We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Melanoma immunotherapy: historical precedents, recent successes and future prospects

    Marieke IG Raaijmakers

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland

    ,
    Sima Rozati

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland

    ,
    Simone M Goldinger

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland

    ,
    Daniel S Widmer

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland

    ,
    Reinhard Dummer

    * Author for correspondence

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland. .

    &
    Mitchell P Levesque

    Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland

    Published Online:https://doi.org/10.2217/imt.12.162

    The idea of cancer immunotherapy has been around for more than a century; however, the first immunotherapeutic ipilimumab, an anti-CTLA-4 antibody, has only recently been approved by the US FDA for melanoma. With an increasing understanding of the immune response, it is expected that more therapies will follow. This review aims to provide a general overview of immunotherapy in melanoma. We first explain the development of cancer immunotherapy more than a century ago and the general opinions about it over time. This is followed by a general overview of the immune reaction in order to give insight into the possible targets for therapy. Finally, we will discuss the current therapies for melanoma, their shortcomings and why it is important to develop patient stratification criteria. We conclude with an overview of recent discoveries and possible future therapies.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. (105), 273–290 (1893).
    • Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature480(7378),480–489 (2011).
    • Park J, Wrzesinski SH, Stern E et al. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater.11(10),895–905 (2012).
    • Woglom WH. Immunity to transplantable tumours. Cancer Res.4,129–138 (1929).
    • Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature172(4379),603–606 (1953).
    • Baldwin RW. Immunity to methylcholanthrene-induced tumours in inbred rats following atrophy and regression of the implanted tumours. Br. J. Cancer9(4),652–657 (1955).
    • Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res.13(12),835–837 (1953).
    • Klein G, Sjogren HO, Klein E, Hellstrom KE. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res.20,1561–1572 (1960).
    • Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J. Natl Cancer Inst.18(6),769–778 (1957).
    • 10  Burnet FM. Immunological aspects of malignant disease. Lancet1(7501),1171–1174 (1967).
    • 11  Ehrlich P. [About the current state of cancer research]. Ned. Tijdschr. Geneeskd.5,273–290 (1909).
    • 12  Arnold B, Schonrich G, Hammerling GJ. Multiple levels of peripheral tolerance. Immunol. Today14(1),12–14 (1993).
    • 13  Fowlkes BJ, Ramsdell F. T-cell tolerance. Curr. Opin Immunol.5(6),873–879 (1993).
    • 14  Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12,991–1045 (1994).
    • 15  Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol.12,337–365 (1994).
    • 16  Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med.183(3),725–729 (1996).
    • 17  Melief CJ, Toes RE, Medema JP, Van Der Burg SH, Ossendorp F, Offringa R. Strategies for immunotherapy of cancer. Adv. Immunol.75,235–282 (2000).
    • 18  Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity10(3),281–287 (1999).
    • 19  Urban JL, Schreiber H. Tumor antigens. Annu. Rev. Immunol.10,617–644 (1992).
    • 20  Fenton RG, Longo DL. Genetic instability and tumor cell variation: implications for immunotherapy. J. Natl Cancer Inst.87(4),241–243 (1995).
    • 21  Stoler DL, Chen N, Basik M et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA96(26),15121–15126 (1999).
    • 22  Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J. Exp. Med.183(1),283–287 (1996).
    • 23  Flamand V, Sornasse T, Thielemans K et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur. J. Immunol.24(3),605–610 (1994).
    • 24  Mayordomo JI, Zorina T, Storkus WJ et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med.1(12),1297–1302 (1995).
    • 25  Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3),328–332 (1998).
    • 26  Shankaran V, Ikeda H, Bruce AT et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410(6832),1107–1111 (2001).
    • 27  Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol.2(4),293–299 (2001).
    • 28  Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol.81(2),106–113 (2003).
    • 29  Lee PP, Yee C, Savage PA et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med.5(6),677–685 (1999).
    • 30  Zeiser R, Schnitzler M, Andrlova H, Hellige T, Meiss F. Immunotherapy for malignant melanoma. Curr. Stem Cell Res. Ther.7(3),217–228 (2012).
    • 31  Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol.24,175–208 (2006).
    • 32  Carlson BM. Human Embryology and Developmental Biology (3rd Edition). Elsevier Mosby, MO, USA (2004).
    • 33  Odunsi K, Matsuzaki J, Karbach J et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc. Natl Acad. Sci. USA109(15),5797–5802 (2012).
    • 34  Slingluff CL Jr, Petroni GR, Olson W et al. Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. J. Clin. Oncol.26(30),4973–4980 (2008).
    • 35  Tjin EP, Konijnenberg D, Krebbers G et al. T-cell immune function in tumor, skin, and peripheral blood of advanced stage melanoma patients: implications for immunotherapy. Clin. Cancer Res.17(17),5736–5747 (2011).
    • 36  Darrasse-Jeze G, Deroubaix S, Mouquet H et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med.206(9),1853–1862 (2009).
    • 37  Jiang A, Bloom O, Ono S et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity27(4),610–624 (2007).
    • 38  Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21,685–711 (2003).
    • 39  Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med.191(3),411–416 (2000).
    • 40  Gray JC, Johnson PW, Glennie MJ. Therapeutic potential of immunostimulatory monoclonal antibodies. Clin. Sci. (Lond.)111(2),93–106 (2006).
    • 41  Suntharalingam G, Perry MR, Ward S et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med.355(10),1018–1028 (2006).
    • 42  Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74,181–273 (2000).
    • 43  Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J. Clin. Oncol.29(36),4828–4836 (2011).
    • 44  Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99(19),12293–12297 (2002).
    • 45  Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J Med.366(10),883–892 (2012).
    • 46  Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev.188,22–32 (2002).
    • 47  Chen YT, Stockert E, Jungbluth A et al. Serological analysis of Melan-A(MART-1), a melanocyte-specific protein homogeneously expressed in human melanomas. Proc. Natl Acad. Sci. USA93(12),5915–5919 (1996).
    • 48  Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366(26),2455–2465 (2012).
    • 49  Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366(26),2443–2454 (2012).
    • 50  Rosenberg SA, Eberlein TJ, Grimm EA, Lotze MT, Mazumder A, Rosenstein M. Development of long-term cell lines and lymphoid clones reactive against murine and human tumors: a new approach to the adoptive immunotherapy of cancer. Surgery92(2),328–336 (1982).
    • 51  Rosenberg SA, Yang JC, Topalian SL et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA271(12),907–913 (1994).
    • 52  Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7),2105–2116 (1999).▪ Systematic review of the literature on IL-2. Despite the modest complete remission rate in the largest clinical trials, the long duration of complete remission suggests a small subpopulation might benefit from IL-2.
    • 53  Petrella T, Quirt I, Verma S et al. Single-agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat. Rev.33(5),484–496 (2007).
    • 54  Mcdermott DF, Atkins MB. More support for the judicious use of high-dose interleukin-2 in patients with advanced melanoma. J. Clin. Oncol.25(25),3791–3793 (2007).
    • 55  Keilholz U, Goey SH, Punt CJ et al. Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J. Clin. Oncol.15(7),2579–2588 (1997).
    • 56  Keilholz U, Conradt C, Legha SS et al. Results of interleukin-2-based treatment in advanced melanoma: a case record-based analysis of 631 patients. J. Clin. Oncol.16(9),2921–2929 (1998).
    • 57  Ridolfi R, Chiarion-Sileni V, Guida M et al. Cisplatin, dacarbazine with or without subcutaneous interleukin-2, and interferon alpha-2b in advanced melanoma outpatients: results from an Italian multicenter Phase III randomized clinical trial. J. Clin. Oncol.20(6),1600–1607 (2002).
    • 58  Keilholz U, Punt CJ, Gore M et al. Dacarbazine, cisplatin, and interferon-alfa-2b with or without interleukin-2 in metastatic melanoma: a randomized Phase III trial (18951) of the European Organisation for Research and Treatment of Cancer Melanoma Group. J. Clin. Oncol.23(27),6747–6755 (2005).
    • 59  Tarhini AA, Kirkwood JM, Gooding WE, Moschos S, Agarwala SS. A Phase 2 trial of sequential temozolomide chemotherapy followed by high-dose interleukin 2 immunotherapy for metastatic melanoma. Cancer113(7),1632–1640 (2008).
    • 60  Sabatino M, Kim-Schulze S, Panelli MC et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J. Clin. Oncol.27(16),2645–2652 (2009).
    • 61  Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol Sci.147(927),258–267 (1957).
    • 62  Dummer R, Mangana J. Long-term pegylated interferon-alpha and its potential in the treatment of melanoma. Biologics3,169–182 (2009).
    • 63  Sen GC. Viruses and interferons. Annu. Rev. Microbiol.55,255–281 (2001).
    • 64  Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14(1),7–17 (1996).
    • 65  Eggermont AM, Suciu S, Mackie R et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet366(9492),1189–1196 (2005).
    • 66  Eggermont AM, Suciu S, Santinami M et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised Phase III trial. Lancet372(9633),117–126 (2008).
    • 67  Kirkwood JM. Adjuvant interferon in the treatment of melanoma. Br. J. Cancer82(10),1755–1756 (2000).
    • 68  Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J. Natl Cancer Inst.102(7),493–501 (2010).
    • 69  Garbe C, Radny P, Linse R et al. Adjuvant low-dose interferon {alpha}2a with or without dacarbazine compared with surgery alone: a prospective-randomized Phase III DeCOG trial in melanoma patients with regional lymph node metastasis. Ann. Oncol.19(6),1195–1201 (2008).
    • 70  Pehamberger H, Soyer HP, Steiner A et al. Adjuvant interferon alfa-2a treatment in resected primary stage II cutaneous melanoma. Austrian Malignant Melanoma Cooperative Group. J. Clin. Oncol.16(4),1425–1429 (1998).
    • 71  Ascierto PA, Palmieri G, Parasole R, Daponte A, Castello G. 3-year treatment with recombinant interferon-alpha as adjuvant therapy of cutaneous malignant melanoma. Int. J. Mol. Med.3(3),303–306 (1999).
    • 72  Rozati S, Naef L, Levesque MP, French LE, Dummer R. Real-life experience with pegylated interferon and conventional interferon in adjuvant melanoma therapy. J. Immunother.36(1),52–56 (2013).
    • 73  Eggermont AM, Suciu S, Testori A et al. Long-term results of the randomized Phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J. Clin. Oncol.30(31),3810 (2012).▪ Largest randomized clinical trial on interferon adjuvant therapy that showed survival benefit in patients with sentinel node involvement and ulceration.
    • 74  Hodi FS, O’Day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8),711–723 (2010).
    • 75  Shahabi V, Whitney G, Hamid O et al. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol. Immunother.61(5),733–737 (2012).
    • 76  Eggermont AM, Robert C. Melanoma in 2011: a new paradigm tumor for drug development. Nat. Rev. Clin. Oncol.9(2),74–76 (2012).
    • 77  Margolin K, Ernstoff MS, Hamid O et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, Phase 2 trial. Lancet Oncol.13(5),459–465 (2012).
    • 78  Tarhini AA, Kirkwood JM. CTLA-4-blocking immunotherapy with ipilimumab for advanced melanoma. Oncology (Williston Park)24(14),1302, 1304 (2010).
    • 79  Gogas H, Ioannovich J, Dafni U et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med.354(7),709–718 (2006).
    • 80  Wolchok JD, Hoos A, O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res.15(23),7412–7420 (2009).
    • 81  Ribas A, Chmielowski B, Glaspy JA. Do we need a different set of response assessment criteria for tumor immunotherapy? Clin. Cancer Res.15(23),7116–7118 (2009).
    • 82  Gajewski TF, Hodi FS. Targeted Therapeutics in Melanoma. Humana, NY, USA (2012).
    • 83  Balch CM, Gershenwald JE, Soong SJ et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol.27(36),6199–6206 (2009).
    • 84  Berd D, Maguire HC, Jr, Mccue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J. Clin. Oncol.8(11),1858–1867 (1990).
    • 85  Hsueh EC, Essner R, Foshag LJ et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J. Clin. Oncol.20(23),4549–4554 (2002).
    • 86  Dalgleish AG. Therapeutic cancer vaccines: why so few randomised Phase III studies reflect the initial optimism of Phase II studies. Vaccine29(47),8501–8505 (2011).
    • 87  Morton DL, Mozillo N, Thompson JF et al. An international, randomized, Phase III trial of bacillus Calmette–Guerin (BCG) plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites. J. Clin. Oncol.25(18S),8508 (2007).
    • 88  Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev. Vaccines2(3),353–368 (2003).
    • 89  Klein O, Schmidt C, Knights A, Davis ID, Chen W, Cebon J. Melanoma vaccines: developments over the past 10 years. Expert Rev. Vaccines10(6),853–873 (2011).
    • 90  Pardoll DM, Beckerleg AM. Exposing the immunology of naked DNA vaccines. Immunity3(2),165–169 (1995).
    • 91  Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez R. A Phase 2 study of high-dose allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res.20(3),218–226 (2010).
    • 92  Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am.6(Suppl. 1),S11–S14 (2000).
    • 93  Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3),739–746 (2005).
    • 94  Tacken PJ, Zeelenberg IS, Cruz LJ et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood118(26),6836–6844 (2011).
    • 95  Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38(5),1404–1413 (2008).
    • 96  Goldinger SM, Dummer R, Baumgaertner P et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8(+) T-cell responses in melanoma patients. Eur. J. Immunol.42(11),3049–3061 (2012).
    • 97  Besser MJ, Shapira-Frommer R, Treves AJ et al. Clinical responses in a Phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res.16(9),2646–2655 (2010).
    • 98  Drake CG. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol.10(8),580–593 (2010).
    • 99  Yang JC, Rosenberg SA. Current approaches to the adoptive immunotherapy of cancer. Adv. Exp. Med. Biol.233,459–467 (1988).
    • 100  Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA90(2),720–724 (1993).
    • 101  Lake RA, Robinson BW. Immunotherapy and chemotherapy – a practical partnership. Nat. Rev. Cancer5(5),397–405 (2005).
    • 102  Wallen H, Thompson JA, Reilly JZ, Rodmyre RM, Cao J, Yee C. Fludarabine modulates immune response and extends in vivo survival of adoptively transferred CD8 T cells in patients with metastatic melanoma. PLoS ONE4(3),e4749 (2009).
    • 103  Junker N, Kvistborg P, Kollgaard T, Straten P, Andersen MH, Svane IM. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell. Immunol.273(1),1–9 (2012).
    • 104  Dudley ME. Adoptive cell therapy for patients with melanoma. J. Cancer2,360–362 (2011).
    • 105  Rosenberg SA, Yang JC, Sherry RM et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res.17(13),4550–4557 (2011).
    • 106  Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol. Immunother.57(11),1719–1726 (2008).
    • 107  Kalos M, Levine BL, Porter DL et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl Med.3(95),95ra73 (2011).
    • 108  Savoldo B, Ramos CA, Liu E et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest.121(5),1822–1826 (2011).
    • 109  Johnson LA, Morgan RA, Dudley ME et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood114(3),535–546 (2009).
    • 110  Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med.8(8),793–800 (2002).
    • 111  Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer12(4),252–264 (2012).
    • 112  Pierard GE, Aubin F, Humbert P. Ipilimumab, a promising immunotherapy with increased overall survival in metastatic melanoma? Dermatol. Res. Pract.2012,182157 (2012).
    • 113  Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8),781–791 (2008).
    • 114  Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int. J. Cancer126(4),909–918 (2010).
    • 115  Sierro SR, Donda A, Perret R et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur. J. Immunol.41(8),2217–2228 (2011).
    • 116  Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Totterman TH. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J. Immunother.33(3),225–235 (2010).
    • 117  Li B, Vanroey M, Wang C, Chen TH, Korman A, Jooss K. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor – secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin. Cancer Res.15(5),1623–1634 (2009).
    • 118  Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res.83,117–158 (2001).
    • 119  Garrido F, Ruiz-Cabello F, Cabrera T et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today18(2),89–95 (1997).
    • 120  Carretero R, Wang E, Rodriguez AI et al. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int. J. Cancer131(2),387–395 (2012).
    • 121  Scheibenbogen C, Keilholz U, Mytilineos J, Suciu S, Manasterski M, Hunstein W. HLA class I alleles and responsiveness of melanoma to immunotherapy with interferon-alpha (IFN-alpha) and interleukin-2 (IL-2). Melanoma Res.4(3),191–194 (1994).
    • 122  Phan GQ, Attia P, Steinberg SM, White DE, Rosenberg SA. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J. Clin. Oncol.19(15),3477–3482 (2001).
    • 123  Fotin-Mleczek M, Duchardt KM, Lorenz C et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother.34(1),1–15 (2011).
    • 124  Scheel B, Braedel S, Probst J et al. Immunostimulating capacities of stabilized RNA molecules. Eur. J. Immunol.34(2),537–547 (2004).
    • 125  Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796),126–129 (2006).
    • 126  Robbins PF, Morgan RA, Feldman SA et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol.29(7),917–924 (2011).
    • 127  Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207(10),2187–2194 (2010).
    • 128  Woo SR, Turnis ME, Goldberg MV et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res.72(4),917–927 (2012).
    • 201  Phase II safety study of vemurafenib Followed by ipilimumab in subjects with V600 BRAF mutated advanced melanoma.http://clinicaltrials.gov/show/NCT01673854
    • 202  Phase II randomized trial of ipilimumab versus ipilimumab and radiotherapy in metastatic melanoma.http://www.clinicaltrials.gov/ct2/show/NCT01689974
    • 203  Phase 3 trial in subjects with metastatic melanoma xomparing 3 mg/kg ipilimumab versus 10 mg/kg ipilimumab.http://clinicaltrials.gov/show/NCT01515189
    • 204  T-cell defined tumor antigens.http://cancerimmunity.org/peptide/
    • 205  A Phase 3 pivotal trial comparing Allovectin-7® alone vs chemotherapy alone in patients with stage 3 or stage 4 melanoma.http://clinicaltrials.gov/show/NCT00395070
    • 206  BMS-936558 (MDX-1106) in subjects with advanced/metastatic clear-cell renal cell carcinoma (RCC).http://clinicaltrials.gov /show/NCT01354431
    • 207  Phase I biomarker study (BMS-936558).http://clinicaltrials.gov /show/NCT01358721
    • 208  Ph I/II ipilimumab vemurafenib combo.http://clinicaltrials.gov /show/NCT01400451