Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2017

01-03-2017

Combining forces: the promise and peril of synergistic immune checkpoint blockade and targeted therapy in metastatic melanoma

Authors: David J. Hermel, Patrick A. Ott

Published in: Cancer and Metastasis Reviews | Issue 1/2017

Login to get access

Abstract

Both immune checkpoint inhibitors and molecularly targeted agents have dramatically improved clinical outcomes for patients with metastatic melanoma. These two therapeutic approaches harness distinct mechanistic pathways—on the one hand, monoclonal antibodies against the immune checkpoints CTLA-4 and PD-1/PD-L1 stimulate the T cell mediated host immune response, while targeted inhibitors of the proto-oncogenes BRAF and MEK disrupt constitutive kinase activity responsible for tumor growth. The prospect of combining these two treatment modalities has been proposed as a potential way to increase overall response rate, extend durability of the anti-tumor response, and circumvent the immune-mediated resistance to targeted therapy. This review explores the preclinical rationale—building upon a wealth of in vitro and in vivo studies—for improved anti-tumor efficacy from combined immune checkpoint inhibition and targeted therapy. In the process, we detail the early clinical trials that have assessed the compatibility of combining these two therapies and the unexpected challenges faced from studies showing increased toxicity from these regimens. Ultimately, with more clinical data expected to mature and accrue in the near future, we elucidate a potentially novel and promising strategy for patients with advanced melanoma.
Literature
1.
go back to reference Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359–E386.CrossRefPubMed Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359–E386.CrossRefPubMed
2.
go back to reference Eggermont, A. M., & Kirkwood, J. M. (2004). Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? European Journal of Cancer, 40, 1825–1836.CrossRefPubMed Eggermont, A. M., & Kirkwood, J. M. (2004). Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? European Journal of Cancer, 40, 1825–1836.CrossRefPubMed
3.
go back to reference Davey, R. J., van der Westhuizen, A., & Bowden, N. A. (2016). Metastatic melanoma treatment: combining old and new therapies. Critical Reviews in Oncology/Hematology, 98, 242–253.CrossRefPubMed Davey, R. J., van der Westhuizen, A., & Bowden, N. A. (2016). Metastatic melanoma treatment: combining old and new therapies. Critical Reviews in Oncology/Hematology, 98, 242–253.CrossRefPubMed
4.
go back to reference Malczewski, A., Marshall, A., Payne, M. J., et al. (2016). Intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence: meta-analysis of three trials. Cancer Medicine, 5, 17–23.CrossRefPubMed Malczewski, A., Marshall, A., Payne, M. J., et al. (2016). Intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence: meta-analysis of three trials. Cancer Medicine, 5, 17–23.CrossRefPubMed
5.
go back to reference Girotti, M. R., Saturno, G., Lorigan, P., & Marais, R. (2014). No longer an untreatable disease: how targeted and immunotherapies have changed the management of melanoma patients. Molecular Oncology, 8, 1140–1158.CrossRefPubMed Girotti, M. R., Saturno, G., Lorigan, P., & Marais, R. (2014). No longer an untreatable disease: how targeted and immunotherapies have changed the management of melanoma patients. Molecular Oncology, 8, 1140–1158.CrossRefPubMed
6.
go back to reference Hodi, F. S., O'Day, S. J., McDermott, D. F., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363, 711–723.CrossRefPubMedPubMedCentral Hodi, F. S., O'Day, S. J., McDermott, D. F., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363, 711–723.CrossRefPubMedPubMedCentral
7.
go back to reference Robert, C., Thomas, L., Bondarenko, I., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med cdex, 364, 2517–2526.CrossRef Robert, C., Thomas, L., Bondarenko, I., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med cdex, 364, 2517–2526.CrossRef
8.
go back to reference Rotte, A., Bhandaru, M., Zhou, Y., & McElwee, K. J. (2015). Immunotherapy of melanoma: present options and future promises. Cancer Metastasis Reviews, 34, 115–128.CrossRefPubMed Rotte, A., Bhandaru, M., Zhou, Y., & McElwee, K. J. (2015). Immunotherapy of melanoma: present options and future promises. Cancer Metastasis Reviews, 34, 115–128.CrossRefPubMed
10.
go back to reference Weber, J. S., D'Angelo, S. P., Minor, D., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16, 375–384.CrossRefPubMed Weber, J. S., D'Angelo, S. P., Minor, D., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16, 375–384.CrossRefPubMed
11.
go back to reference Robert, C., Long, G. V., Brady, B., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372, 320–330.CrossRefPubMed Robert, C., Long, G. V., Brady, B., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372, 320–330.CrossRefPubMed
12.
go back to reference Robert, C., Schachter, J., Long, G. V., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372, 2521–2532.CrossRefPubMed Robert, C., Schachter, J., Long, G. V., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372, 2521–2532.CrossRefPubMed
13.
go back to reference Larkin, J., Chiarion-Sileni, V., Gonzalez, R., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373, 23–34.CrossRefPubMed Larkin, J., Chiarion-Sileni, V., Gonzalez, R., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373, 23–34.CrossRefPubMed
14.
go back to reference Davies, H., Bignell, G. R., Cox, C., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.CrossRefPubMed Davies, H., Bignell, G. R., Cox, C., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.CrossRefPubMed
15.
go back to reference Cheng, Y., Zhang, G., & Li, G. (2013). Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Reviews, 32, 567–584.CrossRefPubMed Cheng, Y., Zhang, G., & Li, G. (2013). Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Reviews, 32, 567–584.CrossRefPubMed
16.
go back to reference McArthur, G. A., Chapman, P. B., Robert, C., et al. (2014). Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology, 15, 323–332.CrossRefPubMedPubMedCentral McArthur, G. A., Chapman, P. B., Robert, C., et al. (2014). Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology, 15, 323–332.CrossRefPubMedPubMedCentral
17.
go back to reference Hauschild, A., Grob, J. J., Demidov, L. V., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380, 358–365.CrossRefPubMed Hauschild, A., Grob, J. J., Demidov, L. V., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380, 358–365.CrossRefPubMed
18.
go back to reference Larkin, J., Ascierto, P. A., Dreno, B., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371, 1867–1876.CrossRefPubMed Larkin, J., Ascierto, P. A., Dreno, B., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371, 1867–1876.CrossRefPubMed
19.
go back to reference Robert, C., Karaszewska, B., Schachter, J., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372, 30–39.CrossRefPubMed Robert, C., Karaszewska, B., Schachter, J., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372, 30–39.CrossRefPubMed
20.
go back to reference Ugurel, S., Rohmel, J., Ascierto, P. A., et al. (2016). Survival of patients with advanced metastatic melanoma: the impact of novel therapies. European Journal of Cancer, 53, 125–134.CrossRefPubMed Ugurel, S., Rohmel, J., Ascierto, P. A., et al. (2016). Survival of patients with advanced metastatic melanoma: the impact of novel therapies. European Journal of Cancer, 53, 125–134.CrossRefPubMed
21.
go back to reference Long, G. V., Stroyakovskiy, D., Gogas, H., et al. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 386, 444–451.CrossRefPubMed Long, G. V., Stroyakovskiy, D., Gogas, H., et al. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 386, 444–451.CrossRefPubMed
22.
go back to reference Welsh, S. J., Rizos, H., Scolyer, R. A., & Long, G. V. (2016). Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? European Journal of Cancer, 62, 76–85.CrossRefPubMed Welsh, S. J., Rizos, H., Scolyer, R. A., & Long, G. V. (2016). Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? European Journal of Cancer, 62, 76–85.CrossRefPubMed
23.
go back to reference Schadendorf, D., Hodi, F. S., Robert, C., et al. (2015). Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. Journal of Clinical Oncology, 33, 1889–1894.CrossRefPubMedPubMedCentral Schadendorf, D., Hodi, F. S., Robert, C., et al. (2015). Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. Journal of Clinical Oncology, 33, 1889–1894.CrossRefPubMedPubMedCentral
24.
go back to reference Buzaid, A. C., Agarwala, S. S., Hauschild, A., & Atkins, M. (2014). Algorithm for the management of metastatic cutaneous melanoma. Chinese Clinical Oncology, 3, 32,3865.2014.07.01. Buzaid, A. C., Agarwala, S. S., Hauschild, A., & Atkins, M. (2014). Algorithm for the management of metastatic cutaneous melanoma. Chinese Clinical Oncology, 3, 32,3865.2014.07.01.
25.
go back to reference Coffelt, S. B., & de Visser, K. E. (2015). Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends in Immunology, 36, 198–216.CrossRefPubMed Coffelt, S. B., & de Visser, K. E. (2015). Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends in Immunology, 36, 198–216.CrossRefPubMed
26.
go back to reference Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. The Journal of Experimental Medicine, 203, 1651–1656.CrossRefPubMedPubMedCentral Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. The Journal of Experimental Medicine, 203, 1651–1656.CrossRefPubMedPubMedCentral
27.
go back to reference Chen PL, Roh W, Reuben A, et al. (2016). Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. Chen PL, Roh W, Reuben A, et al. (2016). Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov.
28.
go back to reference Festino, L., Botti, G., Lorigan, P., et al. (2016). Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? Drugs, 76, 925–945.CrossRefPubMed Festino, L., Botti, G., Lorigan, P., et al. (2016). Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? Drugs, 76, 925–945.CrossRefPubMed
29.
go back to reference McGranahan, N., Furness, A. J., Rosenthal, R., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351, 1463–1469.CrossRefPubMedPubMedCentral McGranahan, N., Furness, A. J., Rosenthal, R., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351, 1463–1469.CrossRefPubMedPubMedCentral
30.
go back to reference Hermel, D., & Sigal, D. (2016). “Check”-ing the data: a review of immune checkpoint inhibitor biomarkers. Personalized Medicine in Oncology., 5(6), 234–240. Hermel, D., & Sigal, D. (2016). “Check”-ing the data: a review of immune checkpoint inhibitor biomarkers. Personalized Medicine in Oncology., 5(6), 234–240.
31.
go back to reference Tumeh, P. C., Harview, C. L., Yearley, J. H., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515, 568–571.CrossRefPubMedPubMedCentral Tumeh, P. C., Harview, C. L., Yearley, J. H., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515, 568–571.CrossRefPubMedPubMedCentral
32.
go back to reference Salama, A. K., Postow, M. A., & Salama, J. K. (2016). Irradiation and immunotherapy: from concept to the clinic. Cancer, 122, 1659–1671.CrossRefPubMed Salama, A. K., Postow, M. A., & Salama, J. K. (2016). Irradiation and immunotherapy: from concept to the clinic. Cancer, 122, 1659–1671.CrossRefPubMed
33.
go back to reference Knight, D. A., Ngiow, S. F., Li, M., et al. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. The Journal of Clinical Investigation, 123, 1371–1381.CrossRefPubMedPubMedCentral Knight, D. A., Ngiow, S. F., Li, M., et al. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. The Journal of Clinical Investigation, 123, 1371–1381.CrossRefPubMedPubMedCentral
34.
go back to reference Hong, D. S., Vence, L., Falchook, G., et al. (2012). BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clinical Cancer Research, 18, 2326–2335.CrossRefPubMed Hong, D. S., Vence, L., Falchook, G., et al. (2012). BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clinical Cancer Research, 18, 2326–2335.CrossRefPubMed
35.
go back to reference Cooper, Z. A., Frederick, D. T., Juneja, V. R., et al. (2013). BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology, 2, e26615.CrossRefPubMedPubMedCentral Cooper, Z. A., Frederick, D. T., Juneja, V. R., et al. (2013). BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology, 2, e26615.CrossRefPubMedPubMedCentral
36.
go back to reference Wilmott, J. S., Haydu, L. E., Menzies, A. M., et al. (2014). Dynamics of chemokine, cytokine, and growth factor serum levels in BRAF-mutant melanoma patients during BRAF inhibitor treatment. Journal of Immunology, 192, 2505–2513.CrossRef Wilmott, J. S., Haydu, L. E., Menzies, A. M., et al. (2014). Dynamics of chemokine, cytokine, and growth factor serum levels in BRAF-mutant melanoma patients during BRAF inhibitor treatment. Journal of Immunology, 192, 2505–2513.CrossRef
37.
go back to reference Liu, L., Mayes, P. A., Eastman, S., et al. (2015). The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research, 21, 1639–1651.CrossRefPubMed Liu, L., Mayes, P. A., Eastman, S., et al. (2015). The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research, 21, 1639–1651.CrossRefPubMed
38.
go back to reference Khalili, J. S., Liu, S., Rodriguez-Cruz, T. G., et al. (2012). Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clinical Cancer Research, 18, 5329–5340.CrossRefPubMedPubMedCentral Khalili, J. S., Liu, S., Rodriguez-Cruz, T. G., et al. (2012). Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clinical Cancer Research, 18, 5329–5340.CrossRefPubMedPubMedCentral
39.
go back to reference Wilmott, J. S., Long, G. V., Howle, J. R., et al. (2012). Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clinical Cancer Research, 18, 1386–1394.CrossRefPubMed Wilmott, J. S., Long, G. V., Howle, J. R., et al. (2012). Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clinical Cancer Research, 18, 1386–1394.CrossRefPubMed
40.
go back to reference Boni, A., Cogdill, A. P., Dang, P., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70, 5213–5219.CrossRefPubMed Boni, A., Cogdill, A. P., Dang, P., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70, 5213–5219.CrossRefPubMed
41.
go back to reference Vella, L. J., Pasam, A., Dimopoulos, N., et al. (2014). MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunology Research, 2, 351–360.CrossRefPubMed Vella, L. J., Pasam, A., Dimopoulos, N., et al. (2014). MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunology Research, 2, 351–360.CrossRefPubMed
42.
go back to reference Frederick, D. T., Piris, A., Cogdill, A. P., et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical Cancer Research, 19, 1225–1231.CrossRefPubMedPubMedCentral Frederick, D. T., Piris, A., Cogdill, A. P., et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical Cancer Research, 19, 1225–1231.CrossRefPubMedPubMedCentral
43.
go back to reference Manson, G., Norwood, J., Marabelle, A., Kohrt, H., & Houot, R. (2016). Biomarkers associated with checkpoint inhibitors. Annals of Oncology, 27, 1199–1206.CrossRefPubMed Manson, G., Norwood, J., Marabelle, A., Kohrt, H., & Houot, R. (2016). Biomarkers associated with checkpoint inhibitors. Annals of Oncology, 27, 1199–1206.CrossRefPubMed
44.
go back to reference Liu, C., Peng, W., Xu, C., et al. (2013). BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clinical Cancer Research, 19, 393–403.CrossRefPubMed Liu, C., Peng, W., Xu, C., et al. (2013). BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clinical Cancer Research, 19, 393–403.CrossRefPubMed
45.
go back to reference Hu-Lieskovan, S., Mok, S., Homet Moreno, B., et al. (2015). Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Science Translational Medicine, 7, 279ra41.CrossRefPubMedPubMedCentral Hu-Lieskovan, S., Mok, S., Homet Moreno, B., et al. (2015). Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Science Translational Medicine, 7, 279ra41.CrossRefPubMedPubMedCentral
46.
go back to reference Callahan, M. K., Masters, G., Pratilas, C. A., et al. (2014). Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunology Research, 2, 70–79.CrossRefPubMed Callahan, M. K., Masters, G., Pratilas, C. A., et al. (2014). Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunology Research, 2, 70–79.CrossRefPubMed
47.
go back to reference Hooijkaas, A., Gadiot, J., Morrow, M., Stewart, R., Schumacher, T., & Blank, C. U. (2012). Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma. Oncoimmunology, 1, 609–617.CrossRefPubMedPubMedCentral Hooijkaas, A., Gadiot, J., Morrow, M., Stewart, R., Schumacher, T., & Blank, C. U. (2012). Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma. Oncoimmunology, 1, 609–617.CrossRefPubMedPubMedCentral
48.
go back to reference Cooper, Z. A., Juneja, V. R., Sage, P. T., et al. (2014). Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunology Research, 2, 643.CrossRefPubMedPubMedCentral Cooper, Z. A., Juneja, V. R., Sage, P. T., et al. (2014). Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunology Research, 2, 643.CrossRefPubMedPubMedCentral
49.
go back to reference Ribas, A., Hodi, F. S., Callahan, M., Konto, C., & Wolchok, J. (2013). Hepatotoxicity with combination of vemurafenib and ipilimumab. The New England Journal of Medicine, 368, 1365–1366.CrossRefPubMed Ribas, A., Hodi, F. S., Callahan, M., Konto, C., & Wolchok, J. (2013). Hepatotoxicity with combination of vemurafenib and ipilimumab. The New England Journal of Medicine, 368, 1365–1366.CrossRefPubMed
50.
go back to reference Hassel, J. C., Lee, S. B., Meiss, F., et al. (2016). Vemurafenib and ipilimumab: a promising combination? Results of a case series. Oncoimmunology, 5, e1101207.CrossRefPubMed Hassel, J. C., Lee, S. B., Meiss, F., et al. (2016). Vemurafenib and ipilimumab: a promising combination? Results of a case series. Oncoimmunology, 5, e1101207.CrossRefPubMed
51.
go back to reference Puzanov, I. (2015). Combining targeted and immunotherapy: BRAF inhibitor dabrafenib (D) ± the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM). Journal of Translational Medicine., 13(Suppl 1), K8. doi:10.1186/1479-5876-13-S1-K8.CrossRefPubMedCentral Puzanov, I. (2015). Combining targeted and immunotherapy: BRAF inhibitor dabrafenib (D) ± the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM). Journal of Translational Medicine., 13(Suppl 1), K8. doi:10.​1186/​1479-5876-13-S1-K8.CrossRefPubMedCentral
52.
go back to reference Gonzalez-Cao, M., Boada, A., Teixidó, C., Fernandez-Figueras, M., et al. (2016). Fatal gastrointestinal toxicity with ipilimumab after BRAF/MEK inhibitor combination in a melanoma patient achieving pathological complete response. Oncotarget, 7(35), 56619–56627.PubMedPubMedCentral Gonzalez-Cao, M., Boada, A., Teixidó, C., Fernandez-Figueras, M., et al. (2016). Fatal gastrointestinal toxicity with ipilimumab after BRAF/MEK inhibitor combination in a melanoma patient achieving pathological complete response. Oncotarget, 7(35), 56619–56627.PubMedPubMedCentral
53.
go back to reference Ribas, A., Butler, M., Lutzky, J., et al. (2015). Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. Journal Clinical Oncology, 33, 3003.CrossRef Ribas, A., Butler, M., Lutzky, J., et al. (2015). Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. Journal Clinical Oncology, 33, 3003.CrossRef
54.
go back to reference Hamid O, et al. (2015). Preliminary clinical safety, tolerability and activity of atezolizumab (anti-PD-L1) combined with Zelboraf in BRAFv600 metastatic melanoma (pp. 18–21). Presented at the Society for Melanoma Research 2015 International Congress; San Francisco, CA. Hamid O, et al. (2015). Preliminary clinical safety, tolerability and activity of atezolizumab (anti-PD-L1) combined with Zelboraf in BRAFv600 metastatic melanoma (pp. 18–21). Presented at the Society for Melanoma Research 2015 International Congress; San Francisco, CA.
55.
go back to reference Ackerman, A., Klein, O., McDermott, D. F., et al. (2014). Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer, 120, 1695–1701.CrossRefPubMed Ackerman, A., Klein, O., McDermott, D. F., et al. (2014). Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer, 120, 1695–1701.CrossRefPubMed
56.
go back to reference Aya F, Fernandez-Martinez A, Gaba L, et al. (2016). Sequential treatment with immunotherapy and BRAF inhibitors in BRAF-mutant advanced melanoma. Clin Transl Oncol. Aya F, Fernandez-Martinez A, Gaba L, et al. (2016). Sequential treatment with immunotherapy and BRAF inhibitors in BRAF-mutant advanced melanoma. Clin Transl Oncol.
57.
go back to reference Johnson, D. B., Pectasides, E., Feld, E., et al. (2017). Sequencing treatment in BRAFV600 mutant melanoma: anti-PD-1 before and after BRAF inhibition. J Immunotherapy, 40(1), 31–35.CrossRef Johnson, D. B., Pectasides, E., Feld, E., et al. (2017). Sequencing treatment in BRAFV600 mutant melanoma: anti-PD-1 before and after BRAF inhibition. J Immunotherapy, 40(1), 31–35.CrossRef
58.
go back to reference Ascierto, P. A., & Margolin, K. (2014). Ipilimumab before BRAF inhibitor treatment may be more beneficial than vice versa for the majority of patients with advanced melanoma. Cancer, 120, 1617–1619.CrossRefPubMed Ascierto, P. A., & Margolin, K. (2014). Ipilimumab before BRAF inhibitor treatment may be more beneficial than vice versa for the majority of patients with advanced melanoma. Cancer, 120, 1617–1619.CrossRefPubMed
59.
go back to reference Timar, J., Vizkeleti, L., Doma, V., Barbai, T., & Raso, E. (2016). Genetic progression of malignant melanoma. Cancer Metastasis Reviews, 35, 93–107.CrossRefPubMed Timar, J., Vizkeleti, L., Doma, V., Barbai, T., & Raso, E. (2016). Genetic progression of malignant melanoma. Cancer Metastasis Reviews, 35, 93–107.CrossRefPubMed
60.
go back to reference O’Donnell, J. S., Long, G. V., Scolyer, R. A., et al. (2016). Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 52, 71–81.CrossRefPubMed O’Donnell, J. S., Long, G. V., Scolyer, R. A., et al. (2016). Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 52, 71–81.CrossRefPubMed
61.
go back to reference Mobley, A. K., Braeuer, R. R., Kamiya, T., Shoshan, E., & Bar-Eli, M. (2012). Driving transcriptional regulators in melanoma metastasis. Cancer Metastasis Reviews, 31, 621–632.CrossRefPubMed Mobley, A. K., Braeuer, R. R., Kamiya, T., Shoshan, E., & Bar-Eli, M. (2012). Driving transcriptional regulators in melanoma metastasis. Cancer Metastasis Reviews, 31, 621–632.CrossRefPubMed
Metadata
Title
Combining forces: the promise and peril of synergistic immune checkpoint blockade and targeted therapy in metastatic melanoma
Authors
David J. Hermel
Patrick A. Ott
Publication date
01-03-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9656-2

Other articles of this Issue 1/2017

Cancer and Metastasis Reviews 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine