Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2016

01-12-2016

One microenvironment does not fit all: heterogeneity beyond cancer cells

Authors: Ik Sun Kim, Xiang H.-F. Zhang

Published in: Cancer and Metastasis Reviews | Issue 4/2016

Login to get access

Abstract

Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Literature
2.
go back to reference McAllister, S. S., & Weinberg, R. A. (2014). The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 16(8), 717–727. doi:10.1038/ncb3015.PubMedCrossRef McAllister, S. S., & Weinberg, R. A. (2014). The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 16(8), 717–727. doi:10.​1038/​ncb3015.PubMedCrossRef
8.
go back to reference Casey, T., Bond, J., Tighe, S., Hunter, T., Lintault, L., Patel, O., et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment, 114(1), 47–62. doi:10.1007/s10549-008-9982-8.PubMedCrossRef Casey, T., Bond, J., Tighe, S., Hunter, T., Lintault, L., Patel, O., et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment, 114(1), 47–62. doi:10.​1007/​s10549-008-9982-8.PubMedCrossRef
11.
16.
18.
go back to reference Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352. doi:10.1038/nature10983.PubMedPubMedCentral Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352. doi:10.​1038/​nature10983.PubMedPubMedCentral
19.
go back to reference Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874. doi:10.1073/pnas.191367098.PubMedPubMedCentralCrossRef Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874. doi:10.​1073/​pnas.​191367098.PubMedPubMedCentralCrossRef
20.
go back to reference Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423. doi:10.1073/pnas.0932692100.PubMedPubMedCentralCrossRef Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423. doi:10.​1073/​pnas.​0932692100.PubMedPubMedCentralCrossRef
21.
go back to reference van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25), 1999–2009. doi:10.1056/NEJMoa021967.PubMedCrossRef van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25), 1999–2009. doi:10.​1056/​NEJMoa021967.PubMedCrossRef
22.
go back to reference van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536. doi:10.1038/415530a.PubMedCrossRef van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536. doi:10.​1038/​415530a.PubMedCrossRef
25.
go back to reference Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.PubMedCrossRef Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.PubMedCrossRef
27.
31.
32.
go back to reference Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. doi:10.1056/NEJMoa1200690.PubMedPubMedCentralCrossRef Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. doi:10.​1056/​NEJMoa1200690.PubMedPubMedCentralCrossRef
36.
47.
go back to reference Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265. doi:10.1002/path.1027.PubMedCrossRef Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265. doi:10.​1002/​path.​1027.PubMedCrossRef
49.
go back to reference Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11(1), 91–100. doi:10.1586/erm.10.97.PubMedCrossRef Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11(1), 91–100. doi:10.​1586/​erm.​10.​97.PubMedCrossRef
56.
go back to reference Kerr, K. M., Johnson, S. K., King, G., Kennedy, M. M., Weir, J., & Jeffrey, R. (1998). Partial regression in primary carcinoma of the lung: does it occur? Histopathology, 33(1), 55–63.PubMed Kerr, K. M., Johnson, S. K., King, G., Kennedy, M. M., Weir, J., & Jeffrey, R. (1998). Partial regression in primary carcinoma of the lung: does it occur? Histopathology, 33(1), 55–63.PubMed
57.
go back to reference Kim, D. W., Min, H. S., Lee, K. H., Kim, Y. J., Oh, D. Y., Jeon, Y. K., et al. (2008). High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. British Journal of Cancer, 98(6), 1118–1124. doi:10.1038/sj.bjc.6604256.PubMedPubMedCentralCrossRef Kim, D. W., Min, H. S., Lee, K. H., Kim, Y. J., Oh, D. Y., Jeon, Y. K., et al. (2008). High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. British Journal of Cancer, 98(6), 1118–1124. doi:10.​1038/​sj.​bjc.​6604256.PubMedPubMedCentralCrossRef
58.
go back to reference Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., et al. (2008). Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer, 113(6), 1387–1395. doi:10.1002/cncr.23712.PubMedCrossRef Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., et al. (2008). Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer, 113(6), 1387–1395. doi:10.​1002/​cncr.​23712.PubMedCrossRef
59.
go back to reference Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25(3), 365–372. Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25(3), 365–372.
60.
go back to reference Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. Journal of Surgical Oncology, 102(3), 242–248. doi:10.1002/jso.21617.PubMedCrossRef Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. Journal of Surgical Oncology, 102(3), 242–248. doi:10.​1002/​jso.​21617.PubMedCrossRef
61.
go back to reference Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56(20), 4625–4629.PubMed Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56(20), 4625–4629.PubMed
62.
go back to reference Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999). Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clinical Cancer Research, 5(5), 1107–1113.PubMed Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999). Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clinical Cancer Research, 5(5), 1107–1113.PubMed
63.
go back to reference Robinson, B. D., Sica, G. L., Liu, Y. F., Rohan, T. E., Gertler, F. B., Condeelis, J. S., et al. (2009). Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clinical Cancer Research, 15(7), 2433–2441. doi:10.1158/1078-0432.ccr-08-2179.PubMedPubMedCentralCrossRef Robinson, B. D., Sica, G. L., Liu, Y. F., Rohan, T. E., Gertler, F. B., Condeelis, J. S., et al. (2009). Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clinical Cancer Research, 15(7), 2433–2441. doi:10.​1158/​1078-0432.​ccr-08-2179.PubMedPubMedCentralCrossRef
64.
go back to reference Salvesen, H. B., & Akslen, L. A. (1999). Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. International Journal of Cancer, 84(5), 538–543.PubMedCrossRef Salvesen, H. B., & Akslen, L. A. (1999). Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. International Journal of Cancer, 84(5), 538–543.PubMedCrossRef
65.
go back to reference Varney, M. L., Johansson, S. L., & Singh, R. K. (2005). Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-a. Melanoma Research, 15(5), 417–425.PubMedCrossRef Varney, M. L., Johansson, S. L., & Singh, R. K. (2005). Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-a. Melanoma Research, 15(5), 417–425.PubMedCrossRef
66.
go back to reference Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57(5), 747–751.PubMed Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57(5), 747–751.PubMed
68.
go back to reference Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128(3), 703–711. doi:10.1007/s10549-010-1154-y.PubMedCrossRef Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128(3), 703–711. doi:10.​1007/​s10549-010-1154-y.PubMedCrossRef
69.
go back to reference Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., et al. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123(2), 397–404. doi:10.1007/s10549-009-0654-0.PubMedCrossRef Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., et al. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123(2), 397–404. doi:10.​1007/​s10549-009-0654-0.PubMedCrossRef
71.
go back to reference Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., & Griffioen, A. W. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196. doi:10.1189/jlb.0905495.PubMedCrossRef Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., & Griffioen, A. W. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196. doi:10.​1189/​jlb.​0905495.PubMedCrossRef
72.
go back to reference De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226. doi:10.1016/j.ccr.2005.08.002.PubMedCrossRef De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226. doi:10.​1016/​j.​ccr.​2005.​08.​002.PubMedCrossRef
77.
go back to reference Forget, M. A., Voorhees, J. L., Cole, S. L., Dakhlallah, D., Patterson, I. L., Gross, A. C., et al. (2014). Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PloS One, 9(6), e98623. doi:10.1371/journal.pone.0098623.PubMedPubMedCentralCrossRef Forget, M. A., Voorhees, J. L., Cole, S. L., Dakhlallah, D., Patterson, I. L., Gross, A. C., et al. (2014). Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PloS One, 9(6), e98623. doi:10.​1371/​journal.​pone.​0098623.PubMedPubMedCentralCrossRef
78.
go back to reference Eubank, T. D., Roberts, R. D., Khan, M., Curry, J. M., Nuovo, G. J., Kuppusamy, P., et al. (2009). Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Research, 69(5), 2133–2140. doi:10.1158/0008-5472.can-08-1405.PubMedPubMedCentralCrossRef Eubank, T. D., Roberts, R. D., Khan, M., Curry, J. M., Nuovo, G. J., Kuppusamy, P., et al. (2009). Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Research, 69(5), 2133–2140. doi:10.​1158/​0008-5472.​can-08-1405.PubMedPubMedCentralCrossRef
79.
go back to reference Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029. doi:10.1158/0008-5472.can-04-1449.PubMedCrossRef Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029. doi:10.​1158/​0008-5472.​can-04-1449.PubMedCrossRef
81.
84.
go back to reference Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184(2), 702–712. doi:10.4049/jimmunol.0902360.CrossRef Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184(2), 702–712. doi:10.​4049/​jimmunol.​0902360.CrossRef
85.
86.
87.
go back to reference Rohan, T. E., Xue, X., Lin, H. M., D’Alfonso, T. M., Ginter, P. S., Oktay, M. H., et al. (2014). Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. Journal of the National Cancer Institute, 106(8), dju136. doi:10.1093/jnci/dju136.PubMedPubMedCentralCrossRef Rohan, T. E., Xue, X., Lin, H. M., D’Alfonso, T. M., Ginter, P. S., Oktay, M. H., et al. (2014). Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. Journal of the National Cancer Institute, 106(8), dju136. doi:10.​1093/​jnci/​dju136.PubMedPubMedCentralCrossRef
88.
go back to reference Weiss, L. (2000). Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Reviews, 19(3–4) I-xi, 193–383.CrossRef Weiss, L. (2000). Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Reviews, 19(3–4) I-xi, 193–383.CrossRef
91.
go back to reference Kitamura, T., Qian, B. Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., et al. (2015). CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. The Journal of Experimental Medicine, 212(7), 1043–1059. doi:10.1084/jem.20141836.PubMedPubMedCentralCrossRef Kitamura, T., Qian, B. Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., et al. (2015). CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. The Journal of Experimental Medicine, 212(7), 1043–1059. doi:10.​1084/​jem.​20141836.PubMedPubMedCentralCrossRef
92.
94.
go back to reference Pommier, A., Audemard, A., Durand, A., Lengagne, R., Delpoux, A., Martin, B., et al. (2013). Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 13085–13090. doi:10.1073/pnas.1300314110.PubMedPubMedCentralCrossRef Pommier, A., Audemard, A., Durand, A., Lengagne, R., Delpoux, A., Martin, B., et al. (2013). Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 13085–13090. doi:10.​1073/​pnas.​1300314110.PubMedPubMedCentralCrossRef
96.
go back to reference Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., et al. (2011). Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. Journal of Immunology, 187(5), 2181–2192. doi:10.4049/jimmunol.1003460.CrossRef Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., et al. (2011). Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. Journal of Immunology, 187(5), 2181–2192. doi:10.​4049/​jimmunol.​1003460.CrossRef
97.
go back to reference Strachan, D. C., Ruffell, B., Oei, Y., Bissell, M. J., Coussens, L. M., Pryer, N., et al. (2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology, 2(12), e26968. doi:10.4161/onci.26968.PubMedPubMedCentralCrossRef Strachan, D. C., Ruffell, B., Oei, Y., Bissell, M. J., Coussens, L. M., Pryer, N., et al. (2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology, 2(12), e26968. doi:10.​4161/​onci.​26968.PubMedPubMedCentralCrossRef
100.
go back to reference Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949. doi:10.1038/nm1093.PubMedCrossRef Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949. doi:10.​1038/​nm1093.PubMedCrossRef
102.
go back to reference Savage, N. D., de Boer, T., Walburg, K. V., Joosten, S. A., van Meijgaarden, K., Geluk, A., et al. (2008). Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. Journal of Immunology, 181(3), 2220–2226.CrossRef Savage, N. D., de Boer, T., Walburg, K. V., Joosten, S. A., van Meijgaarden, K., Geluk, A., et al. (2008). Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. Journal of Immunology, 181(3), 2220–2226.CrossRef
106.
go back to reference Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine, 176(1), 287–292.PubMedCrossRef Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine, 176(1), 287–292.PubMedCrossRef
107.
go back to reference Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef
109.
111.
go back to reference Kubagawa, H., Chen, C. C., Ho, L. H., Shimada, T. S., Gartland, L., Mashburn, C., et al. (1999). Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. The Journal of Experimental Medicine, 189(2), 309–318.PubMedPubMedCentralCrossRef Kubagawa, H., Chen, C. C., Ho, L. H., Shimada, T. S., Gartland, L., Mashburn, C., et al. (1999). Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. The Journal of Experimental Medicine, 189(2), 309–318.PubMedPubMedCentralCrossRef
112.
go back to reference Hu, X., Chen, J., Wang, L., & Ivashkiv, L. B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. Journal of Leukocyte Biology, 82(2), 237–243. doi:10.1189/jlb.1206763.PubMedCrossRef Hu, X., Chen, J., Wang, L., & Ivashkiv, L. B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. Journal of Leukocyte Biology, 82(2), 237–243. doi:10.​1189/​jlb.​1206763.PubMedCrossRef
113.
go back to reference Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology, 177(10), 7303–7311.CrossRef Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology, 177(10), 7303–7311.CrossRef
114.
go back to reference Romagnani, P., De Paulis, A., Beltrame, C., Annunziato, F., Dente, V., Maggi, E., et al. (1999). Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. The American Journal of Pathology, 155(4), 1195–1204. doi:10.1016/s0002-9440(10)65222-4.PubMedPubMedCentralCrossRef Romagnani, P., De Paulis, A., Beltrame, C., Annunziato, F., Dente, V., Maggi, E., et al. (1999). Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. The American Journal of Pathology, 155(4), 1195–1204. doi:10.​1016/​s0002-9440(10)65222-4.PubMedPubMedCentralCrossRef
117.
go back to reference Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., et al. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180(10), 6553–6565.CrossRef Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., et al. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180(10), 6553–6565.CrossRef
119.
go back to reference Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., et al. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168(1), 44–50.CrossRef Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., et al. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168(1), 44–50.CrossRef
120.
go back to reference Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6(6), 377–384.PubMedCrossRef Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6(6), 377–384.PubMedCrossRef
121.
go back to reference Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175(1), 342–349.CrossRef Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175(1), 342–349.CrossRef
123.
go back to reference Chan, G., Bivins-Smith, E. R., Smith, M. S., Smith, P. M., & Yurochko, A. D. (2008). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. Journal of Immunology, 181(1), 698–711.CrossRef Chan, G., Bivins-Smith, E. R., Smith, M. S., Smith, P. M., & Yurochko, A. D. (2008). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. Journal of Immunology, 181(1), 698–711.CrossRef
124.
go back to reference Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59(5), 1171–1181. doi:10.2337/db09-1402.PubMedPubMedCentralCrossRef Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59(5), 1171–1181. doi:10.​2337/​db09-1402.PubMedPubMedCentralCrossRef
125.
go back to reference Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809. doi:10.1158/0008-5472.can-08-3427.PubMedCrossRef Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809. doi:10.​1158/​0008-5472.​can-08-3427.PubMedCrossRef
128.
129.
go back to reference Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914. doi:10.1182/blood-2009-01-200931.PubMedCrossRef Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914. doi:10.​1182/​blood-2009-01-200931.PubMedCrossRef
131.
go back to reference Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354. doi:10.1074/jbc.M109.042671.PubMedPubMedCentralCrossRef Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354. doi:10.​1074/​jbc.​M109.​042671.PubMedPubMedCentralCrossRef
132.
go back to reference Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032.CrossRef Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032.CrossRef
133.
go back to reference Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107(5), 2112–2122. doi:10.1182/blood-2005-01-0428.PubMedCrossRef Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107(5), 2112–2122. doi:10.​1182/​blood-2005-01-0428.PubMedCrossRef
135.
go back to reference Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., et al. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205(7), 1673–1685. doi:10.1084/jem.20072602.PubMedPubMedCentralCrossRef Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., et al. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205(7), 1673–1685. doi:10.​1084/​jem.​20072602.PubMedPubMedCentralCrossRef
137.
138.
go back to reference Porta, C., Rimoldi, M., Raes, G., Brys, L., Ghezzi, P., Di Liberto, D., et al. (2009). Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14978–14983. doi:10.1073/pnas.0809784106.PubMedPubMedCentralCrossRef Porta, C., Rimoldi, M., Raes, G., Brys, L., Ghezzi, P., Di Liberto, D., et al. (2009). Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14978–14983. doi:10.​1073/​pnas.​0809784106.PubMedPubMedCentralCrossRef
139.
go back to reference Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983.CrossRef Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983.CrossRef
140.
go back to reference Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147. doi:10.1016/j.ccr.2009.12.041.PubMedCrossRef Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147. doi:10.​1016/​j.​ccr.​2009.​12.​041.PubMedCrossRef
142.
144.
go back to reference Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017.CrossRef Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017.CrossRef
146.
go back to reference Dinapoli, M. R., Calderon, C. L., & Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. The Journal of Experimental Medicine, 183(4), 1323–1329.PubMedCrossRef Dinapoli, M. R., Calderon, C. L., & Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. The Journal of Experimental Medicine, 183(4), 1323–1329.PubMedCrossRef
147.
go back to reference Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., et al. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164(2), 762–767.CrossRef Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., et al. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164(2), 762–767.CrossRef
148.
go back to reference Saccani, A., Schioppa, T., Porta, C., Biswas, S. K., Nebuloni, M., Vago, L., et al. (2006). p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Research, 66(23), 11432–11440. doi:10.1158/0008-5472.can-06-1867.PubMedCrossRef Saccani, A., Schioppa, T., Porta, C., Biswas, S. K., Nebuloni, M., Vago, L., et al. (2006). p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Research, 66(23), 11432–11440. doi:10.​1158/​0008-5472.​can-06-1867.PubMedCrossRef
152.
go back to reference Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., et al. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1(2–3), 155–167 discussion 165. doi:10.1242/dmm.000596.CrossRef Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., et al. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1(2–3), 155–167 discussion 165. doi:10.​1242/​dmm.​000596.CrossRef
153.
go back to reference Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., et al. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17561–17566. doi:10.1073/pnas.1215397109.PubMedPubMedCentralCrossRef Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., et al. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17561–17566. doi:10.​1073/​pnas.​1215397109.PubMedPubMedCentralCrossRef
154.
go back to reference Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70(14), 5728–5739. doi:10.1158/0008-5472.can-09-4672.PubMedCrossRef Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70(14), 5728–5739. doi:10.​1158/​0008-5472.​can-09-4672.PubMedCrossRef
155.
go back to reference Laoui, D., Van Overmeire, E., Di Conza, G., Aldeni, C., Keirsse, J., Morias, Y., et al. (2014). Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Research, 74(1), 24–30. doi:10.1158/0008-5472.can-13-1196.PubMedCrossRef Laoui, D., Van Overmeire, E., Di Conza, G., Aldeni, C., Keirsse, J., Morias, Y., et al. (2014). Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Research, 74(1), 24–30. doi:10.​1158/​0008-5472.​can-13-1196.PubMedCrossRef
159.
go back to reference Wain, J. H., Kirby, J. A., & Ali, S. (2002). Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, −2, −3 and −4. Clinical and Experimental Immunology, 127(3), 436–444.PubMedPubMedCentralCrossRef Wain, J. H., Kirby, J. A., & Ali, S. (2002). Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, −2, −3 and −4. Clinical and Experimental Immunology, 127(3), 436–444.PubMedPubMedCentralCrossRef
161.
go back to reference Leek, R. D., Talks, K. L., Pezzella, F., Turley, H., Campo, L., Brown, N. S., et al. (2002). Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Research, 62(5), 1326–1329.PubMed Leek, R. D., Talks, K. L., Pezzella, F., Turley, H., Campo, L., Brown, N. S., et al. (2002). Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Research, 62(5), 1326–1329.PubMed
166.
go back to reference Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R., & Melief, C. J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 393(6684), 480–483. doi:10.1038/31002.PubMedCrossRef Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R., & Melief, C. J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 393(6684), 480–483. doi:10.​1038/​31002.PubMedCrossRef
167.
go back to reference Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19(10), 1264–1272. doi:10.1038/nm.3337.PubMedPubMedCentralCrossRef Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19(10), 1264–1272. doi:10.​1038/​nm.​3337.PubMedPubMedCentralCrossRef
169.
go back to reference Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews. Immunology, 11(8), 519–531. doi:10.1038/nri3024.PubMedCrossRef Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews. Immunology, 11(8), 519–531. doi:10.​1038/​nri3024.PubMedCrossRef
173.
go back to reference Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.PubMedCrossRef Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.PubMedCrossRef
174.
go back to reference Tecchio, C., & Cassatella, M. A. (2014). Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chemical Immunology and Allergy, 99, 123–137. doi:10.1159/000353358.PubMedCrossRef Tecchio, C., & Cassatella, M. A. (2014). Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chemical Immunology and Allergy, 99, 123–137. doi:10.​1159/​000353358.PubMedCrossRef
177.
go back to reference Taylor, P. R., Roy, S., Leal Jr., S. M., Sun, Y., Howell, S. J., Cobb, B. A., et al. (2014). Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nature Immunology, 15(2), 143–151. doi:10.1038/ni.2797.PubMedCrossRef Taylor, P. R., Roy, S., Leal Jr., S. M., Sun, Y., Howell, S. J., Cobb, B. A., et al. (2014). Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nature Immunology, 15(2), 143–151. doi:10.​1038/​ni.​2797.PubMedCrossRef
178.
go back to reference Woodfin, A., Voisin, M. B., Beyrau, M., Colom, B., Caille, D., Diapouli, F. M., et al. (2011). The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunology, 12(8), 761–769. doi:10.1038/ni.2062.PubMedPubMedCentralCrossRef Woodfin, A., Voisin, M. B., Beyrau, M., Colom, B., Caille, D., Diapouli, F. M., et al. (2011). The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunology, 12(8), 761–769. doi:10.​1038/​ni.​2062.PubMedPubMedCentralCrossRef
180.
go back to reference Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.PubMedCrossRef Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.PubMedCrossRef
181.
go back to reference Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97(2), 339–345.PubMedCrossRef Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97(2), 339–345.PubMedCrossRef
183.
go back to reference Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. The American Journal of Pathology, 152(1), 83–92.PubMedPubMedCentral Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. The American Journal of Pathology, 152(1), 83–92.PubMedPubMedCentral
184.
go back to reference Fossati, G., Ricevuti, G., Edwards, S. W., Walker, C., Dalton, A., & Rossi, M. L. (1999). Neutrophil infiltration into human gliomas. Acta Neuropathologica, 98(4), 349–354.PubMedCrossRef Fossati, G., Ricevuti, G., Edwards, S. W., Walker, C., Dalton, A., & Rossi, M. L. (1999). Neutrophil infiltration into human gliomas. Acta Neuropathologica, 98(4), 349–354.PubMedCrossRef
185.
go back to reference Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.PubMedCrossRef Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.PubMedCrossRef
187.
go back to reference Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717. doi:10.1200/jco.2008.18.9498.PubMedCrossRef Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717. doi:10.​1200/​jco.​2008.​18.​9498.PubMedCrossRef
188.
go back to reference Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2011). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193. doi:10.1002/ijc.25892.PubMedCrossRef Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2011). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193. doi:10.​1002/​ijc.​25892.PubMedCrossRef
189.
go back to reference Zhou, S. L., Dai, Z., Zhou, Z. J., Wang, X. Y., Yang, G. H., Wang, Z., et al. (2012). Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology, 56(6), 2242–2254. doi:10.1002/hep.25907.PubMedCrossRef Zhou, S. L., Dai, Z., Zhou, Z. J., Wang, X. Y., Yang, G. H., Wang, Z., et al. (2012). Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology, 56(6), 2242–2254. doi:10.​1002/​hep.​25907.PubMedCrossRef
191.
go back to reference Akizuki, M., Fukutomi, T., Takasugi, M., Takahashi, S., Sato, T., Harao, M., et al. (2007). Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia, 9(3), 260–264.PubMedPubMedCentralCrossRef Akizuki, M., Fukutomi, T., Takasugi, M., Takahashi, S., Sato, T., Harao, M., et al. (2007). Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia, 9(3), 260–264.PubMedPubMedCentralCrossRef
192.
go back to reference Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Research, 63(2), 337–341.PubMed Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Research, 63(2), 337–341.PubMed
193.
go back to reference Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. British Journal of Cancer, 88(7), 1084–1090. doi:10.1038/sj.bjc.6600813.PubMedPubMedCentralCrossRef Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. British Journal of Cancer, 88(7), 1084–1090. doi:10.​1038/​sj.​bjc.​6600813.PubMedPubMedCentralCrossRef
194.
go back to reference Azab, B., Bhatt, V. R., Phookan, J., Murukutla, S., Kohn, N., Terjanian, T., et al. (2012). Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Annals of Surgical Oncology, 19(1), 217–224. doi:10.1245/s10434-011-1814-0.PubMedCrossRef Azab, B., Bhatt, V. R., Phookan, J., Murukutla, S., Kohn, N., Terjanian, T., et al. (2012). Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Annals of Surgical Oncology, 19(1), 217–224. doi:10.​1245/​s10434-011-1814-0.PubMedCrossRef
196.
go back to reference Templeton, A. J., McNamara, M. G., Seruga, B., Vera-Badillo, F. E., Aneja, P., Ocana, A., et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. Journal of the National Cancer Institute, 106(6), dju124. doi:10.1093/jnci/dju124.PubMedCrossRef Templeton, A. J., McNamara, M. G., Seruga, B., Vera-Badillo, F. E., Aneja, P., Ocana, A., et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. Journal of the National Cancer Institute, 106(6), dju124. doi:10.​1093/​jnci/​dju124.PubMedCrossRef
197.
198.
go back to reference Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.PubMedPubMedCentralCrossRef Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.PubMedPubMedCentralCrossRef
199.
go back to reference Wada, Y., Yoshida, K., Tsutani, Y., Shigematsu, H., Oeda, M., Sanada, Y., et al. (2007). Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncology Reports, 17(1), 161–167.PubMed Wada, Y., Yoshida, K., Tsutani, Y., Shigematsu, H., Oeda, M., Sanada, Y., et al. (2007). Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncology Reports, 17(1), 161–167.PubMed
200.
202.
203.
go back to reference Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498. doi:10.1073/pnas.0601807103.PubMedPubMedCentralCrossRef Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498. doi:10.​1073/​pnas.​0601807103.PubMedPubMedCentralCrossRef
205.
go back to reference Shojaei, F., Singh, M., Thompson, J. D., & Ferrara, N. (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2640–2645. doi:10.1073/pnas.0712185105.PubMedPubMedCentralCrossRef Shojaei, F., Singh, M., Thompson, J. D., & Ferrara, N. (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2640–2645. doi:10.​1073/​pnas.​0712185105.PubMedPubMedCentralCrossRef
206.
go back to reference Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747. doi:10.1073/pnas.0902280106.PubMedPubMedCentralCrossRef Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747. doi:10.​1073/​pnas.​0902280106.PubMedPubMedCentralCrossRef
207.
go back to reference Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65(19), 8896–8904. doi:10.1158/0008-5472.can-05-1734.PubMedCrossRef Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65(19), 8896–8904. doi:10.​1158/​0008-5472.​can-05-1734.PubMedCrossRef
208.
209.
go back to reference Wu, Y., Zhao, Q., Peng, C., Sun, L., Li, X. F., & Kuang, D. M. (2011). Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. The Journal of Pathology, 225(3), 438–447. doi:10.1002/path.2947.PubMedCrossRef Wu, Y., Zhao, Q., Peng, C., Sun, L., Li, X. F., & Kuang, D. M. (2011). Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. The Journal of Pathology, 225(3), 438–447. doi:10.​1002/​path.​2947.PubMedCrossRef
210.
go back to reference Grosse-Steffen, T., Giese, T., Giese, N., Longerich, T., Schirmacher, P., Hansch, G. M., et al. (2012). Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clinical & Developmental Immunology, 2012, 720768. doi:10.1155/2012/720768.CrossRef Grosse-Steffen, T., Giese, T., Giese, N., Longerich, T., Schirmacher, P., Hansch, G. M., et al. (2012). Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clinical & Developmental Immunology, 2012, 720768. doi:10.​1155/​2012/​720768.CrossRef
211.
go back to reference Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. The American Journal of Pathology, 179(3), 1455–1470. doi:10.1016/j.ajpath.2011.05.031.PubMedPubMedCentralCrossRef Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. The American Journal of Pathology, 179(3), 1455–1470. doi:10.​1016/​j.​ajpath.​2011.​05.​031.PubMedPubMedCentralCrossRef
212.
go back to reference Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology. Cell Physiology, 280(4), C814–C822.PubMed Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology. Cell Physiology, 280(4), C814–C822.PubMed
214.
go back to reference Spicer, J. D., McDonald, B., Cools-Lartigue, J. J., Chow, S. C., Giannias, B., Kubes, P., et al. (2012). Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Research, 72(16), 3919–3927. doi:10.1158/0008-5472.can-11-2393.PubMedCrossRef Spicer, J. D., McDonald, B., Cools-Lartigue, J. J., Chow, S. C., Giannias, B., Kubes, P., et al. (2012). Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Research, 72(16), 3919–3927. doi:10.​1158/​0008-5472.​can-11-2393.PubMedCrossRef
215.
216.
go back to reference Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255. doi:10.1073/pnas.1015855107.PubMedPubMedCentralCrossRef Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255. doi:10.​1073/​pnas.​1015855107.PubMedPubMedCentralCrossRef
220.
go back to reference Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation, 120(4), 1151–1164. doi:10.1172/jci37223.PubMedPubMedCentralCrossRef Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation, 120(4), 1151–1164. doi:10.​1172/​jci37223.PubMedPubMedCentralCrossRef
221.
222.
go back to reference Leifler, K. S., Svensson, S., Abrahamsson, A., Bendrik, C., Robertson, J., Gauldie, J., et al. (2013). Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. Journal of Immunology, 190(8), 4420–4430. doi:10.4049/jimmunol.1202610.CrossRef Leifler, K. S., Svensson, S., Abrahamsson, A., Bendrik, C., Robertson, J., Gauldie, J., et al. (2013). Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. Journal of Immunology, 190(8), 4420–4430. doi:10.​4049/​jimmunol.​1202610.CrossRef
224.
go back to reference Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.PubMedPubMedCentralCrossRef Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.PubMedPubMedCentralCrossRef
226.
go back to reference Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343. doi:10.1002/ijc.10775.PubMedCrossRef Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343. doi:10.​1002/​ijc.​10775.PubMedCrossRef
227.
go back to reference Musiani, P., Modesti, A., Giovarelli, M., Cavallo, F., Colombo, M. P., Lollini, P. L., et al. (1997). Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunology Today, 18(1), 32–36.PubMedCrossRef Musiani, P., Modesti, A., Giovarelli, M., Cavallo, F., Colombo, M. P., Lollini, P. L., et al. (1997). Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunology Today, 18(1), 32–36.PubMedCrossRef
228.
go back to reference Buonocore, S., Haddou, N. O., Moore, F., Florquin, S., Paulart, F., Heirman, C., et al. (2008). Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L. Journal of Leukocyte Biology, 84(3), 713–720. doi:10.1189/jlb.0108075.PubMedCrossRef Buonocore, S., Haddou, N. O., Moore, F., Florquin, S., Paulart, F., Heirman, C., et al. (2008). Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L. Journal of Leukocyte Biology, 84(3), 713–720. doi:10.​1189/​jlb.​0108075.PubMedCrossRef
232.
233.
go back to reference Cuenca, A. G., Delano, M. J., Kelly-Scumpia, K. M., Moreno, C., Scumpia, P. O., Laface, D. M., et al. (2011). A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Molecular Medicine, 17(3–4), 281–292. doi:10.2119/molmed.2010.00178.PubMed Cuenca, A. G., Delano, M. J., Kelly-Scumpia, K. M., Moreno, C., Scumpia, P. O., Laface, D. M., et al. (2011). A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Molecular Medicine, 17(3–4), 281–292. doi:10.​2119/​molmed.​2010.​00178.PubMed
235.
go back to reference Haile, L. A., von Wasielewski, R., Gamrekelashvili, J., Kruger, C., Bachmann, O., Westendorf, A. M., et al. (2008). Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology, 135(3), 871–881 881.e871-875. doi:10.1053/j.gastro.2008.06.032.PubMedCrossRef Haile, L. A., von Wasielewski, R., Gamrekelashvili, J., Kruger, C., Bachmann, O., Westendorf, A. M., et al. (2008). Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology, 135(3), 871–881 881.e871-875. doi:10.​1053/​j.​gastro.​2008.​06.​032.PubMedCrossRef
237.
238.
go back to reference Ko, J. S., Bukowski, R. M., & Fincke, J. H. (2009). Myeloid-derived suppressor cells: a novel therapeutic target. Current Oncology Reports, 11(2), 87–93.PubMedCrossRef Ko, J. S., Bukowski, R. M., & Fincke, J. H. (2009). Myeloid-derived suppressor cells: a novel therapeutic target. Current Oncology Reports, 11(2), 87–93.PubMedCrossRef
240.
go back to reference Solito, S., Marigo, I., Pinton, L., Damuzzo, V., Mandruzzato, S., & Bronte, V. (2014). Myeloid-derived suppressor cell heterogeneity in human cancers. Annals of the New York Academy of Sciences, 1319, 47–65. doi:10.1111/nyas.12469.PubMedCrossRef Solito, S., Marigo, I., Pinton, L., Damuzzo, V., Mandruzzato, S., & Bronte, V. (2014). Myeloid-derived suppressor cell heterogeneity in human cancers. Annals of the New York Academy of Sciences, 1319, 47–65. doi:10.​1111/​nyas.​12469.PubMedCrossRef
241.
go back to reference Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.1007/s00262-008-0523-4.PubMedCrossRef Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.​1007/​s00262-008-0523-4.PubMedCrossRef
242.
go back to reference Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.PubMed Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.PubMed
243.
245.
go back to reference Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.CrossRef Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.CrossRef
246.
247.
248.
go back to reference Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244. doi:10.1182/blood-2007-07-099226.PubMedCrossRef Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244. doi:10.​1182/​blood-2007-07-099226.PubMedCrossRef
249.
go back to reference Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35. doi:10.1002/eji.200939903.PubMedCrossRef Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35. doi:10.​1002/​eji.​200939903.PubMedCrossRef
250.
go back to reference Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.CrossRef Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.CrossRef
252.
253.
go back to reference Nagaraj, S., Schrum, A. G., Cho, H. I., Celis, E., & Gabrilovich, D. I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. Journal of Immunology, 184(6), 3106–3116. doi:10.4049/jimmunol.0902661.CrossRef Nagaraj, S., Schrum, A. G., Cho, H. I., Celis, E., & Gabrilovich, D. I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. Journal of Immunology, 184(6), 3106–3116. doi:10.​4049/​jimmunol.​0902661.CrossRef
254.
go back to reference Ezernitchi, A. V., Vaknin, I., Cohen-Daniel, L., Levy, O., Manaster, E., Halabi, A., et al. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. Journal of Immunology, 177(7), 4763–4772.CrossRef Ezernitchi, A. V., Vaknin, I., Cohen-Daniel, L., Levy, O., Manaster, E., Halabi, A., et al. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. Journal of Immunology, 177(7), 4763–4772.CrossRef
255.
go back to reference Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Journal of Immunology, 168(2), 689–695.CrossRef Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Journal of Immunology, 168(2), 689–695.CrossRef
256.
go back to reference Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., et al. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. The Journal of Clinical Investigation, 121(10), 4015–4029. doi:10.1172/jci45862.PubMedPubMedCentralCrossRef Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., et al. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. The Journal of Clinical Investigation, 121(10), 4015–4029. doi:10.​1172/​jci45862.PubMedPubMedCentralCrossRef
257.
go back to reference Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849. doi:10.1158/0008-5472.can-04-0465.PubMedCrossRef Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849. doi:10.​1158/​0008-5472.​can-04-0465.PubMedCrossRef
258.
259.
go back to reference Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology, 183(2), 937–944. doi:10.4049/jimmunol.0804253.CrossRef Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology, 183(2), 937–944. doi:10.​4049/​jimmunol.​0804253.CrossRef
260.
261.
go back to reference Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.CrossRef Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.CrossRef
263.
go back to reference Elkabets, M., Ribeiro, V. S., Dinarello, C. A., Ostrand-Rosenberg, S., Di Santo, J. P., Apte, R. N., et al. (2010). IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. European Journal of Immunology, 40(12), 3347–3357. doi:10.1002/eji.201041037.PubMedPubMedCentralCrossRef Elkabets, M., Ribeiro, V. S., Dinarello, C. A., Ostrand-Rosenberg, S., Di Santo, J. P., Apte, R. N., et al. (2010). IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. European Journal of Immunology, 40(12), 3347–3357. doi:10.​1002/​eji.​201041037.PubMedPubMedCentralCrossRef
266.
go back to reference Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131. doi:10.1158/0008-5472.can-05-1299.PubMedCrossRef Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131. doi:10.​1158/​0008-5472.​can-05-1299.PubMedCrossRef
268.
go back to reference Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421. doi:10.1016/j.ccr.2004.08.031.PubMedCrossRef Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421. doi:10.​1016/​j.​ccr.​2004.​08.​031.PubMedCrossRef
273.
go back to reference Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475. doi:10.1038/ng1997.PubMedCrossRef Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475. doi:10.​1038/​ng1997.PubMedCrossRef
275.
go back to reference Gao, D., Joshi, N., Choi, H., Ryu, S., Hahn, M., Catena, R., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394. doi:10.1158/0008-5472.can-11-2905.PubMedCrossRef Gao, D., Joshi, N., Choi, H., Ryu, S., Hahn, M., Catena, R., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394. doi:10.​1158/​0008-5472.​can-11-2905.PubMedCrossRef
277.
go back to reference Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375. doi:10.1038/ncb1507.PubMedCrossRef Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375. doi:10.​1038/​ncb1507.PubMedCrossRef
278.
280.
go back to reference Sceneay, J., Chow, M. T., Chen, A., Halse, H. M., Wong, C. S., Andrews, D. M., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72(16), 3906–3911. doi:10.1158/0008-5472.can-11-3873.PubMedCrossRef Sceneay, J., Chow, M. T., Chen, A., Halse, H. M., Wong, C. S., Andrews, D. M., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72(16), 3906–3911. doi:10.​1158/​0008-5472.​can-11-3873.PubMedCrossRef
281.
go back to reference Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.1038/nbt1323.PubMedCrossRef Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.​1038/​nbt1323.PubMedCrossRef
282.
go back to reference Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64. doi:10.1038/nm.2999.PubMedCrossRef Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64. doi:10.​1038/​nm.​2999.PubMedCrossRef
285.
go back to reference Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed
286.
287.
go back to reference Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9(2), 268–275. doi:10.1038/nn1629.PubMedCrossRef Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9(2), 268–275. doi:10.​1038/​nn1629.PubMedCrossRef
288.
290.
go back to reference Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I., & Stappenbeck, T. S. (2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 99–104. doi:10.1073/pnas.0405979102.PubMedCrossRef Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I., & Stappenbeck, T. S. (2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 99–104. doi:10.​1073/​pnas.​0405979102.PubMedCrossRef
291.
292.
go back to reference Zhou, W., Ke, S. Q., Huang, Z., Flavahan, W., Fang, X., Paul, J., et al. (2015). Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 17(2), 170–182. doi:10.1038/ncb3090.PubMedPubMedCentralCrossRef Zhou, W., Ke, S. Q., Huang, Z., Flavahan, W., Fang, X., Paul, J., et al. (2015). Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 17(2), 170–182. doi:10.​1038/​ncb3090.PubMedPubMedCentralCrossRef
293.
294.
go back to reference Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453. doi:10.1084/jem.20100587.PubMedPubMedCentralCrossRef Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453. doi:10.​1084/​jem.​20100587.PubMedPubMedCentralCrossRef
295.
go back to reference Sawant, A., Deshane, J., Jules, J., Lee, C. M., Harris, B. A., Feng, X., et al. (2013). Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Research, 73(2), 672–682. doi:10.1158/0008-5472.can-12-2202.PubMedCrossRef Sawant, A., Deshane, J., Jules, J., Lee, C. M., Harris, B. A., Feng, X., et al. (2013). Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Research, 73(2), 672–682. doi:10.​1158/​0008-5472.​can-12-2202.PubMedCrossRef
296.
go back to reference Danilin, S., Merkel, A. R., Johnson, J. R., Johnson, R. W., Edwards, J. R., & Sterling, J. A. (2012). Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology, 1(9), 1484–1494. doi:10.4161/onci.21990.PubMedPubMedCentralCrossRef Danilin, S., Merkel, A. R., Johnson, J. R., Johnson, R. W., Edwards, J. R., & Sterling, J. A. (2012). Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology, 1(9), 1484–1494. doi:10.​4161/​onci.​21990.PubMedPubMedCentralCrossRef
298.
go back to reference Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220. doi:10.1038/ni.2526.PubMedPubMedCentralCrossRef Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220. doi:10.​1038/​ni.​2526.PubMedPubMedCentralCrossRef
299.
305.
go back to reference Aurilio, G., Disalvatore, D., Pruneri, G., Bagnardi, V., Viale, G., Curigliano, G., et al. (2014). A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. European Journal of Cancer, 50(2), 277–289. doi:10.1016/j.ejca.2013.10.004.PubMedCrossRef Aurilio, G., Disalvatore, D., Pruneri, G., Bagnardi, V., Viale, G., Curigliano, G., et al. (2014). A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. European Journal of Cancer, 50(2), 277–289. doi:10.​1016/​j.​ejca.​2013.​10.​004.PubMedCrossRef
306.
go back to reference Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767. doi:10.1172/jci45014.PubMedPubMedCentralCrossRef Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767. doi:10.​1172/​jci45014.PubMedPubMedCentralCrossRef
307.
go back to reference Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404. doi:10.1038/nature11017.PubMedPubMedCentral Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404. doi:10.​1038/​nature11017.PubMedPubMedCentral
308.
309.
go back to reference Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews. Cancer, 12(4), 298–306. doi:10.1038/nrc3245.PubMedCrossRef Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews. Cancer, 12(4), 298–306. doi:10.​1038/​nrc3245.PubMedCrossRef
310.
go back to reference Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527. doi:10.1038/nm1764.PubMedCrossRef Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527. doi:10.​1038/​nm1764.PubMedCrossRef
312.
go back to reference Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15(1), 68–74. doi:10.1038/nm.1908.PubMedCrossRef Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15(1), 68–74. doi:10.​1038/​nm.​1908.PubMedCrossRef
313.
go back to reference Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.1002/path.2278.PubMedCrossRef Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.​1002/​path.​2278.PubMedCrossRef
315.
go back to reference Ruffell, B., Au, A., Rugo, H. S., Esserman, L. J., Hwang, E. S., & Coussens, L. M. (2012). Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2796–2801. doi:10.1073/pnas.1104303108.PubMedCrossRef Ruffell, B., Au, A., Rugo, H. S., Esserman, L. J., Hwang, E. S., & Coussens, L. M. (2012). Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2796–2801. doi:10.​1073/​pnas.​1104303108.PubMedCrossRef
320.
322.
go back to reference Collino, F., Revelli, A., Massobrio, M., Katsaros, D., Schmitt-Ney, M., Camussi, G., et al. (2009). Epithelial-mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Experimental Cell Research, 315(17), 2982–2994. doi:10.1016/j.yexcr.2009.06.010.PubMedCrossRef Collino, F., Revelli, A., Massobrio, M., Katsaros, D., Schmitt-Ney, M., Camussi, G., et al. (2009). Epithelial-mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Experimental Cell Research, 315(17), 2982–2994. doi:10.​1016/​j.​yexcr.​2009.​06.​010.PubMedCrossRef
323.
go back to reference Soucek, L., Lawlor, E. R., Soto, D., Shchors, K., Swigart, L. B., & Evan, G. I. (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Medicine, 13(10), 1211–1218. doi:10.1038/nm1649.PubMedCrossRef Soucek, L., Lawlor, E. R., Soto, D., Shchors, K., Swigart, L. B., & Evan, G. I. (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Medicine, 13(10), 1211–1218. doi:10.​1038/​nm1649.PubMedCrossRef
324.
go back to reference Borrello, M. G., Alberti, L., Fischer, A., Degl’innocenti, D., Ferrario, C., Gariboldi, M., et al. (2005). Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14825–14830. doi:10.1073/pnas.0503039102.PubMedPubMedCentralCrossRef Borrello, M. G., Alberti, L., Fischer, A., Degl’innocenti, D., Ferrario, C., Gariboldi, M., et al. (2005). Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14825–14830. doi:10.​1073/​pnas.​0503039102.PubMedPubMedCentralCrossRef
325.
go back to reference Ueda, H., Howson, J. M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423(6939), 506–511. doi:10.1038/nature01621.PubMedCrossRef Ueda, H., Howson, J. M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423(6939), 506–511. doi:10.​1038/​nature01621.PubMedCrossRef
330.
go back to reference Lu, H., Clauser, K. R., Tam, W. L., Frose, J., Ye, X., Eaton, E. N., et al. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 16(11), 1105–1117. doi:10.1038/ncb3041.PubMedPubMedCentralCrossRef Lu, H., Clauser, K. R., Tam, W. L., Frose, J., Ye, X., Eaton, E. N., et al. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 16(11), 1105–1117. doi:10.​1038/​ncb3041.PubMedPubMedCentralCrossRef
332.
go back to reference Pfefferle, A. D., Herschkowitz, J. I., Usary, J., Harrell, J. C., Spike, B. T., Adams, J. R., et al. (2013). Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 14(11), R125. doi:10.1186/gb-2013-14-11-r125.PubMedPubMedCentralCrossRef Pfefferle, A. D., Herschkowitz, J. I., Usary, J., Harrell, J. C., Spike, B. T., Adams, J. R., et al. (2013). Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 14(11), R125. doi:10.​1186/​gb-2013-14-11-r125.PubMedPubMedCentralCrossRef
333.
334.
go back to reference Herschkowitz, J. I., Zhao, W., Zhang, M., Usary, J., Murrow, G., Edwards, D., et al. (2012). Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2778–2783. doi:10.1073/pnas.1018862108.PubMedCrossRef Herschkowitz, J. I., Zhao, W., Zhang, M., Usary, J., Murrow, G., Edwards, D., et al. (2012). Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2778–2783. doi:10.​1073/​pnas.​1018862108.PubMedCrossRef
335.
337.
338.
go back to reference Jin, K., Teng, L., Shen, Y., He, K., Xu, Z., & Li, G. (2010). Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clinical & Translational Oncology, 12(7), 473–480. doi:10.1007/s12094-010-0540-6.CrossRef Jin, K., Teng, L., Shen, Y., He, K., Xu, Z., & Li, G. (2010). Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clinical & Translational Oncology, 12(7), 473–480. doi:10.​1007/​s12094-010-0540-6.CrossRef
Metadata
Title
One microenvironment does not fit all: heterogeneity beyond cancer cells
Authors
Ik Sun Kim
Xiang H.-F. Zhang
Publication date
01-12-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9643-z

Other articles of this Issue 4/2016

Cancer and Metastasis Reviews 4/2016 Go to the issue

Announcement

Biography—Li Ma

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine