Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2017

01-03-2017

Metastatic melanoma moves on: translational science in the era of personalized medicine

Authors: Mitchell P. Levesque, Phil F. Cheng, Marieke I.G. Raaijmakers, Annalisa Saltari, Reinhard Dummer

Published in: Cancer and Metastasis Reviews | Issue 1/2017

Login to get access

Abstract

Progress in understanding and treating metastatic melanoma is the result of decades of basic and translational research as well as the development of better in vitro tools for modeling the disease. Here, we review the latest therapeutic options for metastatic melanoma and the known genetic and non-genetic mechanisms of resistance to these therapies, as well as the in vitro toolbox that has provided the greatest insights into melanoma progression. These include next-generation sequencing technologies and more complex 2D and 3D cell culture models to functionally test the data generated by genomics approaches. The combination of hypothesis generating and hypothesis testing paradigms reviewed here will be the foundation for the next phase of metastatic melanoma therapies in the coming years.
Literature
1.
go back to reference Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.PubMedCrossRef Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.PubMedCrossRef
3.
go back to reference Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046.PubMedPubMedCentralCrossRef Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046.PubMedPubMedCentralCrossRef
4.
go back to reference Raaijmakers, M. I., Rozati, S., Goldinger, S. M., Widmer, D. S., Dummer, R., & Levesque, M. P. (2013). Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy, 5(2), 169–182. doi:10.2217/imt.12.162.PubMedCrossRef Raaijmakers, M. I., Rozati, S., Goldinger, S. M., Widmer, D. S., Dummer, R., & Levesque, M. P. (2013). Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy, 5(2), 169–182. doi:10.​2217/​imt.​12.​162.PubMedCrossRef
5.
go back to reference Widmer, D. S., Eichhoff, O. M., Dummer, R., & Levesque, M. P. (2015). Melanoma’s next top model, it is in the air. Experimental Dermatology, 24(9), 659–660. doi:10.1111/exd.12757. Widmer, D. S., Eichhoff, O. M., Dummer, R., & Levesque, M. P. (2015). Melanoma’s next top model, it is in the air. Experimental Dermatology, 24(9), 659–660. doi:10.​1111/​exd.​12757.
6.
go back to reference Dummer, R., Siano, M., Hunger, R. E., Lindenblatt, N., Braun, R., Michielin, O., et al. (2016). The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Medical Weekly, 146, w14279. doi:10.4414/smw.2016.14279.PubMed Dummer, R., Siano, M., Hunger, R. E., Lindenblatt, N., Braun, R., Michielin, O., et al. (2016). The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Medical Weekly, 146, w14279. doi:10.​4414/​smw.​2016.​14279.PubMed
7.
go back to reference Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., et al. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. [clinical trial, phase III randomized controlled trial]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(3), 373–379. doi:10.1200/JCO.2012.42.1529.CrossRef Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., et al. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. [clinical trial, phase III randomized controlled trial]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(3), 373–379. doi:10.​1200/​JCO.​2012.​42.​1529.CrossRef
8.
go back to reference Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., et al. (2009). Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. [clinical trial, phase III randomized controlled trial research support, non-U.S. Gov’t]. Journal of Clinical Oncology, 27(17), 2823–2830. doi:10.1200/JCO.2007.15.7636.PubMedCrossRef Hauschild, A., Agarwala, S. S., Trefzer, U., Hogg, D., Robert, C., Hersey, P., et al. (2009). Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. [clinical trial, phase III randomized controlled trial research support, non-U.S. Gov’t]. Journal of Clinical Oncology, 27(17), 2823–2830. doi:10.​1200/​JCO.​2007.​15.​7636.PubMedCrossRef
9.
go back to reference Falchook, G. S., Long, G. V., Kurzrock, R., Kim, K. B., Arkenau, T. H., Brown, M. P., et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. Lancet, 379(9829), 1893–1901. doi:10.1016/S0140-6736(12)60398-5.PubMedPubMedCentralCrossRef Falchook, G. S., Long, G. V., Kurzrock, R., Kim, K. B., Arkenau, T. H., Brown, M. P., et al. (2012). Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. Lancet, 379(9829), 1893–1901. doi:10.​1016/​S0140-6736(12)60398-5.PubMedPubMedCentralCrossRef
10.
go back to reference Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. The New England Journal of Medicine, 363(9), 809–819. doi:10.1056/NEJMoa1002011.PubMedPubMedCentralCrossRef Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. [clinical trial, phase I multicenter study research support, non-U.S. Gov’t]. The New England Journal of Medicine, 363(9), 809–819. doi:10.​1056/​NEJMoa1002011.PubMedPubMedCentralCrossRef
11.
go back to reference Sharfman, W. H., Hodi, F. S., Lawrence, D. P., Flaherty, K. T., Amaravadi, R. K., Kim, K. B., et al. 2011. Results from the first-in-human (FIH) phase I study of the oral RAF inhibitor RAF265 administered daily to patients with advanced cutaneous melanoma. In ASCO, Chicago, IL (Vol. 29: (suppl; abstr 8508)). J Clin Oncol. Sharfman, W. H., Hodi, F. S., Lawrence, D. P., Flaherty, K. T., Amaravadi, R. K., Kim, K. B., et al. 2011. Results from the first-in-human (FIH) phase I study of the oral RAF inhibitor RAF265 administered daily to patients with advanced cutaneous melanoma. In ASCO, Chicago, IL (Vol. 29: (suppl; abstr 8508)). J Clin Oncol.
12.
go back to reference Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. [clinical trial, phase III comparative study multicenter study randomized controlled trial research support, non-U.S. Gov’t]. The New England Journal of Medicine, 364(26), 2507–2516. doi:10.1056/NEJMoa1103782.PubMedPubMedCentralCrossRef Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. [clinical trial, phase III comparative study multicenter study randomized controlled trial research support, non-U.S. Gov’t]. The New England Journal of Medicine, 364(26), 2507–2516. doi:10.​1056/​NEJMoa1103782.PubMedPubMedCentralCrossRef
13.
go back to reference Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine. doi:10.1056/NEJMoa1203421. Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine. doi:10.​1056/​NEJMoa1203421.
14.
go back to reference Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.1016/S0140-6736(12)60868-X.PubMedCrossRef Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.​1016/​S0140-6736(12)60868-X.PubMedCrossRef
15.
go back to reference Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine. doi:10.1056/NEJMoa1210093. Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine. doi:10.​1056/​NEJMoa1210093.
16.
go back to reference Kefford, R., Miller, W. H., Jr., Tan, D. S.-W., Sullivan, R. J., Long, G. V., Tai, W. M. D., et al. 2013. Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK1/2 inhibitor MEK162 in BRAF V600-dependent advanced solid tumors. In ASCO, Chicago (Vol. 9029). Kefford, R., Miller, W. H., Jr., Tan, D. S.-W., Sullivan, R. J., Long, G. V., Tai, W. M. D., et al. 2013. Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK1/2 inhibitor MEK162 in BRAF V600-dependent advanced solid tumors. In ASCO, Chicago (Vol. 9029).
17.
go back to reference Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.1056/NEJMoa1408868.PubMedCrossRef Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.​1056/​NEJMoa1408868.PubMedCrossRef
18.
go back to reference Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.1056/NEJMoa1406037.PubMedCrossRef Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.​1056/​NEJMoa1406037.PubMedCrossRef
19.
go back to reference Ribas, A., Gonzalez, R., Pavlick, A., Hamid, O., Gajewski, T. F., Daud, A., et al. (2014). Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. The Lancet Oncology, 15(9), 954–965. doi:10.1016/S1470-2045(14)70301-8.PubMedCrossRef Ribas, A., Gonzalez, R., Pavlick, A., Hamid, O., Gajewski, T. F., Daud, A., et al. (2014). Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. The Lancet Oncology, 15(9), 954–965. doi:10.​1016/​S1470-2045(14)70301-8.PubMedCrossRef
20.
go back to reference Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroyakovsky, D., et al. 2014. COMBI-v: A randomized, open-label, phase III study comparing the combination of dabrafenib (D) and trametinib (T) with vemurafenib (V) as first-line therapy in patients (pts) with unresectable or metastatic BRAF V600E/K mutation-positive cutaneous melanoma. In European Society for Medical Oncology, Madrid, Spain (pp. ID 5768; LBA5764_PR). Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroyakovsky, D., et al. 2014. COMBI-v: A randomized, open-label, phase III study comparing the combination of dabrafenib (D) and trametinib (T) with vemurafenib (V) as first-line therapy in patients (pts) with unresectable or metastatic BRAF V600E/K mutation-positive cutaneous melanoma. In European Society for Medical Oncology, Madrid, Spain (pp. ID 5768; LBA5764_PR).
21.
22.
go back to reference Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94.PubMedPubMedCentralCrossRef Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94.PubMedPubMedCentralCrossRef
23.
go back to reference Jeffrey Alan Sosman, Anna C. Pavlick, Lynn Mara Schuchter, Karl D Lewis, Grant A. McArthur, Charles Lance Cowey, Stergios J Moschos, Keith T. Flaherty, Kevin B. Kim, Jeffrey Weber, Peter Hersey, Georgina V. Long, Donald P. Lawrence, Mark Kockx, Olivia Spleiss, Astrid Koehler, Gideon Bollag, Andrew K. Joe, Kerstin Trunzer, Antoni Ribas (2012). Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in BRAFV600E melanoma. 2012 ASCO Annual Meeting (abstr 8503). Jeffrey Alan Sosman, Anna C. Pavlick, Lynn Mara Schuchter, Karl D Lewis, Grant A. McArthur, Charles Lance Cowey, Stergios J Moschos, Keith T. Flaherty, Kevin B. Kim, Jeffrey Weber, Peter Hersey, Georgina V. Long, Donald P. Lawrence, Mark Kockx, Olivia Spleiss, Astrid Koehler, Gideon Bollag, Andrew K. Joe, Kerstin Trunzer, Antoni Ribas (2012). Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in BRAFV600E melanoma. 2012 ASCO Annual Meeting (abstr 8503).
24.
go back to reference Trunzer, K., Pavlick, A. C., Schuchter, L., Gonzalez, R., McArthur, G. A., Hutson, T. E., et al. (2013). Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology, 31(14), 1767–1774. doi:10.1200/JCO.2012.44.7888.PubMedCrossRef Trunzer, K., Pavlick, A. C., Schuchter, L., Gonzalez, R., McArthur, G. A., Hutson, T. E., et al. (2013). Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology, 31(14), 1767–1774. doi:10.​1200/​JCO.​2012.​44.​7888.PubMedCrossRef
25.
go back to reference Emery, C. M., Vijayendran, K. G., Zipser, M. C., Sawyer, A. M., Niu, L., Kim, J. J., et al. (2009). MEK1 mutations confer resistance to MEK and B-RAF inhibition. [comparative study research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20411–20416. doi:10.1073/pnas.0905833106.PubMedPubMedCentralCrossRef Emery, C. M., Vijayendran, K. G., Zipser, M. C., Sawyer, A. M., Niu, L., Kim, J. J., et al. (2009). MEK1 mutations confer resistance to MEK and B-RAF inhibition. [comparative study research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20411–20416. doi:10.​1073/​pnas.​0905833106.PubMedPubMedCentralCrossRef
26.
go back to reference Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi:10.1158/2159-8290.CD-13-0617.PubMedCrossRef Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi:10.​1158/​2159-8290.​CD-13-0617.PubMedCrossRef
29.
go back to reference Raaijmakers, M. I., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., et al. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163–77174. doi:10.18632/oncotarget.12848.PubMedPubMedCentral Raaijmakers, M. I., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., et al. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163–77174. doi:10.​18632/​oncotarget.​12848.PubMedPubMedCentral
30.
go back to reference Oberholzer, P. A., Kee, D., Dziunycz, P., Sucker, A., Kamsukom, N., Jones, R., et al. (2012). RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. Journal of Clinical Oncology, 30(3), 316–321. doi:10.1200/JCO.2011.36.7680.PubMedCrossRef Oberholzer, P. A., Kee, D., Dziunycz, P., Sucker, A., Kamsukom, N., Jones, R., et al. (2012). RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. Journal of Clinical Oncology, 30(3), 316–321. doi:10.​1200/​JCO.​2011.​36.​7680.PubMedCrossRef
31.
go back to reference Su, F., Viros, A., Milagre, C., Trunzer, K., Bollag, G., Spleiss, O., et al. (2012). RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. [clinical trial, phase I clinical trial, phase II clinical trial, phase III research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(3), 207–215. doi:10.1056/NEJMoa1105358.PubMedPubMedCentralCrossRef Su, F., Viros, A., Milagre, C., Trunzer, K., Bollag, G., Spleiss, O., et al. (2012). RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. [clinical trial, phase I clinical trial, phase II clinical trial, phase III research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(3), 207–215. doi:10.​1056/​NEJMoa1105358.PubMedPubMedCentralCrossRef
32.
go back to reference Lin, W. M., Baker, A. C., Beroukhim, R., Winckler, W., Feng, W., Marmion, J. M., et al. (2008). Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Research, 68(3), 664–673.PubMedCrossRef Lin, W. M., Baker, A. C., Beroukhim, R., Winckler, W., Feng, W., Marmion, J. M., et al. (2008). Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Research, 68(3), 664–673.PubMedCrossRef
34.
go back to reference Zipser, M. C., Eichhoff, O. M., Widmer, D. S., Schlegel, N. C., Schoenewolf, N. L., Stuart, D., et al. (2011). A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status. Pigment Cell & Melanoma Research, 24(2), 326–333. doi:10.1111/j.1755-148X.2010.00823.x.CrossRef Zipser, M. C., Eichhoff, O. M., Widmer, D. S., Schlegel, N. C., Schoenewolf, N. L., Stuart, D., et al. (2011). A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status. Pigment Cell & Melanoma Research, 24(2), 326–333. doi:10.​1111/​j.​1755-148X.​2010.​00823.​x.CrossRef
35.
36.
go back to reference Vergani, E., Vallacchi, V., Frigerio, S., Deho, P., Mondellini, P., Perego, P., et al. (2011). Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. [research support, non-U.S. Gov’t]. Neoplasia, 13(12), 1132–1142.PubMedPubMedCentralCrossRef Vergani, E., Vallacchi, V., Frigerio, S., Deho, P., Mondellini, P., Perego, P., et al. (2011). Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. [research support, non-U.S. Gov’t]. Neoplasia, 13(12), 1132–1142.PubMedPubMedCentralCrossRef
37.
go back to reference Montagut, C., Sharma, S. V., Shioda, T., McDermott, U., Ulman, M., Ulkus, L. E., et al. (2008). Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 68(12), 4853–4861. doi:10.1158/0008-5472.CAN-07-6787.PubMedPubMedCentralCrossRef Montagut, C., Sharma, S. V., Shioda, T., McDermott, U., Ulman, M., Ulkus, L. E., et al. (2008). Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 68(12), 4853–4861. doi:10.​1158/​0008-5472.​CAN-07-6787.PubMedPubMedCentralCrossRef
41.
go back to reference Girotti, M. R., Pedersen, M., Sanchez-Laorden, B., Viros, A., Turajlic, S., Niculescu-Duvaz, D., et al. (2013). Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discovery, 3(2), 158–167. doi:10.1158/2159-8290.CD-12-0386.PubMedCrossRef Girotti, M. R., Pedersen, M., Sanchez-Laorden, B., Viros, A., Turajlic, S., Niculescu-Duvaz, D., et al. (2013). Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discovery, 3(2), 158–167. doi:10.​1158/​2159-8290.​CD-12-0386.PubMedCrossRef
42.
go back to reference Sun, C., Wang, L., Huang, S., Heynen, G. J., Prahallad, A., Robert, C., et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi:10.1038/nature13121.PubMedCrossRef Sun, C., Wang, L., Huang, S., Heynen, G. J., Prahallad, A., Robert, C., et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi:10.​1038/​nature13121.PubMedCrossRef
43.
go back to reference Boussemart, L., Malka-Mahieu, H., Girault, I., Allard, D., Hemmingsson, O., Tomasic, G., et al. (2014). eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 513(7516), 105–109. doi:10.1038/nature13572.PubMedCrossRef Boussemart, L., Malka-Mahieu, H., Girault, I., Allard, D., Hemmingsson, O., Tomasic, G., et al. (2014). eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 513(7516), 105–109. doi:10.​1038/​nature13572.PubMedCrossRef
44.
46.
go back to reference Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825. doi:10.1016/j.ccr.2013.05.003.PubMedCrossRef Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825. doi:10.​1016/​j.​ccr.​2013.​05.​003.PubMedCrossRef
47.
go back to reference Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. The Journal of Investigative Dermatology, 133(6), 1601–1609. doi:10.1038/jid.2013.6.PubMedCrossRef Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. The Journal of Investigative Dermatology, 133(6), 1601–1609. doi:10.​1038/​jid.​2013.​6.PubMedCrossRef
48.
go back to reference Widmer, D. S., Hoek, K. S., Cheng, P. F., Eichhoff, O. M., Biedermann, T., Raaijmakers, M. I., et al. (2013). Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. The Journal of Investigative Dermatology, 133(10), 2436–2443. doi:10.1038/jid.2013.115.PubMedCrossRef Widmer, D. S., Hoek, K. S., Cheng, P. F., Eichhoff, O. M., Biedermann, T., Raaijmakers, M. I., et al. (2013). Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. The Journal of Investigative Dermatology, 133(10), 2436–2443. doi:10.​1038/​jid.​2013.​115.PubMedCrossRef
50.
go back to reference Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747. doi:10.1158/0008-5472.CAN-10-0902.PubMedPubMedCentralCrossRef Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747. doi:10.​1158/​0008-5472.​CAN-10-0902.PubMedPubMedCentralCrossRef
52.
go back to reference Abel, E. V., Basile, K. J., Kugel 3rd, C. H., Witkiewicz, A. K., Le, K., Amaravadi, R. K., et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. The Journal of Clinical Investigation, 123(5), 2155–2168. doi:10.1172/JCI65780.PubMedPubMedCentralCrossRef Abel, E. V., Basile, K. J., Kugel 3rd, C. H., Witkiewicz, A. K., Le, K., Amaravadi, R. K., et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. The Journal of Clinical Investigation, 123(5), 2155–2168. doi:10.​1172/​JCI65780.PubMedPubMedCentralCrossRef
54.
go back to reference Frederick, D. T., Salas Fragomeni, R. A., Schalck, A., Ferreiro-Neira, I., Hoff, T., Cooper, Z. A., et al. (2014). Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 Mimetics. PloS One, 9(7), e101286. doi:10.1371/journal.pone.0101286.PubMedPubMedCentralCrossRef Frederick, D. T., Salas Fragomeni, R. A., Schalck, A., Ferreiro-Neira, I., Hoff, T., Cooper, Z. A., et al. (2014). Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 Mimetics. PloS One, 9(7), e101286. doi:10.​1371/​journal.​pone.​0101286.PubMedPubMedCentralCrossRef
55.
go back to reference Haq, R., Yokoyama, S., Hawryluk, E. B., Jonsson, G. B., Frederick, D. T., McHenry, K., et al. (2013). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4321–4326. doi:10.1073/pnas.1205575110.PubMedPubMedCentralCrossRef Haq, R., Yokoyama, S., Hawryluk, E. B., Jonsson, G. B., Frederick, D. T., McHenry, K., et al. (2013). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4321–4326. doi:10.​1073/​pnas.​1205575110.PubMedPubMedCentralCrossRef
59.
go back to reference Martin, S., Dudek-Peric, A. M., Maes, H., Garg, A. D., Gabrysiak, M., Demirsoy, S., et al. (2015). Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochemical Pharmacology, 93(3), 290–304. doi:10.1016/j.bcp.2014.12.003.PubMedCrossRef Martin, S., Dudek-Peric, A. M., Maes, H., Garg, A. D., Gabrysiak, M., Demirsoy, S., et al. (2015). Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochemical Pharmacology, 93(3), 290–304. doi:10.​1016/​j.​bcp.​2014.​12.​003.PubMedCrossRef
62.
go back to reference Zhang, T., Dutton-Regester, K., Brown, K. M., & Hayward, N. K. (2016). The genomic landscape of cutaneous melanoma. Pigment Cell & Melanoma Research, 29(3), 266–283. doi:10.1111/pcmr.12459.CrossRef Zhang, T., Dutton-Regester, K., Brown, K. M., & Hayward, N. K. (2016). The genomic landscape of cutaneous melanoma. Pigment Cell & Melanoma Research, 29(3), 266–283. doi:10.​1111/​pcmr.​12459.CrossRef
63.
go back to reference Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.1038/nature08658.PubMedCrossRef Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.​1038/​nature08658.PubMedCrossRef
68.
71.
go back to reference Sanborn, J. Z., Chung, J., Purdom, E., Wang, N. J., Kakavand, H., Wilmott, J. S., et al. (2015). Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 10995–11000. doi:10.1073/pnas.1508074112.PubMedPubMedCentralCrossRef Sanborn, J. Z., Chung, J., Purdom, E., Wang, N. J., Kakavand, H., Wilmott, J. S., et al. (2015). Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 10995–11000. doi:10.​1073/​pnas.​1508074112.PubMedPubMedCentralCrossRef
72.
go back to reference Harbst, K., Lauss, M., Cirenajwis, H., Isaksson, K., Rosengren, F., Törngren, T., et al. (2016). Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Research, 76(16), 4765–4774. doi:10.1158/0008-5472.CAN-15-3476.PubMedCrossRef Harbst, K., Lauss, M., Cirenajwis, H., Isaksson, K., Rosengren, F., Törngren, T., et al. (2016). Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Research, 76(16), 4765–4774. doi:10.​1158/​0008-5472.​CAN-15-3476.PubMedCrossRef
75.
go back to reference Krauthammer, M., Kong, Y., Bacchiocchi, A., Evans, P., Pornputtapong, N., Wu, C., et al. (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nature Genetics, 47(9), 996–1002. doi:10.1038/ng.3361.PubMedPubMedCentralCrossRef Krauthammer, M., Kong, Y., Bacchiocchi, A., Evans, P., Pornputtapong, N., Wu, C., et al. (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nature Genetics, 47(9), 996–1002. doi:10.​1038/​ng.​3361.PubMedPubMedCentralCrossRef
77.
go back to reference Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., et al. (2015). The genetic evolution of melanoma from precursor lesions. The New England Journal of Medicine, 373(20), 1926–1936. doi:10.1056/NEJMoa1502583.PubMedCrossRef Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., et al. (2015). The genetic evolution of melanoma from precursor lesions. The New England Journal of Medicine, 373(20), 1926–1936. doi:10.​1056/​NEJMoa1502583.PubMedCrossRef
79.
go back to reference Widmer, D. S., Cheng, P. F., Eichhoff, O. M., Belloni, B. C., Zipser, M. C., Schlegel, N. C., et al. (2012). Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell & Melanoma Research, 25(3), 343–353. doi:10.1111/j.1755-148X.2012.00986.x.CrossRef Widmer, D. S., Cheng, P. F., Eichhoff, O. M., Belloni, B. C., Zipser, M. C., Schlegel, N. C., et al. (2012). Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell & Melanoma Research, 25(3), 343–353. doi:10.​1111/​j.​1755-148X.​2012.​00986.​x.CrossRef
80.
go back to reference Hoek, K. S., Eichhoff, O. M., Schlegel, N. C., Dobbeling, U., Kobert, N., Schaerer, L., et al. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Research, 68(3), 650–656.PubMedCrossRef Hoek, K. S., Eichhoff, O. M., Schlegel, N. C., Dobbeling, U., Kobert, N., Schaerer, L., et al. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Research, 68(3), 650–656.PubMedCrossRef
81.
go back to reference Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., et al. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. doi:10.1038/ncomms7683.PubMedPubMedCentralCrossRef Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., et al. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. doi:10.​1038/​ncomms7683.PubMedPubMedCentralCrossRef
83.
go back to reference Cheng, P., Shahkova, O., Widmer, D., Eichhoff, O., Zingg, D., Frommel, S., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16(1), 42.PubMedPubMedCentralCrossRef Cheng, P., Shahkova, O., Widmer, D., Eichhoff, O., Zingg, D., Frommel, S., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16(1), 42.PubMedPubMedCentralCrossRef
84.
go back to reference Cheng, P. F., Shakhova, O., Widmer, D. S., Eichhoff, O. M., Zingg, D., Frommel, S. C., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16, 42. doi:10.1186/s13059-015-0594-4.PubMedPubMedCentralCrossRef Cheng, P. F., Shakhova, O., Widmer, D. S., Eichhoff, O. M., Zingg, D., Frommel, S. C., et al. (2015). Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 16, 42. doi:10.​1186/​s13059-015-0594-4.PubMedPubMedCentralCrossRef
87.
88.
go back to reference Chiappetta, C., Proietti, I., Soccodato, V., Puggioni, C., Zaralli, R., Pacini, L., et al. (2015). BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry & Molecular Morphology, 23(3), 172–177. doi:10.1097/PAI.0000000000000071. Chiappetta, C., Proietti, I., Soccodato, V., Puggioni, C., Zaralli, R., Pacini, L., et al. (2015). BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry & Molecular Morphology, 23(3), 172–177. doi:10.​1097/​PAI.​0000000000000071​.
92.
go back to reference Dummer, R., Hauschild, A., Lindenblatt, N., Pentheroudakis, G., & Keilholz, U. (2015). Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 26(Suppl 5), v126–v132. doi:10.1093/annonc/mdv297.PubMedCrossRef Dummer, R., Hauschild, A., Lindenblatt, N., Pentheroudakis, G., & Keilholz, U. (2015). Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 26(Suppl 5), v126–v132. doi:10.​1093/​annonc/​mdv297.PubMedCrossRef
97.
98.
go back to reference Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998.PubMedCrossRef Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998.PubMedCrossRef
99.
go back to reference Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine. doi:10.1056/NEJMoa1604958.PubMedPubMedCentral Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine. doi:10.​1056/​NEJMoa1604958.PubMedPubMedCentral
100.
go back to reference Raaijmakers, M. I., Widmer, D. S., Maudrich, M., Koch, T., Langer, A., Flace, A., et al. (2015). A new live-cell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. Experimental Dermatology, 24(5), 377–380. doi:10.1111/exd.12683.PubMedCrossRef Raaijmakers, M. I., Widmer, D. S., Maudrich, M., Koch, T., Langer, A., Flace, A., et al. (2015). A new live-cell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. Experimental Dermatology, 24(5), 377–380. doi:10.​1111/​exd.​12683.PubMedCrossRef
101.
go back to reference Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130), 851–857.PubMedCrossRef Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130), 851–857.PubMedCrossRef
103.
104.
go back to reference Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.1054/bjoc.2001.1796.PubMedPubMedCentralCrossRef Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.​1054/​bjoc.​2001.​1796.PubMedPubMedCentralCrossRef
107.
go back to reference Ghosh, S., Spagnoli, G. C., Martin, I., Ploegert, S., Demougin, P., Heberer, M., et al. (2005). Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. Journal of Cellular Physiology, 204(2), 522–531. doi:10.1002/jcp.20320.PubMedCrossRef Ghosh, S., Spagnoli, G. C., Martin, I., Ploegert, S., Demougin, P., Heberer, M., et al. (2005). Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. Journal of Cellular Physiology, 204(2), 522–531. doi:10.​1002/​jcp.​20320.PubMedCrossRef
108.
go back to reference Cody, N. A., Zietarska, M., Filali-Mouhim, A., Provencher, D. M., Mes-Masson, A. M., & Tonin, P. N. (2008). Influence of monolayer, spheroid, and tumor growth conditions on chromosome 3 gene expression in tumorigenic epithelial ovarian cancer cell lines. BMC Medical Genomics, 1, 34. doi:10.1186/1755-8794-1-34.PubMedPubMedCentralCrossRef Cody, N. A., Zietarska, M., Filali-Mouhim, A., Provencher, D. M., Mes-Masson, A. M., & Tonin, P. N. (2008). Influence of monolayer, spheroid, and tumor growth conditions on chromosome 3 gene expression in tumorigenic epithelial ovarian cancer cell lines. BMC Medical Genomics, 1, 34. doi:10.​1186/​1755-8794-1-34.PubMedPubMedCentralCrossRef
109.
go back to reference Thurber, A. E., Douglas, G., Sturm, E. C., Zabierowski, S. E., Smit, D. J., Ramakrishnan, S. N., et al. (2011). Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene, 30(27), 3036–3048. doi:10.1038/onc.2011.33.PubMedPubMedCentralCrossRef Thurber, A. E., Douglas, G., Sturm, E. C., Zabierowski, S. E., Smit, D. J., Ramakrishnan, S. N., et al. (2011). Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene, 30(27), 3036–3048. doi:10.​1038/​onc.​2011.​33.PubMedPubMedCentralCrossRef
113.
go back to reference Saltari, A., Truzzi, F., Quadri, M., Lotti, R., Palazzo, E., Grisendi, G., et al. (2016). CD271 down-regulation promotes melanoma progression and invasion in three-dimensional models and in zebrafish. The Journal of Investigative Dermatology. doi:10.1016/j.jid.2016.05.116.PubMed Saltari, A., Truzzi, F., Quadri, M., Lotti, R., Palazzo, E., Grisendi, G., et al. (2016). CD271 down-regulation promotes melanoma progression and invasion in three-dimensional models and in zebrafish. The Journal of Investigative Dermatology. doi:10.​1016/​j.​jid.​2016.​05.​116.PubMed
114.
115.
go back to reference Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., et al. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10, 29. doi:10.1186/1741-7007-10-29.PubMedPubMedCentralCrossRef Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., et al. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10, 29. doi:10.​1186/​1741-7007-10-29.PubMedPubMedCentralCrossRef
118.
go back to reference Kim, K. U., Wilson, S. M., Abayasiriwardana, K. S., Collins, R., Fjellbirkeland, L., Xu, Z., et al. (2005). A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. American Journal of Respiratory Cell and Molecular Biology, 33(6), 541–548. doi:10.1165/rcmb.2004-0355OC.PubMedPubMedCentralCrossRef Kim, K. U., Wilson, S. M., Abayasiriwardana, K. S., Collins, R., Fjellbirkeland, L., Xu, Z., et al. (2005). A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. American Journal of Respiratory Cell and Molecular Biology, 33(6), 541–548. doi:10.​1165/​rcmb.​2004-0355OC.PubMedPubMedCentralCrossRef
119.
go back to reference De Wever, O., Hendrix, A., De Boeck, A., Westbroek, W., Braems, G., Emami, S., et al. (2010). Modeling and quantification of cancer cell invasion through collagen type I matrices. The International Journal of Developmental Biology, 54(5), 887–896. doi:10.1387/ijdb.092948ow.PubMedCrossRef De Wever, O., Hendrix, A., De Boeck, A., Westbroek, W., Braems, G., Emami, S., et al. (2010). Modeling and quantification of cancer cell invasion through collagen type I matrices. The International Journal of Developmental Biology, 54(5), 887–896. doi:10.​1387/​ijdb.​092948ow.PubMedCrossRef
121.
go back to reference Berking, C., & Herlyn, M. (2001). Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histology and Histopathology, 16(2), 669–674.PubMed Berking, C., & Herlyn, M. (2001). Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histology and Histopathology, 16(2), 669–674.PubMed
122.
go back to reference Lee, J. T., Li, L., Brafford, P. A., van den Eijnden, M., Halloran, M. B., Sproesser, K., et al. (2010). PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell & Melanoma Research, 23(6), 820–827. doi:10.1111/j.1755-148X.2010.00763.x.CrossRef Lee, J. T., Li, L., Brafford, P. A., van den Eijnden, M., Halloran, M. B., Sproesser, K., et al. (2010). PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell & Melanoma Research, 23(6), 820–827. doi:10.​1111/​j.​1755-148X.​2010.​00763.​x.CrossRef
123.
go back to reference Enriquez-Navas, P. M., Kam, Y., Das, T., Hassan, S., Silva, A., Foroutan, P., et al. (2016). Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Science Translational Medicine, 8(327), 327ra324. doi:10.1126/scitranslmed.aad7842.CrossRef Enriquez-Navas, P. M., Kam, Y., Das, T., Hassan, S., Silva, A., Foroutan, P., et al. (2016). Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Science Translational Medicine, 8(327), 327ra324. doi:10.​1126/​scitranslmed.​aad7842.CrossRef
124.
go back to reference Das Thakur, M., Salangsang, F., Landman, A. S., Sellers, W. R., Pryer, N. K., Levesque, M. P., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255. doi:10.1038/nature11814.PubMedCrossRef Das Thakur, M., Salangsang, F., Landman, A. S., Sellers, W. R., Pryer, N. K., Levesque, M. P., et al. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 494(7436), 251–255. doi:10.​1038/​nature11814.PubMedCrossRef
125.
go back to reference Li, F. Z., Dhillon, A. S., Anderson, R. L., McArthur, G., & Ferrao, P. T. (2015). Phenotype switching in melanoma: implications for progression and therapy. Frontiers in Oncology, 5(31). doi:10.3389/fonc.2015.00031 Li, F. Z., Dhillon, A. S., Anderson, R. L., McArthur, G., & Ferrao, P. T. (2015). Phenotype switching in melanoma: implications for progression and therapy. Frontiers in Oncology, 5(31). doi:10.​3389/​fonc.​2015.​00031
Metadata
Title
Metastatic melanoma moves on: translational science in the era of personalized medicine
Authors
Mitchell P. Levesque
Phil F. Cheng
Marieke I.G. Raaijmakers
Annalisa Saltari
Reinhard Dummer
Publication date
01-03-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9658-0

Other articles of this Issue 1/2017

Cancer and Metastasis Reviews 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine