Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

01-12-2013 | NON-THEMATIC REVIEW

Targeting MAPK pathway in melanoma therapy

Authors: Yabin Cheng, Guohong Zhang, Gang Li

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

New drugs targeting the mitogen-activated protein kinase (MAPK) pathway have generated striking clinical response in melanoma therapy. From the discovery of BRAF mutation in melanoma in 2002, to the approval of first BRAF inhibitor vemurafenib for melanoma treatment by the US Food and Drug Administration in 2011, therapies targeting the MAPK pathway have been proven effective in less than a decade. The success of vemurafenib stimulated more intensive investigation of the molecular mechanisms of melanoma pathogenesis and development of new treatment strategies targeting specific molecules in MAPK pathway. Although selective BRAF inhibitors and MEK inhibitors demonstrated improved overall survival of metastatic melanoma patients, limited duration or development of resistance to BRAF inhibitors have been reported. Patients with metastatic melanoma still face very poor prognosis and lack of clarified therapies. Studies and multiple clinical trials on more potent and selective small molecule inhibitory compounds to further improve the clinical effects and overcome drug resistance are underway. In this review, we analyzed the therapeutic potentials of each member of the MAPK signaling pathway, summarized important MAPK-inhibiting drugs, and discussed the promising combination treatment targeting multiple targets in melanoma therapy, which may overcome the drawbacks of current drugs treatment.
Literature
1.
go back to reference Inamdar, G. S., Madhunapantula, S. V., & Robertson, G. P. (2010). Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochemical Pharmacology, 80(5), 624–637.PubMed Inamdar, G. S., Madhunapantula, S. V., & Robertson, G. P. (2010). Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochemical Pharmacology, 80(5), 624–637.PubMed
2.
go back to reference Houghton, A. N., & Polsky, D. (2002). Focus on melanoma. Cancer Cell, 2(4), 275–278.PubMed Houghton, A. N., & Polsky, D. (2002). Focus on melanoma. Cancer Cell, 2(4), 275–278.PubMed
3.
go back to reference Miller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. The New England Journal of Medicine, 355(1), 51–65.PubMed Miller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. The New England Journal of Medicine, 355(1), 51–65.PubMed
4.
go back to reference Balch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., et al. (2009). Final version of 2009 AJCC melanoma staging and classification. Journal of Clinical Oncology, 27(36), 6199–6206.PubMed Balch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., et al. (2009). Final version of 2009 AJCC melanoma staging and classification. Journal of Clinical Oncology, 27(36), 6199–6206.PubMed
5.
go back to reference Bedikian, A. Y., Millward, M., Pehamberger, H., Conry, R., Gore, M., Trefzer, U., et al. (2006). Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. Journal of Clinical Oncology, 24(29), 4738–4745.PubMed Bedikian, A. Y., Millward, M., Pehamberger, H., Conry, R., Gore, M., Trefzer, U., et al. (2006). Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. Journal of Clinical Oncology, 24(29), 4738–4745.PubMed
6.
go back to reference Lui, P., Cashin, R., Machado, M., Hemels, M., Corey-Lisle, P. K., & Einarson, T. R. (2007). Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treatment Reviews, 33(8), 665–680.PubMed Lui, P., Cashin, R., Machado, M., Hemels, M., Corey-Lisle, P. K., & Einarson, T. R. (2007). Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treatment Reviews, 33(8), 665–680.PubMed
7.
go back to reference Eggermont, A. M., & Schadendorf, D. (2009). Melanoma and immunotherapy. Hematology/Oncology Clinics of North America, 23(3), 547–564. ix-x.PubMed Eggermont, A. M., & Schadendorf, D. (2009). Melanoma and immunotherapy. Hematology/Oncology Clinics of North America, 23(3), 547–564. ix-x.PubMed
8.
go back to reference Finn, L., Markovic, S. N., & Joseph, R. W. (2012). Therapy for metastatic melanoma: the past, present, and future. BMC Medicine, 10, 23.PubMed Finn, L., Markovic, S. N., & Joseph, R. W. (2012). Therapy for metastatic melanoma: the past, present, and future. BMC Medicine, 10, 23.PubMed
9.
go back to reference Sharma, A., Tran, M. A., Liang, S., Sharma, A. K., Amin, S., Smith, C. D., et al. (2006). Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Research, 66(16), 8200–8209.PubMed Sharma, A., Tran, M. A., Liang, S., Sharma, A. K., Amin, S., Smith, C. D., et al. (2006). Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Research, 66(16), 8200–8209.PubMed
10.
go back to reference Panka, D. J., Atkins, M. B., & Mier, J. W. (2006). Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clinical Cancer Research, 12(7 Pt 2), 2371s–2375s.PubMed Panka, D. J., Atkins, M. B., & Mier, J. W. (2006). Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clinical Cancer Research, 12(7 Pt 2), 2371s–2375s.PubMed
11.
go back to reference Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMed Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMed
12.
go back to reference Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R. J., et al. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science, 266(5191), 1719–1723.PubMed Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R. J., et al. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science, 266(5191), 1719–1723.PubMed
13.
go back to reference Lange-Carter, C. A., & Johnson, G. L. (1994). Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science, 265(5177), 1458–1461.PubMed Lange-Carter, C. A., & Johnson, G. L. (1994). Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science, 265(5177), 1458–1461.PubMed
14.
go back to reference Marais, R., Light, Y., Paterson, H. F., Mason, C. S., & Marshall, C. J. (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. The Journal of Biological Chemistry, 272(7), 4378–4383.PubMed Marais, R., Light, Y., Paterson, H. F., Mason, C. S., & Marshall, C. J. (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. The Journal of Biological Chemistry, 272(7), 4378–4383.PubMed
15.
go back to reference Mason, C. S., Springer, C. J., Cooper, R. G., Superti-Furga, G., Marshall, C. J., & Marais, R. (1999). Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. The EMBO Journal, 18(8), 2137–2148.PubMed Mason, C. S., Springer, C. J., Cooper, R. G., Superti-Furga, G., Marshall, C. J., & Marais, R. (1999). Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. The EMBO Journal, 18(8), 2137–2148.PubMed
16.
go back to reference Aplin, A. E., Stewart, S. A., Assoian, R. K., & Juliano, R. L. (2001). Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. The Journal of Cell Biology, 153(2), 273–282.PubMed Aplin, A. E., Stewart, S. A., Assoian, R. K., & Juliano, R. L. (2001). Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. The Journal of Cell Biology, 153(2), 273–282.PubMed
17.
go back to reference Adachi, T., Kar, S., Wang, M., & Carr, B. I. (2002). Transient and sustained ERK phosphorylation and nuclear translocation in growth control. Journal of Cellular Physiology, 192(2), 151–159.PubMed Adachi, T., Kar, S., Wang, M., & Carr, B. I. (2002). Transient and sustained ERK phosphorylation and nuclear translocation in growth control. Journal of Cellular Physiology, 192(2), 151–159.PubMed
18.
go back to reference Jia, W., Yu, C., Rahmani, M., Krystal, G., Sausville, E. A., Dent, P., et al. (2003). Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood, 102(5), 1824–1832.PubMed Jia, W., Yu, C., Rahmani, M., Krystal, G., Sausville, E. A., Dent, P., et al. (2003). Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood, 102(5), 1824–1832.PubMed
19.
go back to reference Harada, H., Quearry, B., Ruiz-Vela, A., & Korsmeyer, S. J. (2004). Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15313–15317.PubMed Harada, H., Quearry, B., Ruiz-Vela, A., & Korsmeyer, S. J. (2004). Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15313–15317.PubMed
20.
go back to reference Domina, A. M., Vrana, J. A., Gregory, M. A., Hann, S. R., & Craig, R. W. (2004). MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 23(31), 5301–5315.PubMed Domina, A. M., Vrana, J. A., Gregory, M. A., Hann, S. R., & Craig, R. W. (2004). MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 23(31), 5301–5315.PubMed
21.
go back to reference Brazil, D. P., Park, J., & Hemmings, B. A. (2002). PKB binding proteins. Getting in on the Akt. Cell, 111(3), 293–303.PubMed Brazil, D. P., Park, J., & Hemmings, B. A. (2002). PKB binding proteins. Getting in on the Akt. Cell, 111(3), 293–303.PubMed
22.
go back to reference Cohen, C., Zavala-Pompa, A., Sequeira, J. H., Shoji, M., Sexton, D. G., Cotsonis, G., et al. (2002). Mitogen-actived protein kinase activation is an early event in melanoma progression. Clinical Cancer Research, 8(12), 3728–3733.PubMed Cohen, C., Zavala-Pompa, A., Sequeira, J. H., Shoji, M., Sexton, D. G., Cotsonis, G., et al. (2002). Mitogen-actived protein kinase activation is an early event in melanoma progression. Clinical Cancer Research, 8(12), 3728–3733.PubMed
23.
go back to reference Satyamoorthy, K., Li, G., Gerrero, M. R., Brose, M. S., Volpe, P., Weber, B. L., et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Research, 63(4), 756–759.PubMed Satyamoorthy, K., Li, G., Gerrero, M. R., Brose, M. S., Volpe, P., Weber, B. L., et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Research, 63(4), 756–759.PubMed
24.
go back to reference Liu, Z. J., Xiao, M., Balint, K., Smalley, K. S., Brafford, P., Qiu, R., et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Research, 66(8), 4182–4190.PubMed Liu, Z. J., Xiao, M., Balint, K., Smalley, K. S., Brafford, P., Qiu, R., et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Research, 66(8), 4182–4190.PubMed
25.
go back to reference Russo, A. E., Torrisi, E., Bevelacqua, Y., Perrotta, R., Libra, M., McCubrey, J. A., et al. (2009). Melanoma: molecular pathogenesis and emerging target therapies (review). International Journal of Oncology, 34(6), 1481–1489.PubMed Russo, A. E., Torrisi, E., Bevelacqua, Y., Perrotta, R., Libra, M., McCubrey, J. A., et al. (2009). Melanoma: molecular pathogenesis and emerging target therapies (review). International Journal of Oncology, 34(6), 1481–1489.PubMed
26.
go back to reference Gollob, J. A., Wilhelm, S., Carter, C., & Kelley, S. L. (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Seminars in Oncology, 33(4), 392–406.PubMed Gollob, J. A., Wilhelm, S., Carter, C., & Kelley, S. L. (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Seminars in Oncology, 33(4), 392–406.PubMed
27.
go back to reference Klein, R. M., & Aplin, A. E. (2009). Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Research, 69(6), 2224–2233.PubMed Klein, R. M., & Aplin, A. E. (2009). Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Research, 69(6), 2224–2233.PubMed
28.
go back to reference Klein, R. M., Spofford, L. S., Abel, E. V., Ortiz, A., & Aplin, A. E. (2008). B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Molecular Biology of the Cell, 19(2), 498–508.PubMed Klein, R. M., Spofford, L. S., Abel, E. V., Ortiz, A., & Aplin, A. E. (2008). B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Molecular Biology of the Cell, 19(2), 498–508.PubMed
29.
go back to reference Shevde, L. A., & Welch, D. R. (2003). Metastasis suppressor pathways—an evolving paradigm. Cancer Letters, 198(1), 1–20.PubMed Shevde, L. A., & Welch, D. R. (2003). Metastasis suppressor pathways—an evolving paradigm. Cancer Letters, 198(1), 1–20.PubMed
30.
go back to reference Smalley, K. S. (2003). A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? International Journal of Cancer, 104(5), 527–532. Smalley, K. S. (2003). A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? International Journal of Cancer, 104(5), 527–532.
31.
go back to reference Govindarajan, B., Bai, X., Cohen, C., Zhong, H., Kilroy, S., Louis, G., et al. (2003). Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. The Journal of Biological Chemistry, 278(11), 9790–9795.PubMed Govindarajan, B., Bai, X., Cohen, C., Zhong, H., Kilroy, S., Louis, G., et al. (2003). Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. The Journal of Biological Chemistry, 278(11), 9790–9795.PubMed
32.
go back to reference Boni, A., Cogdill, A. P., Dang, P., Udayakumar, D., Njauw, C. N., Sloss, C. M., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70(13), 5213–5219.PubMed Boni, A., Cogdill, A. P., Dang, P., Udayakumar, D., Njauw, C. N., Sloss, C. M., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70(13), 5213–5219.PubMed
33.
go back to reference Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. The Journal of Experimental Medicine, 203(7), 1651–1656.PubMed Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. The Journal of Experimental Medicine, 203(7), 1651–1656.PubMed
34.
go back to reference Rajalingam, K., Schreck, R., Rapp, U. R., & Albert, S. (2007). Ras oncogenes and their downstream targets. Biochimica et Biophysica Acta, 1773(8), 1177–1195.PubMed Rajalingam, K., Schreck, R., Rapp, U. R., & Albert, S. (2007). Ras oncogenes and their downstream targets. Biochimica et Biophysica Acta, 1773(8), 1177–1195.PubMed
35.
go back to reference Wennerberg, K., Rossman, K. L., & Der, C. J. (2005). The Ras superfamily at a glance. Journal of Cell Science, 118(Pt 5), 843–846.PubMed Wennerberg, K., Rossman, K. L., & Der, C. J. (2005). The Ras superfamily at a glance. Journal of Cell Science, 118(Pt 5), 843–846.PubMed
36.
go back to reference Omholt, K., Platz, A., Kanter, L., Ringborg, U., & Hansson, J. (2003). NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clinical Cancer Research, 9(17), 6483–6488.PubMed Omholt, K., Platz, A., Kanter, L., Ringborg, U., & Hansson, J. (2003). NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clinical Cancer Research, 9(17), 6483–6488.PubMed
37.
go back to reference Zheng, H., Liu, A., Liu, B., Li, M., Yu, H., & Luo, X. (2010). Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Letters, 297(1), 117–125.PubMed Zheng, H., Liu, A., Liu, B., Li, M., Yu, H., & Luo, X. (2010). Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Letters, 297(1), 117–125.PubMed
38.
go back to reference Yuan, Y., Hu, H. G., Ye, X. X., Shen, H., & Zheng, S. (2010). K-ras gene mutation in colorectal cancer and its clinicopathologic significance. Zhonghua Wai Ke Za Zhi, 48(16), 1247–1251.PubMed Yuan, Y., Hu, H. G., Ye, X. X., Shen, H., & Zheng, S. (2010). K-ras gene mutation in colorectal cancer and its clinicopathologic significance. Zhonghua Wai Ke Za Zhi, 48(16), 1247–1251.PubMed
39.
go back to reference Lopez-Bergami, P., Fitchman, B., & Ronai, Z. (2008). Understanding signaling cascades in melanoma. Photochemistry and Photobiology, 84(2), 289–306.PubMed Lopez-Bergami, P., Fitchman, B., & Ronai, Z. (2008). Understanding signaling cascades in melanoma. Photochemistry and Photobiology, 84(2), 289–306.PubMed
40.
go back to reference Ackermann, J., Frutschi, M., Kaloulis, K., McKee, T., Trumpp, A., & Beermann, F. (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Research, 65(10), 4005–4011.PubMed Ackermann, J., Frutschi, M., Kaloulis, K., McKee, T., Trumpp, A., & Beermann, F. (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Research, 65(10), 4005–4011.PubMed
41.
go back to reference van 't Veer, L. J., Burgering, B. M., Versteeg, R., Boot, A. J., Ruiter, D. J., Osanto, S., et al. (1989). N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Molecular and Cellular Biology, 9(7), 3114–3116.PubMed van 't Veer, L. J., Burgering, B. M., Versteeg, R., Boot, A. J., Ruiter, D. J., Osanto, S., et al. (1989). N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Molecular and Cellular Biology, 9(7), 3114–3116.PubMed
42.
go back to reference Edlundh-Rose, E., Egyhazi, S., Omholt, K., Mansson-Brahme, E., Platz, A., Hansson, J., et al. (2006). NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Research, 16(6), 471–478.PubMed Edlundh-Rose, E., Egyhazi, S., Omholt, K., Mansson-Brahme, E., Platz, A., Hansson, J., et al. (2006). NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Research, 16(6), 471–478.PubMed
43.
go back to reference Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. The Journal of Investigative Dermatology, 126(1), 154–160.PubMed Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. The Journal of Investigative Dermatology, 126(1), 154–160.PubMed
44.
go back to reference Lee, J. H., Choi, J. W., & Kim, Y. S. (2011). Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. The British Journal of Dermatology, 164(4), 776–784.PubMed Lee, J. H., Choi, J. W., & Kim, Y. S. (2011). Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. The British Journal of Dermatology, 164(4), 776–784.PubMed
45.
go back to reference Devitt, B., Liu, W., Salemi, R., Wolfe, R., Kelly, J., Tzen, C. Y., et al. (2011). Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell & Melanoma Research, 24(4), 666–672. Devitt, B., Liu, W., Salemi, R., Wolfe, R., Kelly, J., Tzen, C. Y., et al. (2011). Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell & Melanoma Research, 24(4), 666–672.
46.
go back to reference Tsao, H., Chin, L., Garraway, L. A., & Fisher, D. E. (2012). Melanoma: from mutations to medicine. Genes & Development, 26(11), 1131–1155. Tsao, H., Chin, L., Garraway, L. A., & Fisher, D. E. (2012). Melanoma: from mutations to medicine. Genes & Development, 26(11), 1131–1155.
47.
go back to reference Jackson, J. H., Cochrane, C. G., Bourne, J. R., Solski, P. A., Buss, J. E., & Der, C. J. (1990). Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proceedings of the National Academy of Sciences of the United States of America, 87(8), 3042–3046.PubMed Jackson, J. H., Cochrane, C. G., Bourne, J. R., Solski, P. A., Buss, J. E., & Der, C. J. (1990). Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proceedings of the National Academy of Sciences of the United States of America, 87(8), 3042–3046.PubMed
48.
go back to reference Dhomen, N., & Marais, R. (2009). BRAF signaling and targeted therapies in melanoma. Hematology/Oncology Clinics of North America, 23(3), 529–545. ix.PubMed Dhomen, N., & Marais, R. (2009). BRAF signaling and targeted therapies in melanoma. Hematology/Oncology Clinics of North America, 23(3), 529–545. ix.PubMed
49.
go back to reference Fensterle, J. (2006). A trip through the signaling pathways of melanoma. Journal der Deutschen Dermatologischen Gesellschaft, 4(3), 205–217.PubMed Fensterle, J. (2006). A trip through the signaling pathways of melanoma. Journal der Deutschen Dermatologischen Gesellschaft, 4(3), 205–217.PubMed
50.
go back to reference End, D. W., Smets, G., Todd, A. V., Applegate, T. L., Fuery, C. J., Angibaud, P., et al. (2001). Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Research, 61(1), 131–137.PubMed End, D. W., Smets, G., Todd, A. V., Applegate, T. L., Fuery, C. J., Angibaud, P., et al. (2001). Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Research, 61(1), 131–137.PubMed
51.
go back to reference Appels, N. M., Beijnen, J. H., & Schellens, J. H. (2005). Development of farnesyl transferase inhibitors: a review. The Oncologist, 10(8), 565–578.PubMed Appels, N. M., Beijnen, J. H., & Schellens, J. H. (2005). Development of farnesyl transferase inhibitors: a review. The Oncologist, 10(8), 565–578.PubMed
52.
go back to reference Epling-Burnette, P. K., & Loughran, T. P., Jr. (2010). Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib. Expert Opinion on Investigational Drugs, 19(5), 689–698.PubMed Epling-Burnette, P. K., & Loughran, T. P., Jr. (2010). Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib. Expert Opinion on Investigational Drugs, 19(5), 689–698.PubMed
53.
go back to reference Gajewski, T. F., Salama, A. K., Niedzwiecki, D., Johnson, J., Linette, G., Bucher, C., et al. (2012). Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). Journal of Translational Medicine, 10, 246.PubMed Gajewski, T. F., Salama, A. K., Niedzwiecki, D., Johnson, J., Linette, G., Bucher, C., et al. (2012). Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). Journal of Translational Medicine, 10, 246.PubMed
54.
go back to reference Crul, M., de Klerk, G. J., Swart, M., van't Veer, L. J., de Jong, D., Boerrigter, L., et al. (2002). Phase I clinical and pharmacologic study of chronic oral administration of the farnesyl protein transferase inhibitor R115777 in advanced cancer. Journal of Clinical Oncology, 20(11), 2726–2735.PubMed Crul, M., de Klerk, G. J., Swart, M., van't Veer, L. J., de Jong, D., Boerrigter, L., et al. (2002). Phase I clinical and pharmacologic study of chronic oral administration of the farnesyl protein transferase inhibitor R115777 in advanced cancer. Journal of Clinical Oncology, 20(11), 2726–2735.PubMed
55.
go back to reference Punt, C. J., van Maanen, L., Bol, C. J., Seifert, W. F., & Wagener, D. J. (2001). Phase I and pharmacokinetic study of the orally administered farnesyl transferase inhibitor R115777 in patients with advanced solid tumors. Anti-Cancer Drugs, 12(3), 193–197.PubMed Punt, C. J., van Maanen, L., Bol, C. J., Seifert, W. F., & Wagener, D. J. (2001). Phase I and pharmacokinetic study of the orally administered farnesyl transferase inhibitor R115777 in patients with advanced solid tumors. Anti-Cancer Drugs, 12(3), 193–197.PubMed
56.
go back to reference Margolin, K. A., Moon, J., Flaherty, L. E., Lao, C. D., Akerley, W. L., 3rd, Othus, M., et al. (2012). Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clinical Cancer Research, 18(4), 1129–1137.PubMed Margolin, K. A., Moon, J., Flaherty, L. E., Lao, C. D., Akerley, W. L., 3rd, Othus, M., et al. (2012). Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clinical Cancer Research, 18(4), 1129–1137.PubMed
57.
go back to reference Field, K. A., Charoenthongtrakul, S., Bishop, J. M., & Refaeli, Y. (2008). Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas. Molecular Cancer, 7, 39.PubMed Field, K. A., Charoenthongtrakul, S., Bishop, J. M., & Refaeli, Y. (2008). Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas. Molecular Cancer, 7, 39.PubMed
58.
go back to reference Adjei, A. A., Davis, J. N., Bruzek, L. M., Erlichman, C., & Kaufmann, S. H. (2001). Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clinical Cancer Research, 7(5), 1438–1445.PubMed Adjei, A. A., Davis, J. N., Bruzek, L. M., Erlichman, C., & Kaufmann, S. H. (2001). Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clinical Cancer Research, 7(5), 1438–1445.PubMed
59.
go back to reference Basso, A. D., Mirza, A., Liu, G., Long, B. J., Bishop, W. R., & Kirschmeier, P. (2005). The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. The Journal of Biological Chemistry, 280(35), 31101–31108.PubMed Basso, A. D., Mirza, A., Liu, G., Long, B. J., Bishop, W. R., & Kirschmeier, P. (2005). The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. The Journal of Biological Chemistry, 280(35), 31101–31108.PubMed
60.
go back to reference Smalley, K. S., & Eisen, T. G. (2003). Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. International Journal of Cancer, 105(2), 165–175. Smalley, K. S., & Eisen, T. G. (2003). Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. International Journal of Cancer, 105(2), 165–175.
61.
go back to reference Niessner, H., Beck, D., Sinnberg, T., Lasithiotakis, K., Maczey, E., Gogel, J., et al. (2011). The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. The Journal of Investigative Dermatology, 131(2), 468–479.PubMed Niessner, H., Beck, D., Sinnberg, T., Lasithiotakis, K., Maczey, E., Gogel, J., et al. (2011). The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. The Journal of Investigative Dermatology, 131(2), 468–479.PubMed
62.
go back to reference Weisz, B., Giehl, K., Gana-Weisz, M., Egozi, Y., Ben-Baruch, G., Marciano, D., et al. (1999). A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene, 18(16), 2579–2588.PubMed Weisz, B., Giehl, K., Gana-Weisz, M., Egozi, Y., Ben-Baruch, G., Marciano, D., et al. (1999). A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene, 18(16), 2579–2588.PubMed
63.
go back to reference Aharonson, Z., Gana-Weisz, M., Varsano, T., Haklai, R., Marciano, D., & Kloog, Y. (1998). Stringent structural requirements for anti-Ras activity of S-prenyl analogues. Biochimica et Biophysica Acta, 1406(1), 40–50.PubMed Aharonson, Z., Gana-Weisz, M., Varsano, T., Haklai, R., Marciano, D., & Kloog, Y. (1998). Stringent structural requirements for anti-Ras activity of S-prenyl analogues. Biochimica et Biophysica Acta, 1406(1), 40–50.PubMed
64.
go back to reference Kelleher, F. C., & McArthur, G. A. (2012). Targeting NRAS in melanoma. Cancer Journal, 18(2), 132–136. Kelleher, F. C., & McArthur, G. A. (2012). Targeting NRAS in melanoma. Cancer Journal, 18(2), 132–136.
65.
go back to reference Jansen, B., Schlagbauer-Wadl, H., Kahr, H., Heere-Ress, E., Mayer, B. X., Eichler, H., et al. (1999). Novel Ras antagonist blocks human melanoma growth. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 14019–14024.PubMed Jansen, B., Schlagbauer-Wadl, H., Kahr, H., Heere-Ress, E., Mayer, B. X., Eichler, H., et al. (1999). Novel Ras antagonist blocks human melanoma growth. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 14019–14024.PubMed
66.
go back to reference Smalley, K. S., & Eisen, T. G. (2002). Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and pro-apoptotic effects. International Journal of Cancer, 98(4), 514–522. Smalley, K. S., & Eisen, T. G. (2002). Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and pro-apoptotic effects. International Journal of Cancer, 98(4), 514–522.
67.
go back to reference Johnson, M. L., Rizvi, N. A., Ginsberg, M. S., Miller, V. A., Kric, M. G., Pao, W., et al. (2009). A phase II trial of salirasib in patients with stage IIIB/IV lung adenocarcinoma enriched for KRAS mutations Journal of Clinical Oncology, 27 (15 Suppl.), Abstract 8012. Johnson, M. L., Rizvi, N. A., Ginsberg, M. S., Miller, V. A., Kric, M. G., Pao, W., et al. (2009). A phase II trial of salirasib in patients with stage IIIB/IV lung adenocarcinoma enriched for KRAS mutations Journal of Clinical Oncology, 27 (15 Suppl.), Abstract 8012.
68.
go back to reference Laheru, D., Rudek, G., Taylor, H., Goldsweig, H., Rajeshkumar. N. V., Linden, S., et al. (2009). Integrated development of s-trans, trans-farnesylthiosalicyclic acid (FTS, salirasib) in advanced pancreatic cancer. Journal of Clinical Oncology, 27 (15 Suppl.), abstract 4529. Laheru, D., Rudek, G., Taylor, H., Goldsweig, H., Rajeshkumar. N. V., Linden, S., et al. (2009). Integrated development of s-trans, trans-farnesylthiosalicyclic acid (FTS, salirasib) in advanced pancreatic cancer. Journal of Clinical Oncology, 27 (15 Suppl.), abstract 4529.
69.
go back to reference Rose, W. C., Lee, F. Y., Fairchild, C. R., Lynch, M., Monticello, T., Kramer, R. A., et al. (2001). Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Research, 61(20), 7507–7517.PubMed Rose, W. C., Lee, F. Y., Fairchild, C. R., Lynch, M., Monticello, T., Kramer, R. A., et al. (2001). Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Research, 61(20), 7507–7517.PubMed
70.
go back to reference Dinsmore, C. J., Bogusky, M. J., Culberson, J. C., Bergman, J. M., Homnick, C. F., Zartman, C. B., et al. (2001). Conformational restriction of flexible ligands guided by the transferred noe experiment: potent macrocyclic inhibitors of farnesyltransferase. Journal of the American Chemical Society, 123(9), 2107–2108.PubMed Dinsmore, C. J., Bogusky, M. J., Culberson, J. C., Bergman, J. M., Homnick, C. F., Zartman, C. B., et al. (2001). Conformational restriction of flexible ligands guided by the transferred noe experiment: potent macrocyclic inhibitors of farnesyltransferase. Journal of the American Chemical Society, 123(9), 2107–2108.PubMed
71.
go back to reference Camacho, N. R., Sanchez, J. E., Martin, R. F., Gonzalez, J. R., & Sanchez, J. L. (2001). Medium-dose UVA1 phototherapy in localized scleroderma and its effect in CD34-positive dendritic cells. Journal of the American Academy of Dermatology, 45(5), 697–699.PubMed Camacho, N. R., Sanchez, J. E., Martin, R. F., Gonzalez, J. R., & Sanchez, J. L. (2001). Medium-dose UVA1 phototherapy in localized scleroderma and its effect in CD34-positive dendritic cells. Journal of the American Academy of Dermatology, 45(5), 697–699.PubMed
72.
go back to reference Eskandarpour, M., Kiaii, S., Zhu, C., Castro, J., Sakko, A. J., & Hansson, J. (2005). Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. International Journal of Cancer, 115(1), 65–73. Eskandarpour, M., Kiaii, S., Zhu, C., Castro, J., Sakko, A. J., & Hansson, J. (2005). Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. International Journal of Cancer, 115(1), 65–73.
73.
go back to reference Kloog, Y., Cox, A. D., & Sinensky, M. (1999). Concepts in Ras-directed therapy. Expert Opinion on Investigational Drugs, 8(12), 2121–2140.PubMed Kloog, Y., Cox, A. D., & Sinensky, M. (1999). Concepts in Ras-directed therapy. Expert Opinion on Investigational Drugs, 8(12), 2121–2140.PubMed
74.
go back to reference Garnett, M. J., & Marais, R. (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell, 6(4), 313–319.PubMed Garnett, M. J., & Marais, R. (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell, 6(4), 313–319.PubMed
75.
go back to reference Mercer, K. E., & Pritchard, C. A. (2003). Raf proteins and cancer: B-Raf is identified as a mutational target. Biochimica et Biophysica Acta, 1653(1), 25–40.PubMed Mercer, K. E., & Pritchard, C. A. (2003). Raf proteins and cancer: B-Raf is identified as a mutational target. Biochimica et Biophysica Acta, 1653(1), 25–40.PubMed
76.
go back to reference Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F., & Therrien, M. (2009). A dimerization-dependent mechanism drives RAF catalytic activation. Nature, 461(7263), 542–545.PubMed Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F., & Therrien, M. (2009). A dimerization-dependent mechanism drives RAF catalytic activation. Nature, 461(7263), 542–545.PubMed
77.
go back to reference Wellbrock, C., Karasarides, M., & Marais, R. (2004). The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 5(11), 875–885.PubMed Wellbrock, C., Karasarides, M., & Marais, R. (2004). The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 5(11), 875–885.PubMed
78.
go back to reference Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954.PubMed Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954.PubMed
79.
go back to reference Michaloglou, C., Vredeveld, L. C., Mooi, W. J., & Peeper, D. S. (2008). BRAF(E600) in benign and malignant human tumours. Oncogene, 27(7), 877–895.PubMed Michaloglou, C., Vredeveld, L. C., Mooi, W. J., & Peeper, D. S. (2008). BRAF(E600) in benign and malignant human tumours. Oncogene, 27(7), 877–895.PubMed
80.
go back to reference Long, G. V., Menzies, A. M., Nagrial, A. M., Haydu, L. E., Hamilton, A. L., Mann, G. J., et al. (2011). Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. Journal of Clinical Oncology, 29(10), 1239–1246.PubMed Long, G. V., Menzies, A. M., Nagrial, A. M., Haydu, L. E., Hamilton, A. L., Mann, G. J., et al. (2011). Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. Journal of Clinical Oncology, 29(10), 1239–1246.PubMed
81.
go back to reference Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20.PubMed Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20.PubMed
82.
go back to reference Yazdi, A. S., Palmedo, G., Flaig, M. J., Puchta, U., Reckwerth, A., Rutten, A., et al. (2003). Mutations of the BRAF gene in benign and malignant melanocytic lesions. The Journal of Investigative Dermatology, 121(5), 1160–1162.PubMed Yazdi, A. S., Palmedo, G., Flaig, M. J., Puchta, U., Reckwerth, A., Rutten, A., et al. (2003). Mutations of the BRAF gene in benign and malignant melanocytic lesions. The Journal of Investigative Dermatology, 121(5), 1160–1162.PubMed
83.
go back to reference Niihori, T., Aoki, Y., Narumi, Y., Neri, G., Cave, H., Verloes, A., et al. (2006). Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genetics, 38(3), 294–296.PubMed Niihori, T., Aoki, Y., Narumi, Y., Neri, G., Cave, H., Verloes, A., et al. (2006). Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genetics, 38(3), 294–296.PubMed
84.
go back to reference Rodriguez-Viciana, P., Tetsu, O., Tidyman, W. E., Estep, A. L., Conger, B. A., Cruz, M. S., et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science, 311(5765), 1287–1290.PubMed Rodriguez-Viciana, P., Tetsu, O., Tidyman, W. E., Estep, A. L., Conger, B. A., Cruz, M. S., et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science, 311(5765), 1287–1290.PubMed
85.
go back to reference Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.PubMed Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.PubMed
86.
go back to reference Jane-Valbuena, J., Widlund, H. R., Perner, S., Johnson, L. A., Dibner, A. C., Lin, W. M., et al. (2010). An oncogenic role for ETV1 in melanoma. Cancer Research, 70(5), 2075–2084.PubMed Jane-Valbuena, J., Widlund, H. R., Perner, S., Johnson, L. A., Dibner, A. C., Lin, W. M., et al. (2010). An oncogenic role for ETV1 in melanoma. Cancer Research, 70(5), 2075–2084.PubMed
87.
go back to reference Tsao, H., Goel, V., Wu, H., Yang, G., & Haluska, F. G. (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. The Journal of Investigative Dermatology, 122(2), 337–341.PubMed Tsao, H., Goel, V., Wu, H., Yang, G., & Haluska, F. G. (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. The Journal of Investigative Dermatology, 122(2), 337–341.PubMed
88.
go back to reference Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.PubMed Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.PubMed
89.
go back to reference Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.PubMed Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.PubMed
90.
go back to reference Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552.PubMed Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552.PubMed
91.
go back to reference Chudnovsky, Y., Adams, A. E., Robbins, P. B., Lin, Q., & Khavari, P. A. (2005). Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nature Genetics, 37(7), 745–749.PubMed Chudnovsky, Y., Adams, A. E., Robbins, P. B., Lin, Q., & Khavari, P. A. (2005). Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nature Genetics, 37(7), 745–749.PubMed
92.
go back to reference Wu, H., Goel, V., & Haluska, F. G. (2003). PTEN signaling pathways in melanoma. Oncogene, 22(20), 3113–3122.PubMed Wu, H., Goel, V., & Haluska, F. G. (2003). PTEN signaling pathways in melanoma. Oncogene, 22(20), 3113–3122.PubMed
93.
go back to reference Stahl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64(19), 7002–7010.PubMed Stahl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64(19), 7002–7010.PubMed
94.
go back to reference Hingorani, S. R., Jacobetz, M. A., Robertson, G. P., Herlyn, M., & Tuveson, D. A. (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Research, 63(17), 5198–5202.PubMed Hingorani, S. R., Jacobetz, M. A., Robertson, G. P., Herlyn, M., & Tuveson, D. A. (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Research, 63(17), 5198–5202.PubMed
95.
go back to reference Karasarides, M., Chiloeches, A., Hayward, R., Niculescu-Duvaz, D., Scanlon, I., Friedlos, F., et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene, 23(37), 6292–6298.PubMed Karasarides, M., Chiloeches, A., Hayward, R., Niculescu-Duvaz, D., Scanlon, I., Friedlos, F., et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene, 23(37), 6292–6298.PubMed
96.
go back to reference Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., et al. (2004). V599EB-RAF is an oncogene in melanocytes. Cancer Research, 64(7), 2338–2342.PubMed Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., et al. (2004). V599EB-RAF is an oncogene in melanocytes. Cancer Research, 64(7), 2338–2342.PubMed
97.
go back to reference Hoeflich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., et al. (2006). Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Research, 66(2), 999–1006.PubMed Hoeflich, K. P., Gray, D. C., Eby, M. T., Tien, J. Y., Wong, L., Bower, J., et al. (2006). Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Research, 66(2), 999–1006.PubMed
98.
go back to reference Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., et al. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14903–14908.PubMed Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., et al. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14903–14908.PubMed
99.
go back to reference Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64(19), 7099–7109.PubMed Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64(19), 7099–7109.PubMed
100.
go back to reference Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 66(24), 11851–11858.PubMed Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 66(24), 11851–11858.PubMed
101.
go back to reference Kim, S., Yazici, Y. D., Calzada, G., Wang, Z. Y., Younes, M. N., Jasser, S. A., et al. (2007). Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Molecular Cancer Therapeutics, 6(6), 1785–1792.PubMed Kim, S., Yazici, Y. D., Calzada, G., Wang, Z. Y., Younes, M. N., Jasser, S. A., et al. (2007). Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Molecular Cancer Therapeutics, 6(6), 1785–1792.PubMed
102.
go back to reference Sharma, A., Trivedi, N. R., Zimmerman, M. A., Tuveson, D. A., Smith, C. D., & Robertson, G. P. (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Research, 65(6), 2412–2421.PubMed Sharma, A., Trivedi, N. R., Zimmerman, M. A., Tuveson, D. A., Smith, C. D., & Robertson, G. P. (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Research, 65(6), 2412–2421.PubMed
103.
go back to reference Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., et al. (2006). Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. British Journal of Cancer, 95(5), 581–586.PubMed Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., et al. (2006). Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. British Journal of Cancer, 95(5), 581–586.PubMed
104.
go back to reference Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., et al. (2009). Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. Journal of Clinical Oncology, 27(17), 2823–2830.PubMed Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., et al. (2009). Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. Journal of Clinical Oncology, 27(17), 2823–2830.PubMed
105.
go back to reference Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., et al. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol, 31(3), 373–379.PubMed Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., et al. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol, 31(3), 373–379.PubMed
106.
go back to reference Chapman, P. B., Einhorn, L. H., Meyers, M. L., Saxman, S., Destro, A. N., Panageas, K. S., et al. (1999). Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. Journal of Clinical Oncology, 17(9), 2745–2751.PubMed Chapman, P. B., Einhorn, L. H., Meyers, M. L., Saxman, S., Destro, A. N., Panageas, K. S., et al. (1999). Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. Journal of Clinical Oncology, 17(9), 2745–2751.PubMed
107.
go back to reference Middleton, M. R., Grob, J. J., Aaronson, N., Fierlbeck, G., Tilgen, W., Seiter, S., et al. (2000). Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. Journal of Clinical Oncology, 18(1), 158–166.PubMed Middleton, M. R., Grob, J. J., Aaronson, N., Fierlbeck, G., Tilgen, W., Seiter, S., et al. (2000). Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. Journal of Clinical Oncology, 18(1), 158–166.PubMed
108.
go back to reference Avril, M. F., Aamdal, S., Grob, J. J., Hauschild, A., Mohr, P., Bonerandi, J. J., et al. (2004). Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. Journal of Clinical Oncology, 22(6), 1118–1125.PubMed Avril, M. F., Aamdal, S., Grob, J. J., Hauschild, A., Mohr, P., Bonerandi, J. J., et al. (2004). Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. Journal of Clinical Oncology, 22(6), 1118–1125.PubMed
109.
go back to reference McDermott, D. F., Sosman, J. A., Gonzalez, R., Hodi, F. S., Linette, G. P., Richards, J., et al. (2008). Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. Journal of Clinical Oncology, 26(13), 2178–2185.PubMed McDermott, D. F., Sosman, J. A., Gonzalez, R., Hodi, F. S., Linette, G. P., Richards, J., et al. (2008). Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. Journal of Clinical Oncology, 26(13), 2178–2185.PubMed
110.
go back to reference Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5(10), 835–844.PubMed Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5(10), 835–844.PubMed
111.
go back to reference Falchook, G. S., Long, G. V., Kurzrock, R., Kim, K. B., Arkenau, T. H., Brown, M. P., et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. The Lancet, 379(9829), 1893–1901. Falchook, G. S., Long, G. V., Kurzrock, R., Kim, K. B., Arkenau, T. H., Brown, M. P., et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. The Lancet, 379(9829), 1893–1901.
112.
go back to reference Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet, 380(9839), 358–365. Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet, 380(9839), 358–365.
113.
go back to reference Long, G. V., Trefzer, U., Davies, M. A., Kefford, R. F., Ascierto, P. A., Chapman, P. B., et al. (2012). Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. The Lancet Oncology, 13(11), 1087–1095.PubMed Long, G. V., Trefzer, U., Davies, M. A., Kefford, R. F., Ascierto, P. A., Chapman, P. B., et al. (2012). Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. The Lancet Oncology, 13(11), 1087–1095.PubMed
114.
go back to reference Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467(7315), 596–599.PubMed Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467(7315), 596–599.PubMed
115.
go back to reference Bollag, G., Tsai, J., Zhang, J., Zhang, C., Ibrahim, P., Nolop, K., et al. (2012). Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Reviews. Drug Discovery, 11(11), 873–886.PubMed Bollag, G., Tsai, J., Zhang, J., Zhang, C., Ibrahim, P., Nolop, K., et al. (2012). Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Reviews. Drug Discovery, 11(11), 873–886.PubMed
116.
go back to reference Yang, H., Higgins, B., Kolinsky, K., Packman, K., Go, Z., Iyer, R., et al. (2010). RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Research, 70(13), 5518–5527.PubMed Yang, H., Higgins, B., Kolinsky, K., Packman, K., Go, Z., Iyer, R., et al. (2010). RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Research, 70(13), 5518–5527.PubMed
117.
go back to reference Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046.PubMed Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046.PubMed
118.
go back to reference Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 363(9), 809–819.PubMed Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 363(9), 809–819.PubMed
119.
go back to reference Ribas, A., & Flaherty, K. T. (2011). BRAF targeted therapy changes the treatment paradigm in melanoma. Nature Reviews Clinical Oncology, 8(7), 426–433.PubMed Ribas, A., & Flaherty, K. T. (2011). BRAF targeted therapy changes the treatment paradigm in melanoma. Nature Reviews Clinical Oncology, 8(7), 426–433.PubMed
120.
go back to reference Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516.PubMed Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516.PubMed
121.
go back to reference Halaban, R., Zhang, W., Bacchiocchi, A., Cheng, E., Parisi, F., Ariyan, S., et al. (2010). PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell & Melanoma Research, 23(2), 190–200. Halaban, R., Zhang, W., Bacchiocchi, A., Cheng, E., Parisi, F., Ariyan, S., et al. (2010). PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell & Melanoma Research, 23(2), 190–200.
122.
go back to reference Das Thakur, M., Salangsang, F., Landman, A. S., Sellers, W. R., Pryer, N. K., Levesque, M. P., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255.PubMed Das Thakur, M., Salangsang, F., Landman, A. S., Sellers, W. R., Pryer, N. K., Levesque, M. P., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255.PubMed
123.
go back to reference Tseng, J. R., Stuart, D., Aardalen, K., Kaplan, A., Aziz, N., Hughes, N. P., et al. (2011). Use of DNA microarray and small animal positron emission tomography in preclinical drug evaluation of RAF265, a novel B-Raf/VEGFR-2 inhibitor. Neoplasia, 13(3), 266–275.PubMed Tseng, J. R., Stuart, D., Aardalen, K., Kaplan, A., Aziz, N., Hughes, N. P., et al. (2011). Use of DNA microarray and small animal positron emission tomography in preclinical drug evaluation of RAF265, a novel B-Raf/VEGFR-2 inhibitor. Neoplasia, 13(3), 266–275.PubMed
124.
go back to reference Su, Y., Vilgelm, A. E., Kelley, M. C., Hawkins, O. E., Liu, Y., Boyd, K. L., et al. (2012). RAF265 inhibits the growth of advanced human melanoma tumors. Clinical Cancer Research, 18(8), 2184–2198.PubMed Su, Y., Vilgelm, A. E., Kelley, M. C., Hawkins, O. E., Liu, Y., Boyd, K. L., et al. (2012). RAF265 inhibits the growth of advanced human melanoma tumors. Clinical Cancer Research, 18(8), 2184–2198.PubMed
125.
go back to reference Montagut, C., & Settleman, J. (2009). Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Letters, 283(2), 125–134.PubMed Montagut, C., & Settleman, J. (2009). Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Letters, 283(2), 125–134.PubMed
126.
go back to reference Brower, V. (2010). BRAF inhibitors: research accelerates in wake of positive findings. Journal of the National Cancer Institute, 102(4), 214–215.PubMed Brower, V. (2010). BRAF inhibitors: research accelerates in wake of positive findings. Journal of the National Cancer Institute, 102(4), 214–215.PubMed
127.
go back to reference Hoeflich, K. P., Herter, S., Tien, J., Wong, L., Berry, L., Chan, J., et al. (2009). Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Research, 69(7), 3042–3051.PubMed Hoeflich, K. P., Herter, S., Tien, J., Wong, L., Berry, L., Chan, J., et al. (2009). Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Research, 69(7), 3042–3051.PubMed
128.
go back to reference King, A. J., Patrick, D. R., Batorsky, R. S., Ho, M. L., Do, H. T., Zhang, S. Y., et al. (2006). Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Research, 66(23), 11100–11105.PubMed King, A. J., Patrick, D. R., Batorsky, R. S., Ho, M. L., Do, H. T., Zhang, S. Y., et al. (2006). Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Research, 66(23), 11100–11105.PubMed
129.
go back to reference Menzies, A. M., Long, G. V., & Murali, R. (2012). Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Design, Development and Therapy, 6, 391–405.PubMed Menzies, A. M., Long, G. V., & Murali, R. (2012). Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Design, Development and Therapy, 6, 391–405.PubMed
130.
go back to reference Eum, K. H., Ahn, S. K., Kang, H., & Lee, M. (2013). Differential inhibitory effects of two Raf-targeting drugs, sorafenib and PLX4720, on the growth of multidrug-resistant cells. Molecular and Cellular Biochemistry, 372(1–2), 65–74.PubMed Eum, K. H., Ahn, S. K., Kang, H., & Lee, M. (2013). Differential inhibitory effects of two Raf-targeting drugs, sorafenib and PLX4720, on the growth of multidrug-resistant cells. Molecular and Cellular Biochemistry, 372(1–2), 65–74.PubMed
131.
go back to reference James, J., Ruggeri, B., Armstrong, R. C., Rowbottom, M. W., Jones-Bolin, S., Gunawardane, R. N., et al. (2012). CEP-32496: a novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Molecular Cancer Therapeutics, 11(4), 930–941.PubMed James, J., Ruggeri, B., Armstrong, R. C., Rowbottom, M. W., Jones-Bolin, S., Gunawardane, R. N., et al. (2012). CEP-32496: a novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Molecular Cancer Therapeutics, 11(4), 930–941.PubMed
132.
go back to reference Seger, R., Ahn, N. G., Posada, J., Munar, E. S., Jensen, A. M., Cooper, J. A., et al. (1992). Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. The Journal of Biological Chemistry, 267(20), 14373–14381.PubMed Seger, R., Ahn, N. G., Posada, J., Munar, E. S., Jensen, A. M., Cooper, J. A., et al. (1992). Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. The Journal of Biological Chemistry, 267(20), 14373–14381.PubMed
133.
go back to reference Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., et al. (2012). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139. Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., et al. (2012). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139.
134.
go back to reference Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. Journal of Clinical Oncology, 29(22), 3085–3096.PubMed Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. Journal of Clinical Oncology, 29(22), 3085–3096.PubMed
135.
go back to reference Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature, 439(7074), 358–362.PubMed Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature, 439(7074), 358–362.PubMed
136.
go back to reference Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., Van Becelaere, K., Wiland, A., Gowan, R. C., et al. (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Medicine, 5(7), 810–816.PubMed Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., Van Becelaere, K., Wiland, A., Gowan, R. C., et al. (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Medicine, 5(7), 810–816.PubMed
137.
go back to reference Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., & Saltiel, A. R. (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. The Journal of Biological Chemistry, 270(46), 27489–27494.PubMed Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., & Saltiel, A. R. (1995). PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. The Journal of Biological Chemistry, 270(46), 27489–27494.PubMed
138.
go back to reference Cross, D. A. E., & Smythe, C. (1998). PD98059 prevents establishment of the spindle assembly checkpoint and inhibits the G(2)-M transition in meiotic but not mitotic cell cycles in Xenopus. Experimental Cell Research, 241(1), 12–22.PubMed Cross, D. A. E., & Smythe, C. (1998). PD98059 prevents establishment of the spindle assembly checkpoint and inhibits the G(2)-M transition in meiotic but not mitotic cell cycles in Xenopus. Experimental Cell Research, 241(1), 12–22.PubMed
139.
go back to reference Ge, X., Fu, Y. M., & Meadows, G. G. (2002). U0126, a mitogen-activated protein kinase kinase inhibitor, inhibits the invasion of human A375 melanoma cells. Cancer Letters, 179(2), 133–140.PubMed Ge, X., Fu, Y. M., & Meadows, G. G. (2002). U0126, a mitogen-activated protein kinase kinase inhibitor, inhibits the invasion of human A375 melanoma cells. Cancer Letters, 179(2), 133–140.PubMed
140.
go back to reference Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293.PubMed Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293.PubMed
141.
go back to reference Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462.PubMed Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462.PubMed
142.
go back to reference Boasberg, P. D., Redfern, C. H., Daniels, G. A., Bodkin, D., Garrett, C. R., & Ricart, A. D. (2011). Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Cancer Chemotherapy and Pharmacology, 68(2), 547–552.PubMed Boasberg, P. D., Redfern, C. H., Daniels, G. A., Bodkin, D., Garrett, C. R., & Ricart, A. D. (2011). Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Cancer Chemotherapy and Pharmacology, 68(2), 547–552.PubMed
143.
go back to reference Yeh, T. C., Marsh, V., Bernat, B. A., Ballard, J., Colwell, H., Evans, R. J., et al. (2007). Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clinical Cancer Research, 13(5), 1576–1583.PubMed Yeh, T. C., Marsh, V., Bernat, B. A., Ballard, J., Colwell, H., Evans, R. J., et al. (2007). Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clinical Cancer Research, 13(5), 1576–1583.PubMed
144.
go back to reference Haass, N. K., Sproesser, K., Nguyen, T. K., Contractor, R., Medina, C. A., Nathanson, K. L., et al. (2008). The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clinical Cancer Research, 14(1), 230–239.PubMed Haass, N. K., Sproesser, K., Nguyen, T. K., Contractor, R., Medina, C. A., Nathanson, K. L., et al. (2008). The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clinical Cancer Research, 14(1), 230–239.PubMed
145.
go back to reference Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747.PubMed Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747.PubMed
146.
go back to reference Adjei, A. A., Cohen, R. B., Franklin, W., Morris, C., Wilson, D., Molina, J. R., et al. (2008). Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. Journal of Clinical Oncology, 26(13), 2139–2146.PubMed Adjei, A. A., Cohen, R. B., Franklin, W., Morris, C., Wilson, D., Molina, J. R., et al. (2008). Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. Journal of Clinical Oncology, 26(13), 2139–2146.PubMed
147.
go back to reference Banerji, U., Camidge, D. R., Verheul, H. M., Agarwal, R., Sarker, D., Kaye, S. B., et al. (2010). The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clinical Cancer Research, 16(5), 1613–1623.PubMed Banerji, U., Camidge, D. R., Verheul, H. M., Agarwal, R., Sarker, D., Kaye, S. B., et al. (2010). The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clinical Cancer Research, 16(5), 1613–1623.PubMed
148.
go back to reference Patel, S. P., & Kim, K. B. (2012). Selumetinib (AZD6244; ARRY-142886) in the treatment of metastatic melanoma. Expert Opinion on Investigational Drugs, 21(4), 531–539.PubMed Patel, S. P., & Kim, K. B. (2012). Selumetinib (AZD6244; ARRY-142886) in the treatment of metastatic melanoma. Expert Opinion on Investigational Drugs, 21(4), 531–539.PubMed
149.
go back to reference Bodoky, G., Timcheva, C., Spigel, D. R., La Stella, P. J., Ciuleanu, T. E., Pover, G., et al. (2012). A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investigational New Drugs, 30(3), 1216–1223.PubMed Bodoky, G., Timcheva, C., Spigel, D. R., La Stella, P. J., Ciuleanu, T. E., Pover, G., et al. (2012). A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investigational New Drugs, 30(3), 1216–1223.PubMed
150.
go back to reference Gilmartin, A. G., Bleam, M. R., Groy, A., Moss, K. G., Minthorn, E. A., Kulkarni, S. G., et al. (2011). GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clinical Cancer Research, 17(5), 989–1000.PubMed Gilmartin, A. G., Bleam, M. R., Groy, A., Moss, K. G., Minthorn, E. A., Kulkarni, S. G., et al. (2011). GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clinical Cancer Research, 17(5), 989–1000.PubMed
151.
go back to reference Infante, J. R., Fecher, L. A., Falchook, G. S., Nallapareddy, S., Gordon, M. S., Becerra, C., et al. (2012). Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. The Lancet Oncology, 13(8), 773–781.PubMed Infante, J. R., Fecher, L. A., Falchook, G. S., Nallapareddy, S., Gordon, M. S., Becerra, C., et al. (2012). Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. The Lancet Oncology, 13(8), 773–781.PubMed
152.
go back to reference Falchook, G. S., Lewis, K. D., Infante, J. R., Gordon, M. S., Vogelzang, N. J., DeMarini, D. J., et al. (2012). Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. The Lancet Oncology, 13(8), 782–789.PubMed Falchook, G. S., Lewis, K. D., Infante, J. R., Gordon, M. S., Vogelzang, N. J., DeMarini, D. J., et al. (2012). Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. The Lancet Oncology, 13(8), 782–789.PubMed
153.
go back to reference Kim, K. B., Kefford, R., Pavlick, A. C., Infante, J. R., Ribas, A., Sosman, J. A., et al. (2013). Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol, 31(4), 482–489.PubMed Kim, K. B., Kefford, R., Pavlick, A. C., Infante, J. R., Ribas, A., Sosman, J. A., et al. (2013). Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol, 31(4), 482–489.PubMed
154.
go back to reference Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(2), 107–114.PubMed Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(2), 107–114.PubMed
155.
go back to reference Finn, R. S., Javle, M. M., Tan Jr, B. R., Weekes, C. C., Bendell, J. C., Patnaik, A., et al. (2012). A phase 1 study of MEK inhibitor MEK162 (ARRY-438162) in patients with biliary tract cancer. ASCO Gastrointestinal Cancers Symtosium; Sanfrancisco, CA, USA, Nov 12–16, 2011, abstr 220. Finn, R. S., Javle, M. M., Tan Jr, B. R., Weekes, C. C., Bendell, J. C., Patnaik, A., et al. (2012). A phase 1 study of MEK inhibitor MEK162 (ARRY-438162) in patients with biliary tract cancer. ASCO Gastrointestinal Cancers Symtosium; Sanfrancisco, CA, USA, Nov 12–16, 2011, abstr 220.
156.
go back to reference Ascierto, P., Berking, C., Agarwala, S., et al. (2012). Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J Clin Oncol, 30, suppl; abstr 8511. Ascierto, P., Berking, C., Agarwala, S., et al. (2012). Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J Clin Oncol, 30, suppl; abstr 8511.
157.
go back to reference Ascierto, P. A., Schadendorf, D., Berking, C., Agarwala, S. S., van Herpen, C. M., Queirolo, P., et al. (2013). MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. The Lancet Oncology, 14(3), 249–256.PubMed Ascierto, P. A., Schadendorf, D., Berking, C., Agarwala, S. S., van Herpen, C. M., Queirolo, P., et al. (2013). MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. The Lancet Oncology, 14(3), 249–256.PubMed
158.
go back to reference Sosman, J. A., Kim, K. B., Schuchter, L., Gonzalez, R., Pavlick, A. C., Weber, J. S., et al. (2012). Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. The New England Journal of Medicine, 366(8), 707–714.PubMed Sosman, J. A., Kim, K. B., Schuchter, L., Gonzalez, R., Pavlick, A. C., Weber, J. S., et al. (2012). Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. The New England Journal of Medicine, 366(8), 707–714.PubMed
159.
go back to reference Montagut, C., Sharma, S. V., Shioda, T., McDermott, U., Ulman, M., Ulkus, L. E., et al. (2008). Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Research, 68(12), 4853–4861.PubMed Montagut, C., Sharma, S. V., Shioda, T., McDermott, U., Ulman, M., Ulkus, L. E., et al. (2008). Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Research, 68(12), 4853–4861.PubMed
160.
go back to reference Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972.PubMed Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972.PubMed
161.
go back to reference Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977.PubMed Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977.PubMed
162.
go back to reference Poulikakos, P. I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., et al. (2011). RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 480(7377), 387–390.PubMed Poulikakos, P. I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., et al. (2011). RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 480(7377), 387–390.PubMed
163.
go back to reference Clement, B. (2012). Control of hepatocellular carcinoma progression by the tumor micro-environment. Bulletin de l'Académie Nationale de Médecine, 196(1), 75–84.PubMed Clement, B. (2012). Control of hepatocellular carcinoma progression by the tumor micro-environment. Bulletin de l'Académie Nationale de Médecine, 196(1), 75–84.PubMed
164.
go back to reference Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18(6), 683–695.PubMed Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18(6), 683–695.PubMed
165.
go back to reference Paraiso, K. H., Xiang, Y., Rebecca, V. W., Abel, E. V., Chen, Y. A., Munko, A. C., et al. (2011). PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Research, 71(7), 2750–2760.PubMed Paraiso, K. H., Xiang, Y., Rebecca, V. W., Abel, E. V., Chen, Y. A., Munko, A. C., et al. (2011). PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Research, 71(7), 2750–2760.PubMed
166.
go back to reference Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine, 367(18), 1694–1703.PubMed Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine, 367(18), 1694–1703.PubMed
167.
go back to reference Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12(3 Pt 1), 679–689.PubMed Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12(3 Pt 1), 679–689.PubMed
168.
go back to reference Deng, W., Gopal, Y. N., Scott, A., Chen, G., Woodman, S. E., & Davies, M. A. (2012). Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell & Melanoma Research, 25(2), 248–258. Deng, W., Gopal, Y. N., Scott, A., Chen, G., Woodman, S. E., & Davies, M. A. (2012). Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell & Melanoma Research, 25(2), 248–258.
169.
go back to reference Davar, D., Tarhini, A. A., & Kirkwood, J. M. (2012). Adjuvant therapy for melanoma. Cancer Journal, 18(2), 192–202. Davar, D., Tarhini, A. A., & Kirkwood, J. M. (2012). Adjuvant therapy for melanoma. Cancer Journal, 18(2), 192–202.
170.
go back to reference Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723.PubMed Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723.PubMed
171.
go back to reference Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526.PubMed Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526.PubMed
Metadata
Title
Targeting MAPK pathway in melanoma therapy
Authors
Yabin Cheng
Guohong Zhang
Gang Li
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9433-9

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine