Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2016

01-12-2016

Cancer-derived extracellular vesicles: the ‘soil conditioner’ in breast cancer metastasis?

Authors: Andrew R. Chin, Shizhen Emily Wang

Published in: Cancer and Metastasis Reviews | Issue 4/2016

Login to get access

Abstract

It has been recognized that cancer-associated mortality is more often a result of the disrupted physiological functions in multiple organs following metastatic dissemination of cancer cells, rather than the presence and growth of the primary tumor. Despite advances in our understanding of the events leading to cancer initiation, growth, and acquisition of invasive properties, we are still unable to effectively treat metastatic disease. It is now being accepted that the secretion of extracellular vesicles, such as exosomes from cancer cells, has a profound impact on the initiation and propagation of metastatic breast cancer. These cancer-secreted vesicles differ from other means of cellular communication due to their capability of bulk delivery and organotropism. Here, we provide an overview of the role of extracellular vesicles in breast cancer metastasis and discuss key areas that may facilitate our understanding of metastatic breast cancer to guide our efforts towards providing better therapies.
Literature
3.
4.
go back to reference McCready, J., Sims, J. D., et al. (2010). Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer , 10, 294.CrossRefPubMedPubMedCentral McCready, J., Sims, J. D., et al. (2010). Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer , 10, 294.CrossRefPubMedPubMedCentral
5.
go back to reference Melo, S. A., Sugimoto, H., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell , 26(5), 707–721.CrossRefPubMedPubMedCentral Melo, S. A., Sugimoto, H., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell , 26(5), 707–721.CrossRefPubMedPubMedCentral
6.
go back to reference O'Brien, K., Rani, S., et al. (2013). Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer , 49(8), 1845–1859.CrossRefPubMed O'Brien, K., Rani, S., et al. (2013). Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer , 49(8), 1845–1859.CrossRefPubMed
7.
8.
go back to reference Le, M. T., Hamar, P., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation , 124(12), 5109–5128.CrossRefPubMedPubMedCentral Le, M. T., Hamar, P., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation , 124(12), 5109–5128.CrossRefPubMedPubMedCentral
9.
go back to reference Smith, Z. J., Lee, C., et al. (2015). Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles , 4, 28533.CrossRefPubMed Smith, Z. J., Lee, C., et al. (2015). Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles , 4, 28533.CrossRefPubMed
10.
go back to reference Su, J. (2015). Label-free single molecule detection using Microtoroid optical resonators. Journal of Visualized Experiments , 106, e53180. Su, J. (2015). Label-free single molecule detection using Microtoroid optical resonators. Journal of Visualized Experiments , 106, e53180.
11.
go back to reference Tauro, B. J., Greening, D. W., et al. (2013a). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics , 12(3), 587–598.CrossRef Tauro, B. J., Greening, D. W., et al. (2013a). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics , 12(3), 587–598.CrossRef
12.
go back to reference Willms, E., Johansson, H. J., et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports , 6, 22519.CrossRefPubMedPubMedCentral Willms, E., Johansson, H. J., et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports , 6, 22519.CrossRefPubMedPubMedCentral
13.
go back to reference Koumangoye, R. B., Sakwe, A. M., et al. (2011). Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One , 6(9), e24234.CrossRefPubMedPubMedCentral Koumangoye, R. B., Sakwe, A. M., et al. (2011). Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One , 6(9), e24234.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Hoshino, D., Kirkbride, K. C., et al. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports , 5(5), 1159–1168.CrossRefPubMed Hoshino, D., Kirkbride, K. C., et al. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports , 5(5), 1159–1168.CrossRefPubMed
16.
go back to reference Purushothaman, A., Bandari, S. K., et al. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry , 291(4), 1652–1663.CrossRefPubMed Purushothaman, A., Bandari, S. K., et al. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry , 291(4), 1652–1663.CrossRefPubMed
17.
go back to reference Cho, J. A., Park, H., et al. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology , 40(1), 130–138.PubMed Cho, J. A., Park, H., et al. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology , 40(1), 130–138.PubMed
18.
go back to reference Luga, V., Zhang, L., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell , 151(7), 1542–1556.CrossRefPubMed Luga, V., Zhang, L., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell , 151(7), 1542–1556.CrossRefPubMed
19.
go back to reference Dutta, S., Warshall, C., et al. (2014). Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PloS One , 9(5), e97580.CrossRefPubMedPubMedCentral Dutta, S., Warshall, C., et al. (2014). Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PloS One , 9(5), e97580.CrossRefPubMedPubMedCentral
20.
go back to reference Yang, M., Chen, J., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer , 10, 117.CrossRefPubMedPubMedCentral Yang, M., Chen, J., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer , 10, 117.CrossRefPubMedPubMedCentral
21.
go back to reference Seubert, B., Grunwald, B., et al. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology , 61(1), 238–248.CrossRefPubMed Seubert, B., Grunwald, B., et al. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology , 61(1), 238–248.CrossRefPubMed
22.
go back to reference Skog, J., Wurdinger, T., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology , 10(12), 1470–1476.CrossRefPubMedPubMedCentral Skog, J., Wurdinger, T., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology , 10(12), 1470–1476.CrossRefPubMedPubMedCentral
23.
go back to reference Jung, K. K., Liu, X. W., et al. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal , 25(17), 3934–3942.CrossRefPubMedPubMedCentral Jung, K. K., Liu, X. W., et al. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal , 25(17), 3934–3942.CrossRefPubMedPubMedCentral
24.
go back to reference Zhou, W., Fong, M. Y., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell , 25(4), 501–515.CrossRefPubMedPubMedCentral Zhou, W., Fong, M. Y., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell , 25(4), 501–515.CrossRefPubMedPubMedCentral
25.
go back to reference Tominaga, N., Kosaka, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications , 6, 6716.CrossRefPubMedPubMedCentral Tominaga, N., Kosaka, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications , 6, 6716.CrossRefPubMedPubMedCentral
26.
go back to reference Fong, M. Y., Zhou, W., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology , 17(2), 183–194.CrossRefPubMedPubMedCentral Fong, M. Y., Zhou, W., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology , 17(2), 183–194.CrossRefPubMedPubMedCentral
27.
go back to reference Zhang, L., Zhang, S., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature , 527(7576), 100–104.CrossRefPubMedPubMedCentral Zhang, L., Zhang, S., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature , 527(7576), 100–104.CrossRefPubMedPubMedCentral
28.
go back to reference Xiang, X., Poliakov, A., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer , 124(11), 2621–2633.CrossRefPubMedPubMedCentral Xiang, X., Poliakov, A., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer , 124(11), 2621–2633.CrossRefPubMedPubMedCentral
29.
go back to reference Chow, A., Zhou, W., et al. (2014). Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Scientific Reports , 4, 5750.CrossRefPubMedPubMedCentral Chow, A., Zhou, W., et al. (2014). Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Scientific Reports , 4, 5750.CrossRefPubMedPubMedCentral
30.
go back to reference Yu, S., Liu, C., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology , 178(11), 6867–6875.CrossRef Yu, S., Liu, C., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology , 178(11), 6867–6875.CrossRef
31.
go back to reference Clayton, A., Al-Taei, S., et al. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of Immunology , 187(2), 676–683.CrossRef Clayton, A., Al-Taei, S., et al. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of Immunology , 187(2), 676–683.CrossRef
32.
go back to reference Liu, C., Yu, S., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology , 176(3), 1375–1385.CrossRef Liu, C., Yu, S., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology , 176(3), 1375–1385.CrossRef
33.
go back to reference Kosaka, N., Iguchi, H., et al. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of Biological Chemistry , 288(15), 10849–10859.CrossRefPubMedPubMedCentral Kosaka, N., Iguchi, H., et al. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of Biological Chemistry , 288(15), 10849–10859.CrossRefPubMedPubMedCentral
34.
go back to reference Cogolludo, A., Moreno, L., et al. (2009). Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research , 82(2), 296–302.CrossRefPubMed Cogolludo, A., Moreno, L., et al. (2009). Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research , 82(2), 296–302.CrossRefPubMed
36.
go back to reference Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer , 11(6), 393–410.CrossRefPubMed Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer , 11(6), 393–410.CrossRefPubMed
37.
go back to reference Zhao, H., Yang, L., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife , 5, e10250.PubMedPubMedCentral Zhao, H., Yang, L., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife , 5, e10250.PubMedPubMedCentral
38.
go back to reference Wang, T., Gilkes, D. M., et al. (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America , 111(31), E3234–E3242.CrossRefPubMedPubMedCentral Wang, T., Gilkes, D. M., et al. (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America , 111(31), E3234–E3242.CrossRefPubMedPubMedCentral
39.
go back to reference Parolini, I., Federici, C., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry , 284(49), 34211–34222.CrossRefPubMedPubMedCentral Parolini, I., Federici, C., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry , 284(49), 34211–34222.CrossRefPubMedPubMedCentral
40.
go back to reference Ban, J. J., Lee, M., et al. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications , 461(1), 76–79.CrossRefPubMed Ban, J. J., Lee, M., et al. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications , 461(1), 76–79.CrossRefPubMed
41.
go back to reference Ostrowski, M., Carmo, N. B., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology , 12(1), 19–30 sup pp 11-13.CrossRefPubMed Ostrowski, M., Carmo, N. B., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology , 12(1), 19–30 sup pp 11-13.CrossRefPubMed
42.
go back to reference Bobrie, A., Krumeich, S., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research , 72(19), 4920–4930.CrossRefPubMed Bobrie, A., Krumeich, S., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research , 72(19), 4920–4930.CrossRefPubMed
43.
go back to reference Hendrix, A., Sormunen, R., et al. (2013). Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. International Journal of Cancer , 133(4), 843–854.CrossRefPubMed Hendrix, A., Sormunen, R., et al. (2013). Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. International Journal of Cancer , 133(4), 843–854.CrossRefPubMed
44.
go back to reference Zhang, J. X., Huang, X. X., et al. (2012). Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis. Journal of Translational Medicine , 10, 242.CrossRefPubMedPubMedCentral Zhang, J. X., Huang, X. X., et al. (2012). Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis. Journal of Translational Medicine , 10, 242.CrossRefPubMedPubMedCentral
45.
go back to reference Tauro, B. J., Mathias, R. A., et al. (2013b). Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK)cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics , 12(8), 2148–2159. Tauro, B. J., Mathias, R. A., et al. (2013b). Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK)cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics , 12(8), 2148–2159.
46.
go back to reference Garnier, D., Magnus, N., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry , 287(52), 43565–43572.CrossRefPubMedPubMedCentral Garnier, D., Magnus, N., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry , 287(52), 43565–43572.CrossRefPubMedPubMedCentral
47.
go back to reference Gopal, S. K., Greening, D. W., et al. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget , 7, 19709–19722.PubMedPubMedCentral Gopal, S. K., Greening, D. W., et al. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget , 7, 19709–19722.PubMedPubMedCentral
48.
go back to reference Thompson, C. A., Purushothaman, A., et al. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry , 288(14), 10093–10099.CrossRefPubMedPubMedCentral Thompson, C. A., Purushothaman, A., et al. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry , 288(14), 10093–10099.CrossRefPubMedPubMedCentral
49.
go back to reference Hendrix, A., Maynard, D., et al. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institute , 102(12), 866–880.CrossRefPubMedPubMedCentral Hendrix, A., Maynard, D., et al. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institute , 102(12), 866–880.CrossRefPubMedPubMedCentral
50.
go back to reference Peinado, H., Aleckovic, M., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine , 18(6), 883–891.CrossRefPubMedPubMedCentral Peinado, H., Aleckovic, M., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine , 18(6), 883–891.CrossRefPubMedPubMedCentral
51.
go back to reference Admyre, C., Johansson, S. M., et al. (2007). Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology , 179(3), 1969–1978.CrossRef Admyre, C., Johansson, S. M., et al. (2007). Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology , 179(3), 1969–1978.CrossRef
52.
go back to reference Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine , 17(3), 320–329.CrossRefPubMedPubMedCentral Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine , 17(3), 320–329.CrossRefPubMedPubMedCentral
53.
go back to reference Lim, P. K., Bliss, S. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research , 71(5), 1550–1560.CrossRefPubMed Lim, P. K., Bliss, S. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research , 71(5), 1550–1560.CrossRefPubMed
54.
go back to reference Ono, M., Kosaka, N., et al. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling , 7(332), ra63.CrossRefPubMed Ono, M., Kosaka, N., et al. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling , 7(332), ra63.CrossRefPubMed
Metadata
Title
Cancer-derived extracellular vesicles: the ‘soil conditioner’ in breast cancer metastasis?
Authors
Andrew R. Chin
Shizhen Emily Wang
Publication date
01-12-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9639-8

Other articles of this Issue 4/2016

Cancer and Metastasis Reviews 4/2016 Go to the issue

Announcement

Biography—Li Ma

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine