Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2016

01-03-2016

Genetic progression of malignant melanoma

Authors: J. Tímár, L. Vizkeleti, V. Doma, T. Barbai, E. Rásó

Published in: Cancer and Metastasis Reviews | Issue 1/2016

Login to get access

Abstract

Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the possible organ-specific metastatic drivers in melanoma. These observations suggest that clinical management of melanoma patients must rely on the genetic analysis of the metastatic lesions to be able to monitor progression-associated changes and to personalize therapies.
Literature
1.
go back to reference Balch, C. M., Soong, S.-J., & Thompson, J. F. (2004). The natural history of melanoma and factors predicting outcome. In J. F. Thompson, D. L. Morton, & B. B. R. Kroon (Eds.), Textbook of melanoma (pp. 181–199). London: Taylor & Francis Group. Balch, C. M., Soong, S.-J., & Thompson, J. F. (2004). The natural history of melanoma and factors predicting outcome. In J. F. Thompson, D. L. Morton, & B. B. R. Kroon (Eds.), Textbook of melanoma (pp. 181–199). London: Taylor & Francis Group.
2.
go back to reference Whiteman, D. C., Pavan, W. J., & Bastian, B. C. (2011). The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell & Melanoma Research, 24(5), 879–897.CrossRef Whiteman, D. C., Pavan, W. J., & Bastian, B. C. (2011). The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell & Melanoma Research, 24(5), 879–897.CrossRef
3.
go back to reference The Cancer Genome Atlas Network. (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–1696.CrossRef The Cancer Genome Atlas Network. (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–1696.CrossRef
4.
go back to reference Wiesner, T., Murali, R., Fried, I., Cerroni, L., Busam, K., Kutzner, H., & Bastian, B. C. (2012). A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. American Journal of Surgical Pathology, 36(6), 818–30.CrossRefPubMedPubMedCentral Wiesner, T., Murali, R., Fried, I., Cerroni, L., Busam, K., Kutzner, H., & Bastian, B. C. (2012). A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. American Journal of Surgical Pathology, 36(6), 818–30.CrossRefPubMedPubMedCentral
5.
go back to reference Ismail, I. H., Davidson, R., Gagné, J. P., Xu, Z. Z., Poirier, G. G., & Hendzel, M. J. (2014). Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Research, 74(16), 4282–94.CrossRefPubMed Ismail, I. H., Davidson, R., Gagné, J. P., Xu, Z. Z., Poirier, G. G., & Hendzel, M. J. (2014). Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Research, 74(16), 4282–94.CrossRefPubMed
6.
go back to reference Scheuermann, J. C., Alonso, A. G. D., Oktaba, K., Ly-Hartig, N., McGinty, R. K., Fraterman, S., et al. (2010). Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature, 465(7295), 243–247.CrossRefPubMedPubMedCentral Scheuermann, J. C., Alonso, A. G. D., Oktaba, K., Ly-Hartig, N., McGinty, R. K., Fraterman, S., et al. (2010). Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature, 465(7295), 243–247.CrossRefPubMedPubMedCentral
7.
go back to reference Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68(17), 6953–6962.CrossRefPubMedPubMedCentral Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68(17), 6953–6962.CrossRefPubMedPubMedCentral
8.
go back to reference Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J. P., et al. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263.CrossRefPubMedPubMedCentral Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J. P., et al. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263.CrossRefPubMedPubMedCentral
9.
go back to reference Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506.PubMedPubMedCentral Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506.PubMedPubMedCentral
10.
go back to reference Krauthammer, M., Kong, Y., Bacchiocchi, A., Evans, P., Pornputtapong, N., Wu, C., et al. (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nature Genetics, 47(9), 996–1002.CrossRefPubMed Krauthammer, M., Kong, Y., Bacchiocchi, A., Evans, P., Pornputtapong, N., Wu, C., et al. (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nature Genetics, 47(9), 996–1002.CrossRefPubMed
11.
go back to reference Manca, A., Lissia, A., Cossu, A., Rubino, C., Ascierto, P. A., Stanganelli, I., et al. (2013). Mutations in ERBB4 may have a minor role in melanoma pathogenesis. Jornal of Investigative Dermatology, 133(6), 1685–1687.CrossRef Manca, A., Lissia, A., Cossu, A., Rubino, C., Ascierto, P. A., Stanganelli, I., et al. (2013). Mutations in ERBB4 may have a minor role in melanoma pathogenesis. Jornal of Investigative Dermatology, 133(6), 1685–1687.CrossRef
12.
go back to reference Guan, J., Gupta, R., & Filipp, F. V. (2015). Cancer systems biology of TCGA SKCM: efficient detection of genomic drivers in melanoma. Scientific Reports, 5, 7857.CrossRefPubMedPubMedCentral Guan, J., Gupta, R., & Filipp, F. V. (2015). Cancer systems biology of TCGA SKCM: efficient detection of genomic drivers in melanoma. Scientific Reports, 5, 7857.CrossRefPubMedPubMedCentral
13.
go back to reference Lee, J. J., Sholl, L. M., Lindeman, N. I., Granter, S. R., Laga, A. C., Shivdasani, P., et al. (2015). Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas. Clinical Epigenetics, 7(1), 59.CrossRefPubMedPubMedCentral Lee, J. J., Sholl, L. M., Lindeman, N. I., Granter, S. R., Laga, A. C., Shivdasani, P., et al. (2015). Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas. Clinical Epigenetics, 7(1), 59.CrossRefPubMedPubMedCentral
14.
go back to reference Timar, J., Barbai, T., Győrffy, B., & Rásó, E. (2013). Understanding melanoma progression by gene expression signatures. In U. Pfeffer (Ed.), Cancer genomics: Molecular classification, prognosis and response prediction (pp. 47–79). Dordrecht: Springer.CrossRef Timar, J., Barbai, T., Győrffy, B., & Rásó, E. (2013). Understanding melanoma progression by gene expression signatures. In U. Pfeffer (Ed.), Cancer genomics: Molecular classification, prognosis and response prediction (pp. 47–79). Dordrecht: Springer.CrossRef
15.
go back to reference Wei, X., Walia, V., Lin, J. C., Teer, J. K., Prickett, T. D., Gartner, J., et al. (2011). Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nature Genetics, 43(5), 442–446.CrossRefPubMedPubMedCentral Wei, X., Walia, V., Lin, J. C., Teer, J. K., Prickett, T. D., Gartner, J., et al. (2011). Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nature Genetics, 43(5), 442–446.CrossRefPubMedPubMedCentral
16.
go back to reference Viros, A., Fridlyand, J., Bauer, J., Lasithiotakis, K., Garbe, C., Pinkel, D., et al. (2008). Improving melanoma classification by integrating genetic and morphologic features. PLoS Medicine, 5(6), e120.CrossRefPubMedPubMedCentral Viros, A., Fridlyand, J., Bauer, J., Lasithiotakis, K., Garbe, C., Pinkel, D., et al. (2008). Improving melanoma classification by integrating genetic and morphologic features. PLoS Medicine, 5(6), e120.CrossRefPubMedPubMedCentral
17.
go back to reference Harbst, K., Staaf, J., Lauss, M., Karlsson, A., Masback, A., Johansson, I., et al. (2012). Molecular profiling reveals low- and high-grade forms of primary melanoma. Clinical Cancer Research, 18(15), 4026–4036.CrossRefPubMedPubMedCentral Harbst, K., Staaf, J., Lauss, M., Karlsson, A., Masback, A., Johansson, I., et al. (2012). Molecular profiling reveals low- and high-grade forms of primary melanoma. Clinical Cancer Research, 18(15), 4026–4036.CrossRefPubMedPubMedCentral
18.
go back to reference Hoek, K. S., Schlegel, N. C., Brafford, P., Sucker, A., Ugurel, S., Kumar, R., et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Research, 19(4), 290–302.CrossRefPubMed Hoek, K. S., Schlegel, N. C., Brafford, P., Sucker, A., Ugurel, S., Kumar, R., et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Research, 19(4), 290–302.CrossRefPubMed
19.
go back to reference Allison, K. H., & Sledge, G. W. (2014). Heterogeneity and cancer. [Review]. Oncology (Williston Park), 28(9), 772–778. Allison, K. H., & Sledge, G. W. (2014). Heterogeneity and cancer. [Review]. Oncology (Williston Park), 28(9), 772–778.
20.
go back to reference Jamal-Hanjani, M., Quezada, S. A., Larkin, J., & Swanton, C. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21(6), 1258–1266.CrossRefPubMedPubMedCentral Jamal-Hanjani, M., Quezada, S. A., Larkin, J., & Swanton, C. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21(6), 1258–1266.CrossRefPubMedPubMedCentral
21.
go back to reference Wang, E., Voiculescu, S., Le Poole, I. C., El-Gamil, M., Li, X., Sabatino, M., et al. (2006). Clonal persistence and evolution during a decade of recurrent melanoma. The Journal of Investigative Dermatology, 126(6), 1372–1377.CrossRefPubMed Wang, E., Voiculescu, S., Le Poole, I. C., El-Gamil, M., Li, X., Sabatino, M., et al. (2006). Clonal persistence and evolution during a decade of recurrent melanoma. The Journal of Investigative Dermatology, 126(6), 1372–1377.CrossRefPubMed
22.
go back to reference Chiappetta, C., Proietti, I., Soccodato, V., Puggioni, C., Zaralli, R., Pacini, L., et al. (2015). BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry & Molecular Morphology, 23(3), 172–177.CrossRef Chiappetta, C., Proietti, I., Soccodato, V., Puggioni, C., Zaralli, R., Pacini, L., et al. (2015). BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry & Molecular Morphology, 23(3), 172–177.CrossRef
23.
go back to reference Lamy, P. J., Castan, F., Lozano, N., Montelion, C., Audran, P., Bibeau, F., et al. (2015). Next-generation genotyping by digital PCR to detect and quantify the BRAF V600E mutation in melanoma biopsies. The Journal of Molecular Diagnostics, 17(4), 366–373.CrossRefPubMed Lamy, P. J., Castan, F., Lozano, N., Montelion, C., Audran, P., Bibeau, F., et al. (2015). Next-generation genotyping by digital PCR to detect and quantify the BRAF V600E mutation in melanoma biopsies. The Journal of Molecular Diagnostics, 17(4), 366–373.CrossRefPubMed
24.
go back to reference Ding, L., Kim, M. J., Kanchi, K. L., Dees, N. D., Lu, C., Griffith, M., et al. (2014). Clonal architectures and driver mutations in metastatic melanomas. PLoS One, 9(11). Ding, L., Kim, M. J., Kanchi, K. L., Dees, N. D., Lu, C., Griffith, M., et al. (2014). Clonal architectures and driver mutations in metastatic melanomas. PLoS One, 9(11).
25.
go back to reference Menzies, A. M., Lum, T., Wilmott, J. S., Hyman, J., Kefford, R. F., Thompson, J. F., et al. (2014). Intrapatient homogeneity of BRAFV600E expression in melanoma. The American Journal of Surgical Pathology, 38(3), 377–382.CrossRefPubMed Menzies, A. M., Lum, T., Wilmott, J. S., Hyman, J., Kefford, R. F., Thompson, J. F., et al. (2014). Intrapatient homogeneity of BRAFV600E expression in melanoma. The American Journal of Surgical Pathology, 38(3), 377–382.CrossRefPubMed
26.
go back to reference Riveiro-Falkenbach, E., Villanueva, C. A., Garrido, M. C., Ruano, Y., Garcia-Martin, R. M., Godoy, E., et al. (2015). Intra- and inter-tumoral homogeneity of BRAF mutations in melanoma tumors. The Journal of Investigative Dermatology. doi:10.1038/jid.2015.229.PubMed Riveiro-Falkenbach, E., Villanueva, C. A., Garrido, M. C., Ruano, Y., Garcia-Martin, R. M., Godoy, E., et al. (2015). Intra- and inter-tumoral homogeneity of BRAF mutations in melanoma tumors. The Journal of Investigative Dermatology. doi:10.​1038/​jid.​2015.​229.PubMed
27.
go back to reference Orgaz, J. L., & Sanz-Moreno, V. (2013). Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell & Melanoma Research, 26(1), 39–57.CrossRef Orgaz, J. L., & Sanz-Moreno, V. (2013). Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell & Melanoma Research, 26(1), 39–57.CrossRef
28.
go back to reference Barbai, T., Fejős, Z., Puskas, L. G., Tímár, J., & Rásó, E. (2015). The importance of the microenvironment: the role of CCL8 in metastasis formation of melanoma. Oncotarget, 6, 29111–29128.PubMedPubMedCentral Barbai, T., Fejős, Z., Puskas, L. G., Tímár, J., & Rásó, E. (2015). The importance of the microenvironment: the role of CCL8 in metastasis formation of melanoma. Oncotarget, 6, 29111–29128.PubMedPubMedCentral
29.
go back to reference Dome, B., Paku, S., Somlai, B., & Timar, J. (2002). Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. Journal of Pathology, 197(3), 355–362.CrossRefPubMed Dome, B., Paku, S., Somlai, B., & Timar, J. (2002). Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. Journal of Pathology, 197(3), 355–362.CrossRefPubMed
30.
go back to reference Christianson, D. R., Dobroff, A. S., Proneth, B., Zurita, A. J., Salameh, A., Dondossola, E., et al. (2015). Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2521–2526.CrossRefPubMedPubMedCentral Christianson, D. R., Dobroff, A. S., Proneth, B., Zurita, A. J., Salameh, A., Dondossola, E., et al. (2015). Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2521–2526.CrossRefPubMedPubMedCentral
31.
go back to reference Leong, S. P., Mihm, M. C., Jr., Murphy, G. F., Hoon, D. S., Kashani-Sabet, M., Agarwala, S. S., et al. (2012). Progression of cutaneous melanoma: implications for treatment. Clinical & Experimental Metastasis, 29(7), 775–796.CrossRef Leong, S. P., Mihm, M. C., Jr., Murphy, G. F., Hoon, D. S., Kashani-Sabet, M., Agarwala, S. S., et al. (2012). Progression of cutaneous melanoma: implications for treatment. Clinical & Experimental Metastasis, 29(7), 775–796.CrossRef
32.
go back to reference Pasquali, S., & Spillane, A. (2014). Contemporary controversies and perspectives in the staging and treatment of patients with lymph node metastasis from melanoma, especially with regards positive sentinel lymph node biopsy. [Review]. Cancer Treatment Reviews, 40(8), 893–899.CrossRefPubMed Pasquali, S., & Spillane, A. (2014). Contemporary controversies and perspectives in the staging and treatment of patients with lymph node metastasis from melanoma, especially with regards positive sentinel lymph node biopsy. [Review]. Cancer Treatment Reviews, 40(8), 893–899.CrossRefPubMed
33.
go back to reference Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Reviews Cancer, 3(6), 411–421.CrossRefPubMed Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Reviews Cancer, 3(6), 411–421.CrossRefPubMed
34.
go back to reference Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y. L., Dome, B., et al. (2002). Role for beta 3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.CrossRefPubMed Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y. L., Dome, B., et al. (2002). Role for beta 3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.CrossRefPubMed
35.
go back to reference Timar, J., Raso, E., Dome, B., Ladanyi, A., Banfalvi, T., Gilde, K., et al. (2002). Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. Clinical & Experimental Metastasis, 19(3), 225–232.CrossRef Timar, J., Raso, E., Dome, B., Ladanyi, A., Banfalvi, T., Gilde, K., et al. (2002). Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. Clinical & Experimental Metastasis, 19(3), 225–232.CrossRef
36.
go back to reference Moro, N., Mauch, C., & Zigrino, P. (2014). Metalloproteinases in melanoma. European Journal of Cell Biology, 93(1–2), 23–29.CrossRefPubMed Moro, N., Mauch, C., & Zigrino, P. (2014). Metalloproteinases in melanoma. European Journal of Cell Biology, 93(1–2), 23–29.CrossRefPubMed
37.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.CrossRefPubMedPubMedCentral Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 33(1), 231–269.CrossRefPubMedPubMedCentral
38.
go back to reference Tellez, C., McCarty, M., Ruiz, M., & Bar-Eli, M. (2003). Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. The Journal of Biological Chemistry, 278(47), 46632–46642.CrossRefPubMed Tellez, C., McCarty, M., Ruiz, M., & Bar-Eli, M. (2003). Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. The Journal of Biological Chemistry, 278(47), 46632–46642.CrossRefPubMed
39.
go back to reference Raso, E., Dome, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.CrossRefPubMed Raso, E., Dome, B., Somlai, B., Zacharek, A., Hagmann, W., Honn, K. V., et al. (2004). Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Research, 14(4), 245–250.CrossRefPubMed
40.
go back to reference Timar, J., Tovari, J., Raso, E., Meszaros, L., Bereczky, B., & Lapis, K. (2005). Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology, 69(3), 185–201.CrossRefPubMed Timar, J., Tovari, J., Raso, E., Meszaros, L., Bereczky, B., & Lapis, K. (2005). Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology, 69(3), 185–201.CrossRefPubMed
41.
go back to reference Morton, D. L., Thompson, J. F., Cochran, A. J., Mozzillo, N., Nieweg, O. E., Roses, D. F., et al. (2014). Final trial report of sentinel-node biopsy versus nodal observation in melanoma. The New England Journal of Medicine, 370(7), 599–609.CrossRefPubMedPubMedCentral Morton, D. L., Thompson, J. F., Cochran, A. J., Mozzillo, N., Nieweg, O. E., Roses, D. F., et al. (2014). Final trial report of sentinel-node biopsy versus nodal observation in melanoma. The New England Journal of Medicine, 370(7), 599–609.CrossRefPubMedPubMedCentral
42.
go back to reference Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Molecular plasticity of human melanoma cells. Oncogene, 22(20), 3070–3075.CrossRefPubMed Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Molecular plasticity of human melanoma cells. Oncogene, 22(20), 3070–3075.CrossRefPubMed
43.
go back to reference Zabierowski, S. E., & Herlyn, M. (2008). Melanoma stem cells: the dark seed of melanoma. [Review]. Journal of Clinical Oncology, 26(17), 2890–2894.CrossRefPubMed Zabierowski, S. E., & Herlyn, M. (2008). Melanoma stem cells: the dark seed of melanoma. [Review]. Journal of Clinical Oncology, 26(17), 2890–2894.CrossRefPubMed
44.
go back to reference Murphy, G. F., Wilson, B. J., Girouard, S. D., Fraqnk, N. Y., & Frank, M. H. (2014). Stem cells and target approaches to melanoma cure. Molecular Aspects of Medicine, 39, 33–49.CrossRefPubMed Murphy, G. F., Wilson, B. J., Girouard, S. D., Fraqnk, N. Y., & Frank, M. H. (2014). Stem cells and target approaches to melanoma cure. Molecular Aspects of Medicine, 39, 33–49.CrossRefPubMed
45.
go back to reference Bramer, R. R., Watson, I. R., Wu, C.-J., Mobley, A. K., Kamiya, T., Shoshan, E., et al. (2013). Why is melanoma so metastatic? Pigment Cell & Melanoma Research, 27, 19–36. Bramer, R. R., Watson, I. R., Wu, C.-J., Mobley, A. K., Kamiya, T., Shoshan, E., et al. (2013). Why is melanoma so metastatic? Pigment Cell & Melanoma Research, 27, 19–36.
46.
go back to reference Shakhova, O. (2014). Neural crest stem cells in melanoma development. Current Opinion in Oncology, 26, 215–221.CrossRefPubMed Shakhova, O. (2014). Neural crest stem cells in melanoma development. Current Opinion in Oncology, 26, 215–221.CrossRefPubMed
47.
go back to reference Döme, B., Somlai, B., Ladányi, A., Fazekas, K., Zöller, M., & Tímár, J. (2001). Expression of CD44v3 splice variant is associated with the visceral metastatic phenotype of human melanoma. Virchows Archiv, 439, 628–635.CrossRefPubMed Döme, B., Somlai, B., Ladányi, A., Fazekas, K., Zöller, M., & Tímár, J. (2001). Expression of CD44v3 splice variant is associated with the visceral metastatic phenotype of human melanoma. Virchows Archiv, 439, 628–635.CrossRefPubMed
48.
go back to reference Raso-Barnett, L., Banky, B., Barbai, T., Becsagh, P., Timar, J., & Raso, E. (2013). Demonstration of a melanoma-specific CD44 alternative splicing pattern that remains qualitatively stable, but shows quantitative changes during tumour progression. Plos One, 8, e53883.CrossRefPubMedPubMedCentral Raso-Barnett, L., Banky, B., Barbai, T., Becsagh, P., Timar, J., & Raso, E. (2013). Demonstration of a melanoma-specific CD44 alternative splicing pattern that remains qualitatively stable, but shows quantitative changes during tumour progression. Plos One, 8, e53883.CrossRefPubMedPubMedCentral
49.
go back to reference Döme, B., Somlai, B., & Tímár, J. (2000). The loss of NM23 protein in malignant melanoma predicts lymphatic spread without affecting survival. Anticancer Research, 20, 3971–3974.PubMed Döme, B., Somlai, B., & Tímár, J. (2000). The loss of NM23 protein in malignant melanoma predicts lymphatic spread without affecting survival. Anticancer Research, 20, 3971–3974.PubMed
50.
go back to reference Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., et al. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737.CrossRefPubMed Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., et al. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737.CrossRefPubMed
51.
go back to reference Kim, M., Gans, J. D., Nogueira, C., Wang, A., Paik, J. H., Feng, B., et al. (2006). Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell, 125(7), 1269–1281.CrossRefPubMed Kim, M., Gans, J. D., Nogueira, C., Wang, A., Paik, J. H., Feng, B., et al. (2006). Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell, 125(7), 1269–1281.CrossRefPubMed
52.
go back to reference Cirenajwis, H., Ekedahl, H., Lauss, M., Harbst, K., Carneiro, A., Enoksson, J., et al. (2015). Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget, 6(14), 12297–12309.CrossRefPubMedPubMedCentral Cirenajwis, H., Ekedahl, H., Lauss, M., Harbst, K., Carneiro, A., Enoksson, J., et al. (2015). Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget, 6(14), 12297–12309.CrossRefPubMedPubMedCentral
53.
go back to reference Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., et al. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. doi:10.1038/Ncomms7683.CrossRefPubMedPubMedCentral Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., et al. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. doi:10.​1038/​Ncomms7683.CrossRefPubMedPubMedCentral
54.
go back to reference Park, J. Y., Amankwah, E. K., Anic, G. M., Lin, H. Y., Walls, B., Park, H., et al. (2013). Gene variants in angiogenesis and lymphangiogenesis and cutaneous melanoma progression. Cancer Epidemiology, Biomarkers & Prevention, 22(5), 827–834.CrossRef Park, J. Y., Amankwah, E. K., Anic, G. M., Lin, H. Y., Walls, B., Park, H., et al. (2013). Gene variants in angiogenesis and lymphangiogenesis and cutaneous melanoma progression. Cancer Epidemiology, Biomarkers & Prevention, 22(5), 827–834.CrossRef
55.
go back to reference Carlino, M. S., Haydu, L. E., Kakavand, H., Menzies, A. M., Hamilton, A. L., Yu, B., et al. (2014). Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. British Journal of Cancer, 111(2), 292–299.CrossRefPubMedPubMedCentral Carlino, M. S., Haydu, L. E., Kakavand, H., Menzies, A. M., Hamilton, A. L., Yu, B., et al. (2014). Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. British Journal of Cancer, 111(2), 292–299.CrossRefPubMedPubMedCentral
56.
go back to reference Pracht, M., Mogha, A., Lespagnol, A., Fautrel, A., Mouchet, N., Le Gall, F., et al. (2015). Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma. Journal of the European Academy of Dermatology and Venereology, 29(8), 1530–1538.CrossRefPubMed Pracht, M., Mogha, A., Lespagnol, A., Fautrel, A., Mouchet, N., Le Gall, F., et al. (2015). Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma. Journal of the European Academy of Dermatology and Venereology, 29(8), 1530–1538.CrossRefPubMed
57.
go back to reference Thomas, N. E., Edmiston, S. N., Alexander, A., Groben, P. A., Parrish, E., Kricker, A., et al. (2015). Association between and mutational status and melanoma-specific survival among patients with higher risk primary melanoma. JAMA Oncology, 1(3), 359–368.CrossRefPubMed Thomas, N. E., Edmiston, S. N., Alexander, A., Groben, P. A., Parrish, E., Kricker, A., et al. (2015). Association between and mutational status and melanoma-specific survival among patients with higher risk primary melanoma. JAMA Oncology, 1(3), 359–368.CrossRefPubMed
58.
go back to reference Chiu, C. G., Nakamura, Y., Chong, K. K., Huang, S. K., Kawas, N. P., Triche, T., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.CrossRefPubMed Chiu, C. G., Nakamura, Y., Chong, K. K., Huang, S. K., Kawas, N. P., Triche, T., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.CrossRefPubMed
59.
go back to reference Colombino, M., Lissia, A., Capone, M., De Giorgi, V., Massi, D., Stanganelli, I., et al. (2013). Heterogeneous distribution of BRAF/NRAS mutations among Italian patients with advanced melanoma. Journal of Translational Medicine, 11, 202.CrossRefPubMedPubMedCentral Colombino, M., Lissia, A., Capone, M., De Giorgi, V., Massi, D., Stanganelli, I., et al. (2013). Heterogeneous distribution of BRAF/NRAS mutations among Italian patients with advanced melanoma. Journal of Translational Medicine, 11, 202.CrossRefPubMedPubMedCentral
60.
go back to reference Colombino, M., Capone, M., Lissia, A., Cossu, A., Rubino, C., De Giorgi, V., et al. (2012). BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. Journal of Clinical Oncology, 30(20), 2522–2529.CrossRefPubMed Colombino, M., Capone, M., Lissia, A., Cossu, A., Rubino, C., De Giorgi, V., et al. (2012). BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. Journal of Clinical Oncology, 30(20), 2522–2529.CrossRefPubMed
61.
go back to reference Shinozaki, M., Fujimoto, A., Morton, D. L., & Hoon, D. S. (2004). Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clinical Cancer Research, 10(5), 1753–1757.CrossRefPubMed Shinozaki, M., Fujimoto, A., Morton, D. L., & Hoon, D. S. (2004). Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clinical Cancer Research, 10(5), 1753–1757.CrossRefPubMed
62.
go back to reference Saroufim, M., Habib, R. H., Gerges, R., Saab, J., Loya, A., Amr, S. S., et al. (2014). Comparing BRAF mutation status in matched primary and metastatic cutaneous melanomas: implications on optimized targeted therapy. Experimental and Molecular Pathology, 97(3), 315–320.CrossRefPubMed Saroufim, M., Habib, R. H., Gerges, R., Saab, J., Loya, A., Amr, S. S., et al. (2014). Comparing BRAF mutation status in matched primary and metastatic cutaneous melanomas: implications on optimized targeted therapy. Experimental and Molecular Pathology, 97(3), 315–320.CrossRefPubMed
63.
go back to reference Bradish, J. R., Richey, J. D., Post, K. M., Meehan, K., Sen, J. D., Malek, A. J., et al. (2015). Discordancy in BRAF mutations among primary and metastatic melanoma lesions: clinical implications for targeted therapy. Modern Pathology, 28(4), 480–486.CrossRefPubMed Bradish, J. R., Richey, J. D., Post, K. M., Meehan, K., Sen, J. D., Malek, A. J., et al. (2015). Discordancy in BRAF mutations among primary and metastatic melanoma lesions: clinical implications for targeted therapy. Modern Pathology, 28(4), 480–486.CrossRefPubMed
64.
go back to reference Yancovitz, M., Litterman, A., Yoon, J., Ng, E., Shapiro, R. L., Berman, R. S., et al. (2012). Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS One, 7(1), e29336.CrossRefPubMedPubMedCentral Yancovitz, M., Litterman, A., Yoon, J., Ng, E., Shapiro, R. L., Berman, R. S., et al. (2012). Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS One, 7(1), e29336.CrossRefPubMedPubMedCentral
65.
go back to reference Heinzerling, L., Baiter, M., Kuhnapfel, S., Schuler, G., Keikavoussi, P., Agaimy, A., et al. (2013). Mutation landscape in melanoma patients clinical implications of heterogeneity of BRAF mutations. British Journal of Cancer, 109(11), 2833–2841.CrossRefPubMedPubMedCentral Heinzerling, L., Baiter, M., Kuhnapfel, S., Schuler, G., Keikavoussi, P., Agaimy, A., et al. (2013). Mutation landscape in melanoma patients clinical implications of heterogeneity of BRAF mutations. British Journal of Cancer, 109(11), 2833–2841.CrossRefPubMedPubMedCentral
66.
go back to reference Boursault, L., Haddad, V., Vergier, B., Cappellen, D., Verdon, S., Bellocq, J. P., et al. (2013). Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS One, 8(8), e70826.CrossRefPubMedPubMedCentral Boursault, L., Haddad, V., Vergier, B., Cappellen, D., Verdon, S., Bellocq, J. P., et al. (2013). Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS One, 8(8), e70826.CrossRefPubMedPubMedCentral
67.
go back to reference Eriksson, H., Zebary, A., Vassilaki, I., Omholt, K., Ghaderi, M., & Hansson, J. (2015). BRAFV600E protein expression in primary cutaneous malignant melanomas and paired metastases. JAMA Dermatology, 151(4), 410–416.CrossRefPubMed Eriksson, H., Zebary, A., Vassilaki, I., Omholt, K., Ghaderi, M., & Hansson, J. (2015). BRAFV600E protein expression in primary cutaneous malignant melanomas and paired metastases. JAMA Dermatology, 151(4), 410–416.CrossRefPubMed
68.
go back to reference Nardin, C., Puzenat, E., Pretet, J. L., Algros, M. P., Doussot, A., Puyraveau, M., et al. (2015). BRAF mutation screening in melanoma: is sentinel lymph node reliable? Melanoma Research, 25(4), 328–334.CrossRefPubMed Nardin, C., Puzenat, E., Pretet, J. L., Algros, M. P., Doussot, A., Puyraveau, M., et al. (2015). BRAF mutation screening in melanoma: is sentinel lymph node reliable? Melanoma Research, 25(4), 328–334.CrossRefPubMed
71.
go back to reference Koh, S. S., Wei, J. P. J., Li, X. M., Huang, R. R., Doan, N. B., Scolyer, R. A., et al. (2012). Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Modern Pathology, 25(6), 828–837.CrossRefPubMed Koh, S. S., Wei, J. P. J., Li, X. M., Huang, R. R., Doan, N. B., Scolyer, R. A., et al. (2012). Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Modern Pathology, 25(6), 828–837.CrossRefPubMed
72.
go back to reference Sabatino, M., Zhao, Y., Voiculescu, S., Monaco, A., Robbins, P., Karai, L., et al. (2008). Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Research, 68(1), 122–131.CrossRefPubMed Sabatino, M., Zhao, Y., Voiculescu, S., Monaco, A., Robbins, P., Karai, L., et al. (2008). Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Research, 68(1), 122–131.CrossRefPubMed
74.
go back to reference Michielin, O., & Hoeller, C. (2015). Gaining momentum: new options and opportunities for the treatment of advanced melanoma. [Review]. Cancer Treatment Reviews, 41(8), 660–670.CrossRefPubMed Michielin, O., & Hoeller, C. (2015). Gaining momentum: new options and opportunities for the treatment of advanced melanoma. [Review]. Cancer Treatment Reviews, 41(8), 660–670.CrossRefPubMed
75.
go back to reference Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109.CrossRefPubMedPubMedCentral Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109.CrossRefPubMedPubMedCentral
76.
go back to reference Spagnolo, F., Ghiorzo, P., Orgiano, L., Pastorino, L., Picasso, V., Tornari, E., et al. (2015). BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. [Review]. Oncology Targets and Therapy, 8, 157–168.CrossRef Spagnolo, F., Ghiorzo, P., Orgiano, L., Pastorino, L., Picasso, V., Tornari, E., et al. (2015). BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. [Review]. Oncology Targets and Therapy, 8, 157–168.CrossRef
77.
go back to reference Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977.CrossRefPubMedPubMedCentral Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977.CrossRefPubMedPubMedCentral
79.
go back to reference Hoogstraat, M., Gadellaa-van Hooijdonk, C. G., Ubink, I., Besselink, N. J., Pieterse, M., Veldhuis, W., et al. (2015). Detailed imaging and genetic analysis reveal a secondary BRAF(L505H) resistance mutation and extensive intrapatient heterogeneity in metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment Cell & Melanoma Research, 28(3), 318–323.CrossRef Hoogstraat, M., Gadellaa-van Hooijdonk, C. G., Ubink, I., Besselink, N. J., Pieterse, M., Veldhuis, W., et al. (2015). Detailed imaging and genetic analysis reveal a secondary BRAF(L505H) resistance mutation and extensive intrapatient heterogeneity in metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment Cell & Melanoma Research, 28(3), 318–323.CrossRef
80.
go back to reference Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. Journal of Clinical Oncology, 29(22), 3085–3096.CrossRefPubMedPubMedCentral Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. Journal of Clinical Oncology, 29(22), 3085–3096.CrossRefPubMedPubMedCentral
81.
go back to reference Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972.CrossRefPubMedPubMedCentral Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972.CrossRefPubMedPubMedCentral
82.
go back to reference Roesch, A. (2015). Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncotarget, 34, 2951–2957. Roesch, A. (2015). Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncotarget, 34, 2951–2957.
83.
go back to reference Shi, H., Moriceau, G., Kong, X., Koya, R. C., Nazarian, R., Pupo, G. M., et al. (2012). Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discovery, 2(5), 414–424.CrossRefPubMedPubMedCentral Shi, H., Moriceau, G., Kong, X., Koya, R. C., Nazarian, R., Pupo, G. M., et al. (2012). Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discovery, 2(5), 414–424.CrossRefPubMedPubMedCentral
84.
go back to reference Jönsson, G., Busch, C., Knappskog, S., Geisler, J., Miletic, H., Ringner, M., et al. (2010). Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clinical Cancer Research, 16(13), 3356–3367.CrossRefPubMed Jönsson, G., Busch, C., Knappskog, S., Geisler, J., Miletic, H., Ringner, M., et al. (2010). Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clinical Cancer Research, 16(13), 3356–3367.CrossRefPubMed
85.
go back to reference Krepler, C., Certa, U., Wacheck, V., Jansen, B., Wolff, K., & Pehamberger, H. (2004). Pegylated and conventional interferon-alpha induce comparable transcriptional responses and inhibition of tumor growth in a human melanoma SCID mouse xenotransplantation model. Journal of Investigative Dermatology, 123(4), 664–669.CrossRefPubMed Krepler, C., Certa, U., Wacheck, V., Jansen, B., Wolff, K., & Pehamberger, H. (2004). Pegylated and conventional interferon-alpha induce comparable transcriptional responses and inhibition of tumor growth in a human melanoma SCID mouse xenotransplantation model. Journal of Investigative Dermatology, 123(4), 664–669.CrossRefPubMed
86.
go back to reference Johnson, D. B., Lovly, C. M., Flavin, M., Panageas, K. S., Ayers, G. D., Zhao, Z., et al. (2015). Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunology Research, 3(3), 288–295.CrossRefPubMedPubMedCentral Johnson, D. B., Lovly, C. M., Flavin, M., Panageas, K. S., Ayers, G. D., Zhao, Z., et al. (2015). Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunology Research, 3(3), 288–295.CrossRefPubMedPubMedCentral
87.
go back to reference Shin, D. S., & Ribas, A. (2015). The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Current Opinion in Immunology, 33, 23–35.CrossRefPubMed Shin, D. S., & Ribas, A. (2015). The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Current Opinion in Immunology, 33, 23–35.CrossRefPubMed
88.
go back to reference Snyder, A., Wolchok, J. D., & Chan, T. A. (2015). Genetic basis for clinical response to CTLA-4 blockade. [Comment Letter]. The New England Journal of Medicine, 372(8), 783.CrossRefPubMed Snyder, A., Wolchok, J. D., & Chan, T. A. (2015). Genetic basis for clinical response to CTLA-4 blockade. [Comment Letter]. The New England Journal of Medicine, 372(8), 783.CrossRefPubMed
89.
go back to reference Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567.CrossRefPubMed Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567.CrossRefPubMed
Metadata
Title
Genetic progression of malignant melanoma
Authors
J. Tímár
L. Vizkeleti
V. Doma
T. Barbai
E. Rásó
Publication date
01-03-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9613-5

Other articles of this Issue 1/2016

Cancer and Metastasis Reviews 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine