F. S., Paul, S., et al. (2016). Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis. Scientific Reports, 6, 24967. doi:10.1038/srep24967.PubMedPubMedCentralCrossRef Santos, G., Nikolov, S., Lai, X., Eberhardt, M., Dreyer, F. S., Paul, S., et al. (2016). Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis. Scientific Reports, 6, 24967. doi:10.​1038/​srep24967.PubMedPubMedCentralCrossRef
85.
go back to reference Tiffen, J., Wilson, S., Gallagher, S. J., Hersey, P., & Filipp, F. V. (2016). Somatic copy number amplification and Hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma. Neoplasia, 18(2), 121–132. doi:10.1016/j.neo.2016.01.003.PubMedPubMedCentralCrossRef Tiffen, J., Wilson, S., Gallagher, S. J., Hersey, P., & Filipp, F. V. (2016). Somatic copy number amplification and Hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma. Neoplasia, 18(2), 121–132. doi:10.​1016/​j.​neo.​2016.​01.​003.PubMedPubMedCentralCrossRef
86.
go back to reference Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., et al. (2013). TCIA: an information resource to enable open science. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 1282–1285. doi:10.1109/EMBC.2013.6609742. Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., et al. (2013). TCIA: an information resource to enable open science. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 1282–1285. doi:10.​1109/​EMBC.​2013.​6609742.
87.
go back to reference Gutman, D. A., Cobb, J., Somanna, D., Park, Y., Wang, F., Kurc, T., et al. (2013). Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. Journal of the American Medical Informatics Association, 20(6), 1091–1098. doi:10.1136/amiajnl-2012-001469.PubMedPubMedCentralCrossRef Gutman, D. A., Cobb, J., Somanna, D., Park, Y., Wang, F., Kurc, T., et al. (2013). Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. Journal of the American Medical Informatics Association, 20(6), 1091–1098. doi:10.​1136/​amiajnl-2012-001469.PubMedPubMedCentralCrossRef
89.
go back to reference Kamburov, A., Lawrence, M. S., Polak, P., Leshchiner, I., Lage, K., Golub, T. R., et al. (2015). Comprehensive assessment of cancer missense mutation clustering in protein structures. Proceedings of the National Academy of Sciences of the United States of America, 112(40), E5486–E5495. doi:10.1073/pnas.1516373112.PubMedPubMedCentralCrossRef Kamburov, A., Lawrence, M. S., Polak, P., Leshchiner, I., Lage, K., Golub, T. R., et al. (2015). Comprehensive assessment of cancer missense mutation clustering in protein structures. Proceedings of the National Academy of Sciences of the United States of America, 112(40), E5486–E5495. doi:10.​1073/​pnas.​1516373112.PubMedPubMedCentralCrossRef
92.
93.
go back to reference Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., et al. (2006). The polycomb group protein EZH2 directly controls DNA methylation. Nature, 439(7078), 871–874. doi:10.1038/nature04431.PubMedCrossRef Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., et al. (2006). The polycomb group protein EZH2 directly controls DNA methylation. Nature, 439(7078), 871–874. doi:10.​1038/​nature04431.PubMedCrossRef
94.
go back to reference Laurent, B. C., Treitel, M. A., & Carlson, M. (1991). Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 88(7), 2687–2691.PubMedPubMedCentralCrossRef Laurent, B. C., Treitel, M. A., & Carlson, M. (1991). Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 88(7), 2687–2691.PubMedPubMedCentralCrossRef
95.
go back to reference Peterson, C. L., & Herskowitz, I. (1992). Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 68(3), 573–583.PubMedCrossRef Peterson, C. L., & Herskowitz, I. (1992). Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 68(3), 573–583.PubMedCrossRef
98.
go back to reference Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al. (2015). COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43(Database issue), D805–D811. doi:10.1093/nar/gku1075.PubMedCrossRef Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al. (2015). COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43(Database issue), D805–D811. doi:10.​1093/​nar/​gku1075.PubMedCrossRef
100.
101.
go back to reference Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research, 25(3), 375–383. doi:10.1111/j.1755-148X.2012.00989.x.CrossRef Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research, 25(3), 375–383. doi:10.​1111/​j.​1755-148X.​2012.​00989.​x.CrossRef
102.
go back to reference Filipp, F. V., Ratnikov, B., De Ingeniis, J., Smith, J. W., Osterman, A. L., & Scott, D. A. (2012). Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell & Melanoma Research, 25(6), 732–739. doi:10.1111/pcmr.12000.CrossRef Filipp, F. V., Ratnikov, B., De Ingeniis, J., Smith, J. W., Osterman, A. L., & Scott, D. A. (2012). Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell & Melanoma Research, 25(6), 732–739. doi:10.​1111/​pcmr.​12000.CrossRef
103.
go back to reference Wilson, S., Qi, J., & Filipp, F. V. (2016). Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Scientific Reports, 6, 32611. doi:10.1038/srep32611. Wilson, S., Qi, J., & Filipp, F. V. (2016). Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Scientific Reports, 6, 32611. doi:10.​1038/​srep32611.
104.
go back to reference Wilson, S., Fan, L., Sahgal, N., Qi, J., & Filipp, F. V. (2017). The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget, 8. doi:10.18632/oncotarget.15681. Wilson, S., Fan, L., Sahgal, N., Qi, J., & Filipp, F. V. (2017). The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget, 8. doi:10.​18632/​oncotarget.​15681.
105.
go back to reference Struys, E. A., Salomons, G. S., Achouri, Y., Van Schaftingen, E., Grosso, S., Craigen, W. J., et al. (2005). Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. American Journal of Human Genetics, 76(2), 358–360. doi:10.1086/427890.PubMedCrossRef Struys, E. A., Salomons, G. S., Achouri, Y., Van Schaftingen, E., Grosso, S., Craigen, W. J., et al. (2005). Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. American Journal of Human Genetics, 76(2), 358–360. doi:10.​1086/​427890.PubMedCrossRef
108.
go back to reference Filipp, F. V. (2017). Crosstalk between epigenetics and metabolism—Yin and Yang of histone demethylases and methyl-transferases in cancer. Briefings in Functional Genomics, 16. doi:10.1093/bfgp/elx001. Filipp, F. V. (2017). Crosstalk between epigenetics and metabolism—Yin and Yang of histone demethylases and methyl-transferases in cancer. Briefings in Functional Genomics, 16. doi:10.​1093/​bfgp/​elx001.
109.
go back to reference Tiffen, J. C., Gunatilake, D., Gallagher, S. J., Gowrishankar, K., Heinemann, A., Cullinane, C., et al. (2015). Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 6(29), 27023–27036. doi:10.18632/oncotarget.4809.PubMedPubMedCentralCrossRef Tiffen, J. C., Gunatilake, D., Gallagher, S. J., Gowrishankar, K., Heinemann, A., Cullinane, C., et al. (2015). Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 6(29), 27023–27036. doi:10.​18632/​oncotarget.​4809.PubMedPubMedCentralCrossRef
110.
go back to reference Mao, P., Smerdon, M. J., Roberts, S. A., & Wyrick, J. J. (2016). Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 9057–9062. doi:10.1073/pnas.1606667113.PubMedPubMedCentralCrossRef Mao, P., Smerdon, M. J., Roberts, S. A., & Wyrick, J. J. (2016). Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 9057–9062. doi:10.​1073/​pnas.​1606667113.PubMedPubMedCentralCrossRef
112.
go back to reference McCabe, M. T., Ott, H. M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G. S., et al. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 492(7427), 108–112. doi:10.1038/nature11606.PubMedCrossRef McCabe, M. T., Ott, H. M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G. S., et al. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 492(7427), 108–112. doi:10.​1038/​nature11606.PubMedCrossRef
114.
go back to reference Tiffen, J. C., Gallagher, S. J., Tseng, H. Y., Filipp, F. V., Fazekas de St. Groth, B., & Hersey, P. (2016). EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell & Melanoma Research, 29(5), 500–507. doi:10.1111/pcmr.12481.CrossRef Tiffen, J. C., Gallagher, S. J., Tseng, H. Y., Filipp, F. V., Fazekas de St. Groth, B., & Hersey, P. (2016). EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell & Melanoma Research, 29(5), 500–507. doi:10.​1111/​pcmr.​12481.CrossRef
115.
go back to reference Kelderman, S., Heemskerk, B., van Tinteren, H., van den Brom, R. R., Hospers, G. A., van den Eertwegh, A. J., et al. (2014). Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunology, Immunotherapy, 63(5), 449–458. doi:10.1007/s00262-014-1528-9.PubMed Kelderman, S., Heemskerk, B., van Tinteren, H., van den Brom, R. R., Hospers, G. A., van den Eertwegh, A. J., et al. (2014). Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunology, Immunotherapy, 63(5), 449–458. doi:10.​1007/​s00262-014-1528-9.PubMed
116.
go back to reference Weide, B., Martens, A., Hassel, J. C., Berking, C., Postow, M. A., Bisschop, K., et al. (2016). Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-16-0127. Weide, B., Martens, A., Hassel, J. C., Berking, C., Postow, M. A., Bisschop, K., et al. (2016). Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clinical Cancer Research. doi:10.​1158/​1078-0432.​CCR-16-0127.
117.
go back to reference Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. doi:10.1158/2159-8290.CD-12-0095.PubMedCrossRef Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. doi:10.​1158/​2159-8290.​CD-12-0095.PubMedCrossRef
121.
go back to reference Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H., et al. (2005). Distinct sets of genetic alterations in melanoma. The New England Journal of Medicine, 353(20), 2135–2147. doi:10.1056/NEJMoa050092.PubMedCrossRef Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H., et al. (2005). Distinct sets of genetic alterations in melanoma. The New England Journal of Medicine, 353(20), 2135–2147. doi:10.​1056/​NEJMoa050092.PubMedCrossRef
122.
go back to reference Hackett, P. B., & Sauerbier, W. (1974). Radiological mapping of the ribosomal RNA transcription unit in E. coli. Nature, 251(5476), 639–641.PubMedCrossRef Hackett, P. B., & Sauerbier, W. (1974). Radiological mapping of the ribosomal RNA transcription unit in E. coli. Nature, 251(5476), 639–641.PubMedCrossRef
124.
go back to reference Abdel-Malek, Z. A., Swope, V. B., Starner, R. J., Koikov, L., Cassidy, P., & Leachman, S. (2014). Melanocortins and the melanocortin 1 receptor, moving translationally towards melanoma prevention. Archives of Biochemistry and Biophysics, 563, 4–12. doi:10.1016/j.abb.2014.07.002.PubMedCrossRef Abdel-Malek, Z. A., Swope, V. B., Starner, R. J., Koikov, L., Cassidy, P., & Leachman, S. (2014). Melanocortins and the melanocortin 1 receptor, moving translationally towards melanoma prevention. Archives of Biochemistry and Biophysics, 563, 4–12. doi:10.​1016/​j.​abb.​2014.​07.​002.PubMedCrossRef
125.
go back to reference Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 464(7287), 431–435. doi:10.1038/nature08833.PubMedCrossRef Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 464(7287), 431–435. doi:10.​1038/​nature08833.PubMedCrossRef
126.
129.
go back to reference Cruz 3rd, F., Rubin, B. P., Wilson, D., Town, A., Schroeder, A., Haley, A., et al. (2003). Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Research, 63(18), 5761–5766.PubMed Cruz 3rd, F., Rubin, B. P., Wilson, D., Town, A., Schroeder, A., Haley, A., et al. (2003). Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Research, 63(18), 5761–5766.PubMed
130.
go back to reference Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229), 599–602. doi:10.1038/nature07586.PubMedCrossRef Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229), 599–602. doi:10.​1038/​nature07586.PubMedCrossRef
132.
go back to reference Mitsiades, N., Chew, S. A., He, B., Riechardt, A. I., Karadedou, T., Kotoula, V., et al. (2011). Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Investigative Ophthalmology & Visual Science, 52(10), 7248–7255. doi:10.1167/iovs.11-7398.CrossRef Mitsiades, N., Chew, S. A., He, B., Riechardt, A. I., Karadedou, T., Kotoula, V., et al. (2011). Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Investigative Ophthalmology & Visual Science, 52(10), 7248–7255. doi:10.​1167/​iovs.​11-7398.CrossRef
133.
136.
137.
go back to reference Praetorius, C., Grill, C., Stacey, S. N., Metcalf, A. M., Gorkin, D. U., Robinson, K. C., et al. (2013). A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell, 155(5), 1022–1033. doi:10.1016/j.cell.2013.10.022.PubMedCrossRef Praetorius, C., Grill, C., Stacey, S. N., Metcalf, A. M., Gorkin, D. U., Robinson, K. C., et al. (2013). A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell, 155(5), 1022–1033. doi:10.​1016/​j.​cell.​2013.​10.​022.PubMedCrossRef
140.
Metadata
Title
Precision medicine driven by cancer systems biology
Author
Fabian V. Filipp
Publication date
01-03-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9662-4

Other articles of this Issue 1/2017

Cancer and Metastasis Reviews 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine