Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2016

01-12-2016

The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer

Authors: Jennifer L. Hsu, Mien-Chie Hung

Published in: Cancer and Metastasis Reviews | Issue 4/2016

Login to get access

Abstract

Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Literature
1.
go back to reference Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30.
2.
go back to reference Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.PubMedCrossRef Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.PubMedCrossRef
3.
go back to reference Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874.PubMedPubMedCentralCrossRef Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874.PubMedPubMedCentralCrossRef
4.
go back to reference Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.PubMedPubMedCentralCrossRef Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.PubMedPubMedCentralCrossRef
5.
go back to reference Voduc, K. D., Cheang, M. C., Tyldesley, S., Gelmon, K., Nielsen, T. O., & Kennecke, H. (2010). Breast cancer subtypes and the risk of local and regional relapse. Journal of Clinical Oncology, 28(10), 1684–1691.PubMedCrossRef Voduc, K. D., Cheang, M. C., Tyldesley, S., Gelmon, K., Nielsen, T. O., & Kennecke, H. (2010). Breast cancer subtypes and the risk of local and regional relapse. Journal of Clinical Oncology, 28(10), 1684–1691.PubMedCrossRef
6.
go back to reference Cancer Genome Atlas N (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.CrossRef Cancer Genome Atlas N (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.CrossRef
7.
go back to reference American Cancer Society (2016). Cancer facts & figures. Atlanta: American Cancer Society., 2016. American Cancer Society (2016). Cancer facts & figures. Atlanta: American Cancer Society., 2016.
8.
go back to reference Rivera, E., & Gomez, H. (2010). Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Research, 12(Suppl 2), S2.PubMedPubMedCentralCrossRef Rivera, E., & Gomez, H. (2010). Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Research, 12(Suppl 2), S2.PubMedPubMedCentralCrossRef
11.
go back to reference Chen, M. K., & Hung, M. C. (2015). Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. The FEBS Journal, 282(19), 3693–3721.PubMedPubMedCentralCrossRef Chen, M. K., & Hung, M. C. (2015). Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. The FEBS Journal, 282(19), 3693–3721.PubMedPubMedCentralCrossRef
12.
go back to reference Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends in Biochemical Sciences, 13(11), 443–447.PubMedCrossRef Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends in Biochemical Sciences, 13(11), 443–447.PubMedCrossRef
13.
go back to reference Gordus, A., Krall, J. A., Beyer, E. M., Kaushansky, A., Wolf-Yadlin, A., Sevecka, M., et al. (2009). Linear combinations of docking affinities explain quantitative differences in RTK signaling. Molecular Systems Biology, 5, 235.PubMedPubMedCentralCrossRef Gordus, A., Krall, J. A., Beyer, E. M., Kaushansky, A., Wolf-Yadlin, A., Sevecka, M., et al. (2009). Linear combinations of docking affinities explain quantitative differences in RTK signaling. Molecular Systems Biology, 5, 235.PubMedPubMedCentralCrossRef
14.
go back to reference Casaletto, J. B., & McClatchey, A. I. (2012). Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Reviews. Cancer, 12(6), 387–400.PubMedPubMedCentralCrossRef Casaletto, J. B., & McClatchey, A. I. (2012). Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Reviews. Cancer, 12(6), 387–400.PubMedPubMedCentralCrossRef
15.
go back to reference Schlessinger, J. 2014. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor perspectives in biology, 6(3). Schlessinger, J. 2014. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor perspectives in biology, 6(3).
16.
go back to reference Waterman, H., & Yarden, Y. (2001). Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Letters, 490(3), 142–152.PubMedCrossRef Waterman, H., & Yarden, Y. (2001). Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Letters, 490(3), 142–152.PubMedCrossRef
17.
go back to reference von Zastrow, M., & Sorkin, A. (2007). Signaling on the endocytic pathway. Current Opinion in Cell Biology, 19(4), 436–445.CrossRef von Zastrow, M., & Sorkin, A. (2007). Signaling on the endocytic pathway. Current Opinion in Cell Biology, 19(4), 436–445.CrossRef
18.
go back to reference Wang, S. C., & Hung, M. C. (2009). Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clinical Cancer Research, 15(21), 6484–6489.PubMedCrossRef Wang, S. C., & Hung, M. C. (2009). Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clinical Cancer Research, 15(21), 6484–6489.PubMedCrossRef
19.
go back to reference Lee, H. H., Wang, Y. N., & Hung, M. C. (2015). Non-canonical signaling mode of the epidermal growth factor receptor family. American Journal of Cancer Research, 5(10), 2944–2958.PubMedPubMedCentral Lee, H. H., Wang, Y. N., & Hung, M. C. (2015). Non-canonical signaling mode of the epidermal growth factor receptor family. American Journal of Cancer Research, 5(10), 2944–2958.PubMedPubMedCentral
20.
go back to reference The, Y. Y. (2001). EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 37(Suppl 4), S3–S8. The, Y. Y. (2001). EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 37(Suppl 4), S3–S8.
21.
go back to reference Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.PubMedCrossRef Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.PubMedCrossRef
22.
go back to reference Neal, J. W., & Sledge, G. W. (2014). Decade in review-targeted therapy: successes, toxicities and challenges in solid tumours. Nature reviews Clinical oncology., 11(11), 627–628.PubMedCrossRef Neal, J. W., & Sledge, G. W. (2014). Decade in review-targeted therapy: successes, toxicities and challenges in solid tumours. Nature reviews Clinical oncology., 11(11), 627–628.PubMedCrossRef
23.
go back to reference Remon, J., Moran, T., Majem, M., Reguart, N., Dalmau, E., Marquez-Medina, D., et al. (2014). Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer treatment reviews., 40(1), 93–101.PubMedCrossRef Remon, J., Moran, T., Majem, M., Reguart, N., Dalmau, E., Marquez-Medina, D., et al. (2014). Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer treatment reviews., 40(1), 93–101.PubMedCrossRef
24.
go back to reference Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2(2), 127–137.PubMedCrossRef Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2(2), 127–137.PubMedCrossRef
25.
go back to reference Prenzel, N., Fischer, O. M., Streit, S., Hart, S., & Ullrich, A. (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-Related Cancer, 8(1), 11–31.PubMedCrossRef Prenzel, N., Fischer, O. M., Streit, S., Hart, S., & Ullrich, A. (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-Related Cancer, 8(1), 11–31.PubMedCrossRef
26.
go back to reference Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nature Reviews. Molecular Cell Biology, 7(7), 505–516.PubMedCrossRef Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nature Reviews. Molecular Cell Biology, 7(7), 505–516.PubMedCrossRef
27.
go back to reference Schneider, M. R., & Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. Journal of Cellular Physiology, 218(3), 460–466.PubMedCrossRef Schneider, M. R., & Wolf, E. (2009). The epidermal growth factor receptor ligands at a glance. Journal of Cellular Physiology, 218(3), 460–466.PubMedCrossRef
28.
go back to reference Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.PubMedCrossRef Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.PubMedCrossRef
29.
go back to reference Avraham, R., & Yarden, Y. (2011). Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Reviews. Molecular Cell Biology, 12(2), 104–117.PubMedCrossRef Avraham, R., & Yarden, Y. (2011). Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Reviews. Molecular Cell Biology, 12(2), 104–117.PubMedCrossRef
30.
go back to reference Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.PubMedCrossRef Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.PubMedCrossRef
31.
go back to reference Tebbutt, N., Pedersen, M. W., & Johns, T. G. (2013). Targeting the ERBB family in cancer: couples therapy. Nature Reviews. Cancer, 13(9), 663–673.PubMedCrossRef Tebbutt, N., Pedersen, M. W., & Johns, T. G. (2013). Targeting the ERBB family in cancer: couples therapy. Nature Reviews. Cancer, 13(9), 663–673.PubMedCrossRef
32.
33.
go back to reference Scaltriti, M., & Baselga, J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 12(18), 5268–5272.PubMedCrossRef Scaltriti, M., & Baselga, J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 12(18), 5268–5272.PubMedCrossRef
34.
go back to reference Quesnelle, K. M., Boehm, A. L., & Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry, 102(2), 311–319.PubMedCrossRef Quesnelle, K. M., Boehm, A. L., & Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry, 102(2), 311–319.PubMedCrossRef
35.
36.
go back to reference Fischer, O. M., Hart, S., Gschwind, A., & Ullrich, A. (2003). EGFR signal transactivation in cancer cells. Biochemical Society Transactions, 31(Pt 6), 1203–1208.PubMedCrossRef Fischer, O. M., Hart, S., Gschwind, A., & Ullrich, A. (2003). EGFR signal transactivation in cancer cells. Biochemical Society Transactions, 31(Pt 6), 1203–1208.PubMedCrossRef
37.
go back to reference Liu, D., Aguirre Ghiso, J., Estrada, Y., & Ossowski, L. (2002). EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 1(5), 445–457.PubMedCrossRef Liu, D., Aguirre Ghiso, J., Estrada, Y., & Ossowski, L. (2002). EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 1(5), 445–457.PubMedCrossRef
38.
go back to reference Sainsbury, J. R., Farndon, J. R., Needham, G. K., Malcolm, A. J., & Harris, A. L. (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet, 1(8547), 1398–1402.PubMed Sainsbury, J. R., Farndon, J. R., Needham, G. K., Malcolm, A. J., & Harris, A. L. (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet, 1(8547), 1398–1402.PubMed
39.
go back to reference Tsutsui, S., Ohno, S., Murakami, S., Hachitanda, Y., & Oda, S. (2002). Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Research and Treatment, 71(1), 67–75.PubMedCrossRef Tsutsui, S., Ohno, S., Murakami, S., Hachitanda, Y., & Oda, S. (2002). Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Research and Treatment, 71(1), 67–75.PubMedCrossRef
40.
go back to reference Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G., & Bartlett, J. M. (2003). Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. The Journal of Pathology, 200(3), 290–297.PubMedCrossRef Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G., & Bartlett, J. M. (2003). Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. The Journal of Pathology, 200(3), 290–297.PubMedCrossRef
41.
go back to reference Rakha, E. A., El-Sayed, M. E., Green, A. R., Lee, A. H., Robertson, J. F., & Ellis, I. O. (2007). Prognostic markers in triple-negative breast cancer. Cancer, 109(1), 25–32.PubMedCrossRef Rakha, E. A., El-Sayed, M. E., Green, A. R., Lee, A. H., Robertson, J. F., & Ellis, I. O. (2007). Prognostic markers in triple-negative breast cancer. Cancer, 109(1), 25–32.PubMedCrossRef
42.
go back to reference Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767.PubMedPubMedCentralCrossRef Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767.PubMedPubMedCentralCrossRef
43.
go back to reference Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345.PubMedCrossRef Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345.PubMedCrossRef
44.
go back to reference Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60(5), 1383–1387.PubMed Frederick, L., Wang, X. Y., Eley, G., & James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Research, 60(5), 1383–1387.PubMed
45.
go back to reference Ooi, A., Takehana, T., Li, X., Suzuki, S., Kunitomo, K., Iino, H., et al. (2004). Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Modern Pathology, 17(8), 895–904.PubMedCrossRef Ooi, A., Takehana, T., Li, X., Suzuki, S., Kunitomo, K., Iino, H., et al. (2004). Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Modern Pathology, 17(8), 895–904.PubMedCrossRef
46.
go back to reference Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., et al. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern Pathology, 18(8), 1027–1033.PubMedCrossRef Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., et al. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern Pathology, 18(8), 1027–1033.PubMedCrossRef
47.
go back to reference Hanawa, M., Suzuki, S., Dobashi, Y., Yamane, T., Kono, K., Enomoto, N., et al. (2006). EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. International Journal of Cancer, 118(5), 1173–1180.PubMedCrossRef Hanawa, M., Suzuki, S., Dobashi, Y., Yamane, T., Kono, K., Enomoto, N., et al. (2006). EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. International Journal of Cancer, 118(5), 1173–1180.PubMedCrossRef
48.
go back to reference Hirsch, F. R., Varella-Garcia, M., & Cappuzzo, F. (2009). Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene, 28(Suppl 1), S32–S37.PubMedCrossRef Hirsch, F. R., Varella-Garcia, M., & Cappuzzo, F. (2009). Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene, 28(Suppl 1), S32–S37.PubMedCrossRef
49.
go back to reference Reis-Filho, J. S., Pinheiro, C., Lambros, M. B., Milanezi, F., Carvalho, S., Savage, K., et al. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. The Journal of Pathology, 209(4), 445–453.PubMedCrossRef Reis-Filho, J. S., Pinheiro, C., Lambros, M. B., Milanezi, F., Carvalho, S., Savage, K., et al. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. The Journal of Pathology, 209(4), 445–453.PubMedCrossRef
50.
go back to reference Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast cancer research : BCR., 13(2), R30.PubMedPubMedCentralCrossRef Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast cancer research : BCR., 13(2), R30.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang, J., Antonyak, M. A., Singh, G., & Cerione, R. A. (2013). A mechanism for the upregulation of EGF receptor levels in glioblastomas. Cell Reports, 3(6), 2008–2020.PubMedPubMedCentralCrossRef Zhang, J., Antonyak, M. A., Singh, G., & Cerione, R. A. (2013). A mechanism for the upregulation of EGF receptor levels in glioblastomas. Cell Reports, 3(6), 2008–2020.PubMedPubMedCentralCrossRef
52.
go back to reference Verma, A., & Mehta, K. (2007). Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resistance Updates, 10(4–5), 144–151.PubMedCrossRef Verma, A., & Mehta, K. (2007). Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resistance Updates, 10(4–5), 144–151.PubMedCrossRef
53.
go back to reference Huang, L., Xu, A. M., & Liu, W. (2015). Transglutaminase 2 in cancer. American Journal of Cancer Research, 5(9), 2756–2776.PubMedPubMedCentral Huang, L., Xu, A. M., & Liu, W. (2015). Transglutaminase 2 in cancer. American Journal of Cancer Research, 5(9), 2756–2776.PubMedPubMedCentral
54.
go back to reference Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef
55.
go back to reference Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRef Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRef
56.
go back to reference Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13306–13311.PubMedPubMedCentralCrossRef Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13306–13311.PubMedPubMedCentralCrossRef
58.
go back to reference Teng, Y. H., Tan, W. J., Thike, A. A., Cheok, P. Y., Tse, G. M., Wong, N. S., et al. (2011). Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Research, 13(2), R35.PubMedPubMedCentralCrossRef Teng, Y. H., Tan, W. J., Thike, A. A., Cheok, P. Y., Tse, G. M., Wong, N. S., et al. (2011). Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Research, 13(2), R35.PubMedPubMedCentralCrossRef
59.
go back to reference Nakai, K., Hung, M.C., Yamaguchi, H. 2016. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research, in press. Nakai, K., Hung, M.C., Yamaguchi, H. 2016. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research, in press.
60.
go back to reference Pedersen, M. W., Meltorn, M., Damstrup, L., & Poulsen, H. S. (2001). The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Annals of Oncology, 12(6), 745–760.PubMedCrossRef Pedersen, M. W., Meltorn, M., Damstrup, L., & Poulsen, H. S. (2001). The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Annals of Oncology, 12(6), 745–760.PubMedCrossRef
61.
go back to reference Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. The FEBS Journal, 280(21), 5350–5370.PubMedCrossRef Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. The FEBS Journal, 280(21), 5350–5370.PubMedCrossRef
62.
go back to reference Del Vecchio, C. A., Jensen, K. C., Nitta, R. T., Shain, A. H., Giacomini, C. P., & Wong, A. J. (2012). Epidermal growth factor receptor variant III contributes to cancer stem cell phenotypes in invasive breast carcinoma. Cancer Research, 72(10), 2657–2671.PubMedCrossRef Del Vecchio, C. A., Jensen, K. C., Nitta, R. T., Shain, A. H., Giacomini, C. P., & Wong, A. J. (2012). Epidermal growth factor receptor variant III contributes to cancer stem cell phenotypes in invasive breast carcinoma. Cancer Research, 72(10), 2657–2671.PubMedCrossRef
63.
go back to reference Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMedCrossRef Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMedCrossRef
64.
go back to reference Burgess, A. W. (2008). EGFR family: structure physiology signalling and therapeutic targets. Growth Factors, 26(5), 263–274.PubMedCrossRef Burgess, A. W. (2008). EGFR family: structure physiology signalling and therapeutic targets. Growth Factors, 26(5), 263–274.PubMedCrossRef
65.
go back to reference Marti, U., Burwen, S. J., Wells, A., Barker, M. E., Huling, S., Feren, A. M., et al. (1991). Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology, 13(1), 15–20.PubMedCrossRef Marti, U., Burwen, S. J., Wells, A., Barker, M. E., Huling, S., Feren, A. M., et al. (1991). Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology, 13(1), 15–20.PubMedCrossRef
66.
go back to reference Han, W., & Lo, H. W. (2012). Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Letters, 318(2), 124–134.PubMedPubMedCentralCrossRef Han, W., & Lo, H. W. (2012). Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Letters, 318(2), 124–134.PubMedPubMedCentralCrossRef
67.
go back to reference Lo, H. W., Xia, W., Wei, Y., Ali-Seyed, M., Huang, S. F., & Hung, M. C. (2005). Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Research, 65(1), 338–348.PubMed Lo, H. W., Xia, W., Wei, Y., Ali-Seyed, M., Huang, S. F., & Hung, M. C. (2005). Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Research, 65(1), 338–348.PubMed
68.
go back to reference Psyrri, A., Yu, Z., Weinberger, P. M., Sasaki, C., Haffty, B., Camp, R., et al. (2005). Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clinical Cancer Research, 11(16), 5856–5862.PubMedCrossRef Psyrri, A., Yu, Z., Weinberger, P. M., Sasaki, C., Haffty, B., Camp, R., et al. (2005). Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clinical Cancer Research, 11(16), 5856–5862.PubMedCrossRef
69.
go back to reference Hoshino, M., Fukui, H., Ono, Y., Sekikawa, A., Ichikawa, K., Tomita, S., et al. (2007). Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology, 74(1), 15–21.PubMedCrossRef Hoshino, M., Fukui, H., Ono, Y., Sekikawa, A., Ichikawa, K., Tomita, S., et al. (2007). Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology, 74(1), 15–21.PubMedCrossRef
70.
go back to reference Psyrri, A., Egleston, B., Weinberger, P., Yu, Z., Kowalski, D., Sasaki, C., et al. (2008). Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiology, Biomarkers & Prevention, 17(6), 1486–1492.CrossRef Psyrri, A., Egleston, B., Weinberger, P., Yu, Z., Kowalski, D., Sasaki, C., et al. (2008). Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiology, Biomarkers & Prevention, 17(6), 1486–1492.CrossRef
71.
go back to reference Xia, W., Wei, Y., Du, Y., Liu, J., Chang, B., Yu, Y. L., et al. (2009). Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Molecular Carcinogenesis, 48(7), 610–617.PubMedPubMedCentralCrossRef Xia, W., Wei, Y., Du, Y., Liu, J., Chang, B., Yu, Y. L., et al. (2009). Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Molecular Carcinogenesis, 48(7), 610–617.PubMedPubMedCentralCrossRef
72.
go back to reference Hadzisejdic, I., Mustac, E., Jonjic, N., Petkovic, M., & Grahovac, B. (2010). Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Modern Pathology, 23(3), 392–403.PubMedCrossRef Hadzisejdic, I., Mustac, E., Jonjic, N., Petkovic, M., & Grahovac, B. (2010). Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Modern Pathology, 23(3), 392–403.PubMedCrossRef
73.
go back to reference Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Kehlbach, R., & Rodemann, H. P. (2010). Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Letters, 584(18), 3878–3884.PubMedCrossRef Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Kehlbach, R., & Rodemann, H. P. (2010). Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Letters, 584(18), 3878–3884.PubMedCrossRef
74.
go back to reference Huo, L., Wang, Y. N., Xia, W., Hsu, S. C., Lai, C. C., Li, L. Y., et al. (2010). RNA helicase a is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16125–16130.PubMedPubMedCentralCrossRef Huo, L., Wang, Y. N., Xia, W., Hsu, S. C., Lai, C. C., Li, L. Y., et al. (2010). RNA helicase a is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16125–16130.PubMedPubMedCentralCrossRef
75.
go back to reference Wheeler, D. L., Dunn, E. F., & Harari, P. M. (2010). Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nature Reviews. Clinical Oncology, 7(9), 493–507.PubMedPubMedCentralCrossRef Wheeler, D. L., Dunn, E. F., & Harari, P. M. (2010). Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nature Reviews. Clinical Oncology, 7(9), 493–507.PubMedPubMedCentralCrossRef
76.
go back to reference Chen, Y. J., Huang, W. C., Wei, Y. L., Hsu, S. C., Yuan, P., Lin, H. Y., et al. (2011). Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PloS One, 6(6), e21428.PubMedPubMedCentralCrossRef Chen, Y. J., Huang, W. C., Wei, Y. L., Hsu, S. C., Yuan, P., Lin, H. Y., et al. (2011). Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PloS One, 6(6), e21428.PubMedPubMedCentralCrossRef
77.
go back to reference Huang, W. C., Chen, Y. J., Li, L. Y., Wei, Y. L., Hsu, S. C., Tsai, S. L., et al. (2011). Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. The Journal of Biological Chemistry, 286(23), 20558–20568.PubMedPubMedCentralCrossRef Huang, W. C., Chen, Y. J., Li, L. Y., Wei, Y. L., Hsu, S. C., Tsai, S. L., et al. (2011). Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. The Journal of Biological Chemistry, 286(23), 20558–20568.PubMedPubMedCentralCrossRef
78.
go back to reference Wang, Y. N., & Hung, M. C. (2012). Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell & Bioscience, 2(1), 13.CrossRef Wang, Y. N., & Hung, M. C. (2012). Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell & Bioscience, 2(1), 13.CrossRef
80.
go back to reference Wang, Y., Hsu, J. L., & Hung, M. C. (2013). Nuclear functions and trafficking of receptor tyrosine kinases. In G. Yarden YaT (Ed.), Vesicle trafficking in cancer (pp. 159–176). New York: Springer.CrossRef Wang, Y., Hsu, J. L., & Hung, M. C. (2013). Nuclear functions and trafficking of receptor tyrosine kinases. In G. Yarden YaT (Ed.), Vesicle trafficking in cancer (pp. 159–176). New York: Springer.CrossRef
81.
go back to reference Lin, S. Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K. Y., et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biology, 3(9), 802–808.PubMedCrossRef Lin, S. Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K. Y., et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biology, 3(9), 802–808.PubMedCrossRef
82.
go back to reference Lo, H. W., Hsu, S. C., Ali-Seyed, M., Gunduz, M., Xia, W., Wei, Y., et al. (2005). Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 7(6), 575–589.PubMedCrossRef Lo, H. W., Hsu, S. C., Ali-Seyed, M., Gunduz, M., Xia, W., Wei, Y., et al. (2005). Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 7(6), 575–589.PubMedCrossRef
83.
go back to reference Hung, L. Y., Tseng, J. T., Lee, Y. C., Xia, W., Wang, Y. N., Wu, M. L., et al. (2008). Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating aurora-a gene expression. Nucleic Acids Research, 36(13), 4337–4351.PubMedPubMedCentralCrossRef Hung, L. Y., Tseng, J. T., Lee, Y. C., Xia, W., Wang, Y. N., Wu, M. L., et al. (2008). Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating aurora-a gene expression. Nucleic Acids Research, 36(13), 4337–4351.PubMedPubMedCentralCrossRef
84.
go back to reference Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Raju, U., Milas, L., et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. The Journal of Biological Chemistry, 280(35), 31182–31189.PubMedCrossRef Dittmann, K., Mayer, C., Fehrenbacher, B., Schaller, M., Raju, U., Milas, L., et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. The Journal of Biological Chemistry, 280(35), 31182–31189.PubMedCrossRef
85.
go back to reference Wang, S. C., Nakajima, Y., Yu, Y. L., Xia, W., Chen, C. T., Yang, C. C., et al. (2006). Tyrosine phosphorylation controls PCNA function through protein stability. Nature Cell Biology, 8(12), 1359–1368.PubMedCrossRef Wang, S. C., Nakajima, Y., Yu, Y. L., Xia, W., Chen, C. T., Yang, C. C., et al. (2006). Tyrosine phosphorylation controls PCNA function through protein stability. Nature Cell Biology, 8(12), 1359–1368.PubMedCrossRef
86.
go back to reference Harari, D., & Yarden, Y. (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 19(53), 6102–6114.PubMedCrossRef Harari, D., & Yarden, Y. (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 19(53), 6102–6114.PubMedCrossRef
87.
go back to reference Lee-Hoeflich, S. T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K. P., et al. (2008). A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Research, 68(14), 5878–5887.PubMedCrossRef Lee-Hoeflich, S. T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K. P., et al. (2008). A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Research, 68(14), 5878–5887.PubMedCrossRef
88.
go back to reference Garrett, J. T., Sutton, C. R., Kurupi, R., Bialucha, C. U., Ettenberg, S. A., Collins, S. D., et al. (2013). Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Research, 73(19), 6013–6023.PubMedPubMedCentralCrossRef Garrett, J. T., Sutton, C. R., Kurupi, R., Bialucha, C. U., Ettenberg, S. A., Collins, S. D., et al. (2013). Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Research, 73(19), 6013–6023.PubMedPubMedCentralCrossRef
89.
go back to reference Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235(4785), 177–182.PubMedCrossRef Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235(4785), 177–182.PubMedCrossRef
90.
go back to reference Pegram, M., & Slamon, D. (2000). Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Seminars in Oncology, 27(5 Suppl 9), 13–19.PubMed Pegram, M., & Slamon, D. (2000). Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Seminars in Oncology, 27(5 Suppl 9), 13–19.PubMed
92.
go back to reference Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C., et al. (2013). Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery, 3(2), 224–237.PubMedCrossRef Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C., et al. (2013). Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery, 3(2), 224–237.PubMedCrossRef
93.
go back to reference Arteaga, C. L., & Engelman, J. A. (2014). ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell, 25(3), 282–303.PubMedPubMedCentralCrossRef Arteaga, C. L., & Engelman, J. A. (2014). ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell, 25(3), 282–303.PubMedPubMedCentralCrossRef
94.
go back to reference Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B., Henner, D., Wong, W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4285–4289.PubMedPubMedCentralCrossRef Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B., Henner, D., Wong, W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4285–4289.PubMedPubMedCentralCrossRef
95.
go back to reference Agus, D. B., Akita, R. W., Fox, W. D., Lewis, G. D., Higgins, B., Pisacane, P. I., et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2(2), 127–137.PubMedCrossRef Agus, D. B., Akita, R. W., Fox, W. D., Lewis, G. D., Higgins, B., Pisacane, P. I., et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2(2), 127–137.PubMedCrossRef
96.
go back to reference Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E., et al. (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Research, 68(22), 9280–9290.PubMedCrossRef Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E., et al. (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Research, 68(22), 9280–9290.PubMedCrossRef
97.
go back to reference Rabindran, S. K., Discafani, C. M., Rosfjord, E. C., Baxter, M., Floyd, M. B., Golas, J., et al. (2004). Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Research, 64(11), 3958–3965.PubMedCrossRef Rabindran, S. K., Discafani, C. M., Rosfjord, E. C., Baxter, M., Floyd, M. B., Golas, J., et al. (2004). Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Research, 64(11), 3958–3965.PubMedCrossRef
98.
go back to reference Konecny, G. E., Pegram, M. D., Venkatesan, N., Finn, R., Yang, G., Rahmeh, M., et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Research, 66(3), 1630–1639.PubMedCrossRef Konecny, G. E., Pegram, M. D., Venkatesan, N., Finn, R., Yang, G., Rahmeh, M., et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Research, 66(3), 1630–1639.PubMedCrossRef
99.
go back to reference Hudis, C. A. (2007). Trastuzumab—mechanism of action and use in clinical practice. The New England Journal of Medicine, 357(1), 39–51.PubMedCrossRef Hudis, C. A. (2007). Trastuzumab—mechanism of action and use in clinical practice. The New England Journal of Medicine, 357(1), 39–51.PubMedCrossRef
100.
101.
go back to reference Nagata, Y., Lan, K. H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117–127.PubMedCrossRef Nagata, Y., Lan, K. H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117–127.PubMedCrossRef
102.
go back to reference Berns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M., Beelen, K., et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12(4), 395–402.PubMedCrossRef Berns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M., Beelen, K., et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12(4), 395–402.PubMedCrossRef
103.
go back to reference Zhang, S., Huang, W. C., Li, P., Guo, H., Poh, S. B., Brady, S. W., et al. (2011). Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Medicine, 17(4), 461–469.PubMedCrossRef Zhang, S., Huang, W. C., Li, P., Guo, H., Poh, S. B., Brady, S. W., et al. (2011). Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Medicine, 17(4), 461–469.PubMedCrossRef
104.
go back to reference Nahta, R., Yuan, L. X., Zhang, B., Kobayashi, R., & Esteva, F. J. (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Research, 65(23), 11118–11128.PubMedCrossRef Nahta, R., Yuan, L. X., Zhang, B., Kobayashi, R., & Esteva, F. J. (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Research, 65(23), 11118–11128.PubMedCrossRef
105.
go back to reference Ritter, C. A., Perez-Torres, M., Rinehart, C., Guix, M., Dugger, T., Engelman, J. A., et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clinical Cancer Research, 13(16), 4909–4919.PubMedCrossRef Ritter, C. A., Perez-Torres, M., Rinehart, C., Guix, M., Dugger, T., Engelman, J. A., et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clinical Cancer Research, 13(16), 4909–4919.PubMedCrossRef
106.
go back to reference Shattuck, D. L., Miller, J. K., Carraway 3rd, K. L., & Sweeney, C. (2008). Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Research, 68(5), 1471–1477.PubMedCrossRef Shattuck, D. L., Miller, J. K., Carraway 3rd, K. L., & Sweeney, C. (2008). Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Research, 68(5), 1471–1477.PubMedCrossRef
107.
go back to reference Zhuang, G., Brantley-Sieders, D. M., Vaught, D., Yu, J., Xie, L., Wells, S., et al. (2010). Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Research, 70(1), 299–308.PubMedCrossRef Zhuang, G., Brantley-Sieders, D. M., Vaught, D., Yu, J., Xie, L., Wells, S., et al. (2010). Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Research, 70(1), 299–308.PubMedCrossRef
108.
go back to reference Scaltriti, M., Rojo, F., Ocana, A., Anido, J., Guzman, M., Cortes, J., et al. (2007). Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Journal of the National Cancer Institute, 99(8), 628–638.PubMedCrossRef Scaltriti, M., Rojo, F., Ocana, A., Anido, J., Guzman, M., Cortes, J., et al. (2007). Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Journal of the National Cancer Institute, 99(8), 628–638.PubMedCrossRef
109.
go back to reference Price-Schiavi, S. A., Jepson, S., Li, P., Arango, M., Rudland, P. S., Yee, L., et al. (2002). Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. International Journal of Cancer, 99(6), 783–791.PubMedCrossRef Price-Schiavi, S. A., Jepson, S., Li, P., Arango, M., Rudland, P. S., Yee, L., et al. (2002). Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. International Journal of Cancer, 99(6), 783–791.PubMedCrossRef
110.
go back to reference Thirumurthi, U., Shen, J., Xia, W., LaBaff, A. M., Wei, Y., Li, C. W., et al. (2014). MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling, 7(336), ra71.PubMedPubMedCentralCrossRef Thirumurthi, U., Shen, J., Xia, W., LaBaff, A. M., Wei, Y., Li, C. W., et al. (2014). MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling, 7(336), ra71.PubMedPubMedCentralCrossRef
111.
go back to reference Wang, S. C., Lien, H. C., Xia, W., Chen, I. F., Lo, H. W., Wang, Z., et al. (2004). Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell, 6(3), 251–261.PubMedCrossRef Wang, S. C., Lien, H. C., Xia, W., Chen, I. F., Lo, H. W., Wang, Z., et al. (2004). Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell, 6(3), 251–261.PubMedCrossRef
112.
go back to reference Xie, Y., & Hung, M. C. (1994). Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochemical and Biophysical Research Communications, 203(3), 1589–1598.PubMedCrossRef Xie, Y., & Hung, M. C. (1994). Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochemical and Biophysical Research Communications, 203(3), 1589–1598.PubMedCrossRef
113.
go back to reference Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., Cayrol, F., Rivas, M. A., Tkach, M., et al. (2010). Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Molecular and Cellular Biology, 30(23), 5456–5472.PubMedPubMedCentralCrossRef Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., Cayrol, F., Rivas, M. A., Tkach, M., et al. (2010). Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Molecular and Cellular Biology, 30(23), 5456–5472.PubMedPubMedCentralCrossRef
114.
go back to reference Tan, M., Jing, T., Lan, K. H., Neal, C. L., Li, P., Lee, S., et al. (2002). Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Molecular Cell, 9(5), 993–1004.PubMedCrossRef Tan, M., Jing, T., Lan, K. H., Neal, C. L., Li, P., Lee, S., et al. (2002). Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Molecular Cell, 9(5), 993–1004.PubMedCrossRef
115.
go back to reference Schillaci, R., Guzman, P., Cayrol, F., Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., et al. (2012). Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer, 12, 74.PubMedPubMedCentralCrossRef Schillaci, R., Guzman, P., Cayrol, F., Beguelin, W., Diaz Flaque, M. C., Proietti, C. J., et al. (2012). Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer, 12, 74.PubMedPubMedCentralCrossRef
116.
go back to reference Citri, A., Skaria, K. B., & Yarden, Y. (2003). The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Experimental Cell Research, 284(1), 54–65.PubMedCrossRef Citri, A., Skaria, K. B., & Yarden, Y. (2003). The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Experimental Cell Research, 284(1), 54–65.PubMedCrossRef
117.
go back to reference Carraway 3rd, K. L., Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., et al. (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387(6632), 512–516.PubMedCrossRef Carraway 3rd, K. L., Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., et al. (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387(6632), 512–516.PubMedCrossRef
118.
go back to reference Shi, F., Telesco, S. E., Liu, Y., Radhakrishnan, R., & Lemmon, M. A. (2010). ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7692–7697.PubMedPubMedCentralCrossRef Shi, F., Telesco, S. E., Liu, Y., Radhakrishnan, R., & Lemmon, M. A. (2010). ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7692–7697.PubMedPubMedCentralCrossRef
119.
go back to reference Bieche, I., Onody, P., Tozlu, S., Driouch, K., Vidaud, M., & Lidereau, R. (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. International Journal of Cancer, 106(5), 758–765.PubMedCrossRef Bieche, I., Onody, P., Tozlu, S., Driouch, K., Vidaud, M., & Lidereau, R. (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. International Journal of Cancer, 106(5), 758–765.PubMedCrossRef
120.
go back to reference deFazio, A., Chiew, Y. E., Sini, R. L., Janes, P. W., & Sutherland, R. L. (2000). Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. International Journal of Cancer, 87(4), 487–498.PubMedCrossRef deFazio, A., Chiew, Y. E., Sini, R. L., Janes, P. W., & Sutherland, R. L. (2000). Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. International Journal of Cancer, 87(4), 487–498.PubMedCrossRef
121.
go back to reference Sassen, A., Rochon, J., Wild, P., Hartmann, A., Hofstaedter, F., Schwarz, S., et al. (2008). Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Breast Cancer Research, 10(1), R2.PubMedPubMedCentralCrossRef Sassen, A., Rochon, J., Wild, P., Hartmann, A., Hofstaedter, F., Schwarz, S., et al. (2008). Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Breast Cancer Research, 10(1), R2.PubMedPubMedCentralCrossRef
122.
go back to reference Ocana, A., Vera-Badillo, F., Seruga, B., Templeton, A., Pandiella, A., & Amir, E. (2013). HER3 overexpression and survival in solid tumors: a meta-analysis. Journal of the National Cancer Institute, 105(4), 266–273.PubMedCrossRef Ocana, A., Vera-Badillo, F., Seruga, B., Templeton, A., Pandiella, A., & Amir, E. (2013). HER3 overexpression and survival in solid tumors: a meta-analysis. Journal of the National Cancer Institute, 105(4), 266–273.PubMedCrossRef
123.
go back to reference Chiu, C. G., Masoudi, H., Leung, S., Voduc, D. K., Gilks, B., Huntsman, D. G., et al. (2010). HER-3 overexpression is prognostic of reduced breast cancer survival: a study of 4046 patients. Annals of Surgery, 251(6), 1107–1116.PubMedCrossRef Chiu, C. G., Masoudi, H., Leung, S., Voduc, D. K., Gilks, B., Huntsman, D. G., et al. (2010). HER-3 overexpression is prognostic of reduced breast cancer survival: a study of 4046 patients. Annals of Surgery, 251(6), 1107–1116.PubMedCrossRef
124.
go back to reference Morrison, M. M., Hutchinson, K., Williams, M. M., Stanford, J. C., Balko, J. M., Young, C., et al. (2013). ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. The Journal of Clinical Investigation, 123(10), 4329–4343.PubMedPubMedCentralCrossRef Morrison, M. M., Hutchinson, K., Williams, M. M., Stanford, J. C., Balko, J. M., Young, C., et al. (2013). ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. The Journal of Clinical Investigation, 123(10), 4329–4343.PubMedPubMedCentralCrossRef
125.
go back to reference Jeong, E. G., Soung, Y. H., Lee, J. W., Lee, S. H., Nam, S. W., Lee, J. Y., et al. (2006). ERBB3 kinase domain mutations are rare in lung, breast and colon carcinomas. International Journal of Cancer, 119(12), 2986–2987.PubMedCrossRef Jeong, E. G., Soung, Y. H., Lee, J. W., Lee, S. H., Nam, S. W., Lee, J. Y., et al. (2006). ERBB3 kinase domain mutations are rare in lung, breast and colon carcinomas. International Journal of Cancer, 119(12), 2986–2987.PubMedCrossRef
126.
go back to reference Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466(7308), 869–873.PubMedCrossRef Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466(7308), 869–873.PubMedCrossRef
127.
go back to reference Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedPubMedCentral Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedPubMedCentral
128.
go back to reference Jaiswal, B. S., Kljavin, N. M., Stawiski, E. W., Chan, E., Parikh, C., Durinck, S., et al. (2013). Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 23(5), 603–617.PubMedCrossRef Jaiswal, B. S., Kljavin, N. M., Stawiski, E. W., Chan, E., Parikh, C., Durinck, S., et al. (2013). Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 23(5), 603–617.PubMedCrossRef
129.
go back to reference Zhang, N., Chang, Y., Rios, A., & An, Z. (2016). HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin (Shanghai)., 48(1), 39–48.PubMed Zhang, N., Chang, Y., Rios, A., & An, Z. (2016). HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin (Shanghai)., 48(1), 39–48.PubMed
130.
go back to reference Offterdinger, M., Schofer, C., Weipoltshammer, K., & Grunt, T. W. (2002). C-erbB-3: a nuclear protein in mammary epithelial cells. The Journal of Cell Biology, 157(6), 929–939.PubMedPubMedCentralCrossRef Offterdinger, M., Schofer, C., Weipoltshammer, K., & Grunt, T. W. (2002). C-erbB-3: a nuclear protein in mammary epithelial cells. The Journal of Cell Biology, 157(6), 929–939.PubMedPubMedCentralCrossRef
131.
go back to reference Andrique, L., Fauvin, D., El Maassarani, M., Colasson, H., Vannier, B., & Seite, P. (2012). ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cellular Signalling, 24(5), 1074–1085.PubMedCrossRef Andrique, L., Fauvin, D., El Maassarani, M., Colasson, H., Vannier, B., & Seite, P. (2012). ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cellular Signalling, 24(5), 1074–1085.PubMedCrossRef
132.
go back to reference Brand, T. M., Iida, M., Luthar, N., Wleklinski, M. J., Starr, M. M., & Wheeler, D. L. (2013). Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3. PloS One, 8(8), e71518.PubMedPubMedCentralCrossRef Brand, T. M., Iida, M., Luthar, N., Wleklinski, M. J., Starr, M. M., & Wheeler, D. L. (2013). Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3. PloS One, 8(8), e71518.PubMedPubMedCentralCrossRef
133.
go back to reference Koumakpayi, I. H., Diallo, J. S., Le Page, C., Lessard, L., Gleave, M., Begin, L. R., et al. (2006). Expression and nuclear localization of ErbB3 in prostate cancer. Clinical Cancer Research, 12(9), 2730–2737.PubMedCrossRef Koumakpayi, I. H., Diallo, J. S., Le Page, C., Lessard, L., Gleave, M., Begin, L. R., et al. (2006). Expression and nuclear localization of ErbB3 in prostate cancer. Clinical Cancer Research, 12(9), 2730–2737.PubMedCrossRef
134.
go back to reference Cheng, C. J., Ye, X. C., Vakar-Lopez, F., Kim, J., Tu, S. M., Chen, D. T., et al. (2007). Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Molecular Cancer Research, 5(7), 675–684.PubMedPubMedCentralCrossRef Cheng, C. J., Ye, X. C., Vakar-Lopez, F., Kim, J., Tu, S. M., Chen, D. T., et al. (2007). Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Molecular Cancer Research, 5(7), 675–684.PubMedPubMedCentralCrossRef
135.
go back to reference Harris, R. C., Chung, E., & Coffey, R. J. (2003). EGF receptor ligands. Experimental Cell Research, 284(1), 2–13.PubMedCrossRef Harris, R. C., Chung, E., & Coffey, R. J. (2003). EGF receptor ligands. Experimental Cell Research, 284(1), 2–13.PubMedCrossRef
136.
go back to reference Mill, C. P., Zordan, M. D., Rothenberg, S. M., Settleman, J., Leary, J. F., & Riese 2nd, D. J. (2011). ErbB2 is necessary for ErbB4 ligands to stimulate oncogenic activities in models of human breast cancer. Genes & Cancer, 2(8), 792–804.CrossRef Mill, C. P., Zordan, M. D., Rothenberg, S. M., Settleman, J., Leary, J. F., & Riese 2nd, D. J. (2011). ErbB2 is necessary for ErbB4 ligands to stimulate oncogenic activities in models of human breast cancer. Genes & Cancer, 2(8), 792–804.CrossRef
137.
go back to reference Naresh, A., Long, W., Vidal, G. A., Wimley, W. C., Marrero, L., Sartor, C. I., et al. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Research, 66(12), 6412–6420.PubMedCrossRef Naresh, A., Long, W., Vidal, G. A., Wimley, W. C., Marrero, L., Sartor, C. I., et al. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Research, 66(12), 6412–6420.PubMedCrossRef
138.
go back to reference Uberall, I., Kolar, Z., Trojanec, R., Berkovcova, J., & Hajduch, M. (2008). The status and role of ErbB receptors in human cancer. Experimental and Molecular Pathology, 84(2), 79–89.PubMedCrossRef Uberall, I., Kolar, Z., Trojanec, R., Berkovcova, J., & Hajduch, M. (2008). The status and role of ErbB receptors in human cancer. Experimental and Molecular Pathology, 84(2), 79–89.PubMedCrossRef
139.
go back to reference Tang, C. K., Concepcion, X. Z., Milan, M., Gong, X., Montgomery, E., & Lippman, M. E. (1999). Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Research, 59(20), 5315–5322.PubMed Tang, C. K., Concepcion, X. Z., Milan, M., Gong, X., Montgomery, E., & Lippman, M. E. (1999). Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Research, 59(20), 5315–5322.PubMed
140.
go back to reference Canfield, K., Li, J., Wilkins, O. M., Morrison, M. M., Ung, M., Wells, W., et al. (2015). Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 14(4), 648–655.PubMedPubMedCentralCrossRef Canfield, K., Li, J., Wilkins, O. M., Morrison, M. M., Ung, M., Wells, W., et al. (2015). Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 14(4), 648–655.PubMedPubMedCentralCrossRef
141.
go back to reference Kim, J. Y., Jung, H. H., Do, I. G., Bae, S., Lee, S. K., Kim, S. W., et al. (2016). Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer, 16, 138.PubMedPubMedCentralCrossRef Kim, J. Y., Jung, H. H., Do, I. G., Bae, S., Lee, S. K., Kim, S. W., et al. (2016). Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer, 16, 138.PubMedPubMedCentralCrossRef
142.
go back to reference Gilbertson, R., Hernan, R., Pietsch, T., Pinto, L., Scotting, P., Allibone, R., et al. (2001). Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes, Chromosomes & Cancer, 31(3), 288–294.CrossRef Gilbertson, R., Hernan, R., Pietsch, T., Pinto, L., Scotting, P., Allibone, R., et al. (2001). Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes, Chromosomes & Cancer, 31(3), 288–294.CrossRef
143.
go back to reference Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedPubMedCentralCrossRef Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedPubMedCentralCrossRef
144.
go back to reference Prickett, T. D., Agrawal, N. S., Wei, X., Yates, K. E., Lin, J. C., Wunderlich, J. R., et al. (2009). Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nature Genetics, 41(10), 1127–1132.PubMedPubMedCentralCrossRef Prickett, T. D., Agrawal, N. S., Wei, X., Yates, K. E., Lin, J. C., Wunderlich, J. R., et al. (2009). Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nature Genetics, 41(10), 1127–1132.PubMedPubMedCentralCrossRef
145.
go back to reference Kurppa, K. J., Denessiouk, K., Johnson, M. S., & Elenius, K. (2016). Activating ERBB4 mutations in non-small cell lung cancer. Oncogene, 35(10), 1283–1291.PubMedCrossRef Kurppa, K. J., Denessiouk, K., Johnson, M. S., & Elenius, K. (2016). Activating ERBB4 mutations in non-small cell lung cancer. Oncogene, 35(10), 1283–1291.PubMedCrossRef
146.
go back to reference Srinivasan, R., Gillett, C. E., Barnes, D. M., & Gullick, W. J. (2000). Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Research, 60(6), 1483–1487.PubMed Srinivasan, R., Gillett, C. E., Barnes, D. M., & Gullick, W. J. (2000). Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Research, 60(6), 1483–1487.PubMed
147.
go back to reference Thompson, M., Lauderdale, S., Webster, M. J., Chong, V. Z., McClintock, B., Saunders, R., et al. (2007). Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain. Brain Research, 1139, 95–109.PubMedCrossRef Thompson, M., Lauderdale, S., Webster, M. J., Chong, V. Z., McClintock, B., Saunders, R., et al. (2007). Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain. Brain Research, 1139, 95–109.PubMedCrossRef
148.
go back to reference Icli, B., Bharti, A., Pentassuglia, L., Peng, X., & Sawyer, D. B. (2012). ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response. Biochemical and Biophysical Research Communications, 418(1), 116–121.PubMedPubMedCentralCrossRef Icli, B., Bharti, A., Pentassuglia, L., Peng, X., & Sawyer, D. B. (2012). ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response. Biochemical and Biophysical Research Communications, 418(1), 116–121.PubMedPubMedCentralCrossRef
149.
go back to reference Ni, C. Y., Murphy, M. P., Golde, T. E., & Carpenter, G. (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science, 294(5549), 2179–2181.PubMedCrossRef Ni, C. Y., Murphy, M. P., Golde, T. E., & Carpenter, G. (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science, 294(5549), 2179–2181.PubMedCrossRef
150.
go back to reference Williams, C. C., Allison, J. G., Vidal, G. A., Burow, M. E., Beckman, B. S., Marrero, L., et al. (2004). The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. The Journal of Cell Biology, 167(3), 469–478.PubMedPubMedCentralCrossRef Williams, C. C., Allison, J. G., Vidal, G. A., Burow, M. E., Beckman, B. S., Marrero, L., et al. (2004). The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. The Journal of Cell Biology, 167(3), 469–478.PubMedPubMedCentralCrossRef
151.
go back to reference Linggi, B., & Carpenter, G. (2006). ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. The Journal of Biological Chemistry, 281(35), 25373–25380.PubMedCrossRef Linggi, B., & Carpenter, G. (2006). ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. The Journal of Biological Chemistry, 281(35), 25373–25380.PubMedCrossRef
152.
go back to reference Arasada, R. R., & Carpenter, G. (2005). Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. The Journal of Biological Chemistry, 280(35), 30783–30787.PubMedCrossRef Arasada, R. R., & Carpenter, G. (2005). Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. The Journal of Biological Chemistry, 280(35), 30783–30787.PubMedCrossRef
153.
go back to reference Junttila, T. T., Sundvall, M., Lundin, M., Lundin, J., Tanner, M., Harkonen, P., et al. (2005). Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Research, 65(4), 1384–1393.PubMedCrossRef Junttila, T. T., Sundvall, M., Lundin, M., Lundin, J., Tanner, M., Harkonen, P., et al. (2005). Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Research, 65(4), 1384–1393.PubMedCrossRef
154.
go back to reference Naresh, A., Thor, A. D., Edgerton, S. M., Torkko, K. C., Kumar, R., & Jones, F. E. (2008). The HER4/4ICD estrogen receptor coactivator and BH3-only protein is an effector of tamoxifen-induced apoptosis. Cancer Research, 68(15), 6387–6395.PubMedPubMedCentralCrossRef Naresh, A., Thor, A. D., Edgerton, S. M., Torkko, K. C., Kumar, R., & Jones, F. E. (2008). The HER4/4ICD estrogen receptor coactivator and BH3-only protein is an effector of tamoxifen-induced apoptosis. Cancer Research, 68(15), 6387–6395.PubMedPubMedCentralCrossRef
155.
go back to reference Trusolino, L., Bertotti, A., & Comoglio, P. M. (2010). MET signalling: principles and functions in development, organ regeneration and cancer. Nature Reviews. Molecular Cell Biology, 11(12), 834–848.PubMedCrossRef Trusolino, L., Bertotti, A., & Comoglio, P. M. (2010). MET signalling: principles and functions in development, organ regeneration and cancer. Nature Reviews. Molecular Cell Biology, 11(12), 834–848.PubMedCrossRef
156.
go back to reference Lai, A. Z., Abella, J. V., & Park, M. (2009). Crosstalk in met receptor oncogenesis. Trends in Cell Biology, 19(10), 542–551.PubMedCrossRef Lai, A. Z., Abella, J. V., & Park, M. (2009). Crosstalk in met receptor oncogenesis. Trends in Cell Biology, 19(10), 542–551.PubMedCrossRef
157.
go back to reference Ho-Yen, C. M., Jones, J. L., & Kermorgant, S. (2015). The clinical and functional significance of c-met in breast cancer: a review. Breast Cancer Research, 17, 52.PubMedPubMedCentralCrossRef Ho-Yen, C. M., Jones, J. L., & Kermorgant, S. (2015). The clinical and functional significance of c-met in breast cancer: a review. Breast Cancer Research, 17, 52.PubMedPubMedCentralCrossRef
158.
go back to reference Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316(5827), 1039–1043.PubMedCrossRef Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316(5827), 1039–1043.PubMedCrossRef
159.
go back to reference Ghoussoub, R. A., Dillon, D. A., D’Aquila, T., Rimm, E. B., Fearon, E. R., & Rimm, D. L. (1998). Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer, 82(8), 1513–1520.PubMedCrossRef Ghoussoub, R. A., Dillon, D. A., D’Aquila, T., Rimm, E. B., Fearon, E. R., & Rimm, D. L. (1998). Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer, 82(8), 1513–1520.PubMedCrossRef
160.
go back to reference Lengyel, E., Prechtel, D., Resau, J. H., Gauger, K., Welk, A., Lindemann, K., et al. (2005). C-met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. International Journal of Cancer, 113(4), 678–682.PubMedCrossRef Lengyel, E., Prechtel, D., Resau, J. H., Gauger, K., Welk, A., Lindemann, K., et al. (2005). C-met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. International Journal of Cancer, 113(4), 678–682.PubMedCrossRef
161.
go back to reference Lee, W. Y., Chen, H. H., Chow, N. H., Su, W. C., Lin, P. W., & Guo, H. R. (2005). Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clinical Cancer Research, 11(6), 2222–2228.PubMedCrossRef Lee, W. Y., Chen, H. H., Chow, N. H., Su, W. C., Lin, P. W., & Guo, H. R. (2005). Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clinical Cancer Research, 11(6), 2222–2228.PubMedCrossRef
162.
go back to reference Minuti, G., Cappuzzo, F., Duchnowska, R., Jassem, J., Fabi, A., O’Brien, T., et al. (2012). Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. British Journal of Cancer, 107(5), 793–799.PubMedPubMedCentralCrossRef Minuti, G., Cappuzzo, F., Duchnowska, R., Jassem, J., Fabi, A., O’Brien, T., et al. (2012). Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. British Journal of Cancer, 107(5), 793–799.PubMedPubMedCentralCrossRef
163.
go back to reference Kim, Y. J., Choi, J. S., Seo, J., Song, J. Y., Lee, S. E., Kwon, M. J., et al. (2014). MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. International Journal of Cancer, 134(10), 2424–2436.PubMedCrossRef Kim, Y. J., Choi, J. S., Seo, J., Song, J. Y., Lee, S. E., Kwon, M. J., et al. (2014). MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. International Journal of Cancer, 134(10), 2424–2436.PubMedCrossRef
164.
go back to reference Hsu, Y. H., Yao, J., Chan, L. C., Wu, T. J., Hsu, J. L., Fang, Y. F., et al. (2014). Definition of PKC-alpha, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Research, 74(17), 4822–4835.PubMedPubMedCentralCrossRef Hsu, Y. H., Yao, J., Chan, L. C., Wu, T. J., Hsu, J. L., Fang, Y. F., et al. (2014). Definition of PKC-alpha, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Research, 74(17), 4822–4835.PubMedPubMedCentralCrossRef
165.
go back to reference Du, Y., Yamaguchi, H., Wei, Y., Hsu, J. L., Wang, H. L., Hsu, Y. H., et al. (2016). Blocking c-met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nature Medicine, 22(2), 194–201.PubMedPubMedCentralCrossRef Du, Y., Yamaguchi, H., Wei, Y., Hsu, J. L., Wang, H. L., Hsu, Y. H., et al. (2016). Blocking c-met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nature Medicine, 22(2), 194–201.PubMedPubMedCentralCrossRef
166.
go back to reference Orton, T. C., Doughty, S. E., Kalinowski, A. E., Lord, P. G., & Wadsworth, P. F. (1996). Expression of growth factors and growth factor receptors in the liver of C57BL/10J mice following administration of phenobarbitone. Carcinogenesis, 17(5), 973–981.PubMedCrossRef Orton, T. C., Doughty, S. E., Kalinowski, A. E., Lord, P. G., & Wadsworth, P. F. (1996). Expression of growth factors and growth factor receptors in the liver of C57BL/10J mice following administration of phenobarbitone. Carcinogenesis, 17(5), 973–981.PubMedCrossRef
167.
go back to reference Pozner-Moulis, S., Pappas, D. J., & Rimm, D. L. (2006). Met, the hepatocyte growth factor receptor, localizes to the nucleus in cells at low density. Cancer Research, 66(16), 7976–7982.PubMedCrossRef Pozner-Moulis, S., Pappas, D. J., & Rimm, D. L. (2006). Met, the hepatocyte growth factor receptor, localizes to the nucleus in cells at low density. Cancer Research, 66(16), 7976–7982.PubMedCrossRef
168.
go back to reference Matteucci, E., Bendinelli, P., & Desiderio, M. A. (2009). Nuclear localization of active HGF receptor met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis, 30(6), 937–945.PubMedCrossRef Matteucci, E., Bendinelli, P., & Desiderio, M. A. (2009). Nuclear localization of active HGF receptor met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis, 30(6), 937–945.PubMedCrossRef
169.
go back to reference Gomes, D. A., Rodrigues, M. A., Leite, M. F., Gomez, M. V., Varnai, P., Balla, T., et al. (2008). C-met must translocate to the nucleus to initiate calcium signals. The Journal of Biological Chemistry, 283(7), 4344–4351.PubMedCrossRef Gomes, D. A., Rodrigues, M. A., Leite, M. F., Gomez, M. V., Varnai, P., Balla, T., et al. (2008). C-met must translocate to the nucleus to initiate calcium signals. The Journal of Biological Chemistry, 283(7), 4344–4351.PubMedCrossRef
170.
go back to reference Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews. Cancer, 8(12), 915–928.PubMedCrossRef Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews. Cancer, 8(12), 915–928.PubMedCrossRef
171.
go back to reference Saldana, S. M., Lee, H. H., Lowery, F. J., Khotskaya, Y. B., Xia, W., Zhang, C., et al. (2013). Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis. PloS One, 8(9), e73406.PubMedPubMedCentralCrossRef Saldana, S. M., Lee, H. H., Lowery, F. J., Khotskaya, Y. B., Xia, W., Zhang, C., et al. (2013). Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis. PloS One, 8(9), e73406.PubMedPubMedCentralCrossRef
172.
go back to reference Farabaugh, S. M., Boone, D. N., & Lee, A. V. (2015). Role of IGF1R in breast cancer subtypes, Stemness, and lineage differentiation. Front Endocrinol (Lausanne), 6, 59. Farabaugh, S. M., Boone, D. N., & Lee, A. V. (2015). Role of IGF1R in breast cancer subtypes, Stemness, and lineage differentiation. Front Endocrinol (Lausanne), 6, 59.
173.
go back to reference Beckwith, H., & Yee, D. (2015). Minireview: were the IGF signaling inhibitors all bad? Molecular Endocrinology, 29(11), 1549–1557.PubMedCrossRef Beckwith, H., & Yee, D. (2015). Minireview: were the IGF signaling inhibitors all bad? Molecular Endocrinology, 29(11), 1549–1557.PubMedCrossRef
174.
go back to reference Aleksic, T., Chitnis, M. M., Perestenko, O. V., Gao, S., Thomas, P. H., Turner, G. D., et al. (2010). Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Research, 70(16), 6412–6419.PubMedPubMedCentralCrossRef Aleksic, T., Chitnis, M. M., Perestenko, O. V., Gao, S., Thomas, P. H., Turner, G. D., et al. (2010). Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Research, 70(16), 6412–6419.PubMedPubMedCentralCrossRef
175.
go back to reference Warsito, D., Sjostrom, S., Andersson, S., Larsson, O., & Sehat, B. (2012). Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Reports, 13(3), 244–250.PubMedPubMedCentralCrossRef Warsito, D., Sjostrom, S., Andersson, S., Larsson, O., & Sehat, B. (2012). Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Reports, 13(3), 244–250.PubMedPubMedCentralCrossRef
176.
go back to reference Warsito, D., Lin, Y., Gnirck, A. C., Sehat, B., Larsson, O. 2016. Nuclearly translocated insulin-like growth factor 1 receptor phosphorylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget. Warsito, D., Lin, Y., Gnirck, A. C., Sehat, B., Larsson, O. 2016. Nuclearly translocated insulin-like growth factor 1 receptor phosphorylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget.
177.
go back to reference Bodzin, A. S., Wei, Z., Hurtt, R., Gu, T., & Doria, C. (2012). Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. Journal of Cellular Physiology, 227(7), 2947–2952.PubMedCrossRef Bodzin, A. S., Wei, Z., Hurtt, R., Gu, T., & Doria, C. (2012). Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. Journal of Cellular Physiology, 227(7), 2947–2952.PubMedCrossRef
178.
go back to reference Murray, P. B., Lax, I., Reshetnyak, A., Ligon, G. F., Lillquist, J. S., Natoli Jr., E. J., et al. (2015). Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Science Signaling, 8(360), ra6.PubMedCrossRef Murray, P. B., Lax, I., Reshetnyak, A., Ligon, G. F., Lillquist, J. S., Natoli Jr., E. J., et al. (2015). Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Science Signaling, 8(360), ra6.PubMedCrossRef
179.
go back to reference Hallberg, B., & Palmer, R. H. (2013). Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nature Reviews. Cancer, 13(10), 685–700.PubMedCrossRef Hallberg, B., & Palmer, R. H. (2013). Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nature Reviews. Cancer, 13(10), 685–700.PubMedCrossRef
180.
go back to reference Lin, E., Li, L., Guan, Y., Soriano, R., Rivers, C. S., Mohan, S., et al. (2009). Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Molecular Cancer Research, 7(9), 1466–1476.PubMedCrossRef Lin, E., Li, L., Guan, Y., Soriano, R., Rivers, C. S., Mohan, S., et al. (2009). Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Molecular Cancer Research, 7(9), 1466–1476.PubMedCrossRef
181.
go back to reference Barreca, A., Lasorsa, E., Riera, L., Machiorlatti, R., Piva, R., Ponzoni, M., et al. (2011). Anaplastic lymphoma kinase in human cancer. Journal of Molecular Endocrinology, 47(1), R11–R23.PubMedCrossRef Barreca, A., Lasorsa, E., Riera, L., Machiorlatti, R., Piva, R., Ponzoni, M., et al. (2011). Anaplastic lymphoma kinase in human cancer. Journal of Molecular Endocrinology, 47(1), R11–R23.PubMedCrossRef
182.
go back to reference Robertson, F. M., Petricoin Iii, E. F., Van Laere, S. J., Bertucci, F., Chu, K., Fernandez, S. V., et al. (2013). Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus., 2, 497.PubMedPubMedCentralCrossRef Robertson, F. M., Petricoin Iii, E. F., Van Laere, S. J., Bertucci, F., Chu, K., Fernandez, S. V., et al. (2013). Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus., 2, 497.PubMedPubMedCentralCrossRef
183.
go back to reference Siraj, A. K., Beg, S., Jehan, Z., Prabhakaran, S., Ahmed, M., RH, A., et al. (2015). ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research, 17, 127.PubMedPubMedCentralCrossRef Siraj, A. K., Beg, S., Jehan, Z., Prabhakaran, S., Ahmed, M., RH, A., et al. (2015). ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research, 17, 127.PubMedPubMedCentralCrossRef
184.
go back to reference Choi, Y. L., Soda, M., Yamashita, Y., Ueno, T., Takashima, J., Nakajima, T., et al. (2010). EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. The New England Journal of Medicine, 363(18), 1734–1739.PubMedCrossRef Choi, Y. L., Soda, M., Yamashita, Y., Ueno, T., Takashima, J., Nakajima, T., et al. (2010). EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. The New England Journal of Medicine, 363(18), 1734–1739.PubMedCrossRef
185.
go back to reference Shaw, A. T., Friboulet, L., Leshchiner, I., Gainor, J. F., Bergqvist, S., Brooun, A., et al. (2016). Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. The New England Journal of Medicine, 374(1), 54–61.PubMedCrossRef Shaw, A. T., Friboulet, L., Leshchiner, I., Gainor, J. F., Bergqvist, S., Brooun, A., et al. (2016). Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. The New England Journal of Medicine, 374(1), 54–61.PubMedCrossRef
186.
go back to reference Xiong, Q., Chan, J. L., Zong, C. S., & Wang, L. H. (1996). Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Molecular and Cellular Biology, 16(4), 1509–1518.PubMedPubMedCentralCrossRef Xiong, Q., Chan, J. L., Zong, C. S., & Wang, L. H. (1996). Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Molecular and Cellular Biology, 16(4), 1509–1518.PubMedPubMedCentralCrossRef
187.
188.
go back to reference Solomon, B. (2015). Validating ROS1 rearrangements as a therapeutic target in non-small-cell lung cancer. Journal of Clinical Oncology, 33(9), 972–974.PubMedCrossRef Solomon, B. (2015). Validating ROS1 rearrangements as a therapeutic target in non-small-cell lung cancer. Journal of Clinical Oncology, 33(9), 972–974.PubMedCrossRef
189.
go back to reference Shaw, A. T., Ou, S. H., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., et al. (2014). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England Journal of Medicine, 371(21), 1963–1971.PubMedPubMedCentralCrossRef Shaw, A. T., Ou, S. H., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., et al. (2014). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England Journal of Medicine, 371(21), 1963–1971.PubMedPubMedCentralCrossRef
190.
go back to reference Mazieres, J., Zalcman, G., Crino, L., Biondani, P., Barlesi, F., Filleron, T., et al. (2015). Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. Journal of Clinical Oncology, 33(9), 992–999.PubMedCrossRef Mazieres, J., Zalcman, G., Crino, L., Biondani, P., Barlesi, F., Filleron, T., et al. (2015). Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. Journal of Clinical Oncology, 33(9), 992–999.PubMedCrossRef
191.
go back to reference Eom, M., Lkhagvadorj, S., Oh, S. S., Han, A., & Park, K. H. (2013). ROS1 expression in invasive ductal carcinoma of the breast related to proliferation activity. Yonsei Medical Journal, 54(3), 650–657.PubMedPubMedCentralCrossRef Eom, M., Lkhagvadorj, S., Oh, S. S., Han, A., & Park, K. H. (2013). ROS1 expression in invasive ductal carcinoma of the breast related to proliferation activity. Yonsei Medical Journal, 54(3), 650–657.PubMedPubMedCentralCrossRef
192.
193.
go back to reference Halford, M. M., & Stacker, S. A. (2001). Revelations of the RYK receptor. BioEssays, 23(1), 34–45.PubMedCrossRef Halford, M. M., & Stacker, S. A. (2001). Revelations of the RYK receptor. BioEssays, 23(1), 34–45.PubMedCrossRef
194.
go back to reference Cadigan, K. M., & Liu, Y. I. (2006). Wnt signaling: complexity at the surface. Journal of Cell Science, 119(Pt 3), 395–402.PubMedCrossRef Cadigan, K. M., & Liu, Y. I. (2006). Wnt signaling: complexity at the surface. Journal of Cell Science, 119(Pt 3), 395–402.PubMedCrossRef
195.
go back to reference Lyu, J., Yamamoto, V., & Lu, W. (2008). Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Developmental Cell, 15(5), 773–780.PubMedCrossRef Lyu, J., Yamamoto, V., & Lu, W. (2008). Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Developmental Cell, 15(5), 773–780.PubMedCrossRef
196.
go back to reference Lyu, J., Wesselschmidt, R. L., & Lu, W. (2009). Cdc37 regulates Ryk signaling by stabilizing the cleaved Ryk intracellular domain. The Journal of Biological Chemistry, 284(19), 12940–12948.PubMedPubMedCentralCrossRef Lyu, J., Wesselschmidt, R. L., & Lu, W. (2009). Cdc37 regulates Ryk signaling by stabilizing the cleaved Ryk intracellular domain. The Journal of Biological Chemistry, 284(19), 12940–12948.PubMedPubMedCentralCrossRef
197.
go back to reference Zhong, J., Kim, H. T., Lyu, J., Yoshikawa, K., Nakafuku, M., & Lu, W. (2011). The Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development. Development, 138(3), 409–419.PubMedPubMedCentralCrossRef Zhong, J., Kim, H. T., Lyu, J., Yoshikawa, K., Nakafuku, M., & Lu, W. (2011). The Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development. Development, 138(3), 409–419.PubMedPubMedCentralCrossRef
198.
go back to reference Katso, R. M., Manek, S., Ganjavi, H., Biddolph, S., Charnock, M. F., Bradburn, M., et al. (2000). Overexpression of H-Ryk in epithelial ovarian cancer: prognostic significance of receptor expression. Clinical Cancer Research, 6(8), 3271–3281.PubMed Katso, R. M., Manek, S., Ganjavi, H., Biddolph, S., Charnock, M. F., Bradburn, M., et al. (2000). Overexpression of H-Ryk in epithelial ovarian cancer: prognostic significance of receptor expression. Clinical Cancer Research, 6(8), 3271–3281.PubMed
199.
go back to reference Alvarez-Zavala, M., Riveros-Magana, A. R., Garcia-Castro, B., Barrera-Chairez, E., Rubio-Jurado, B., Garces-Ruiz, O. M., et al. (2016). WNT receptors profile expression in mature blood cells and immature leukemic cells: RYK emerges as a hallmark receptor of acute leukemia. European Journal of Haematology, 97(2), 155–165.PubMedCrossRef Alvarez-Zavala, M., Riveros-Magana, A. R., Garcia-Castro, B., Barrera-Chairez, E., Rubio-Jurado, B., Garces-Ruiz, O. M., et al. (2016). WNT receptors profile expression in mature blood cells and immature leukemic cells: RYK emerges as a hallmark receptor of acute leukemia. European Journal of Haematology, 97(2), 155–165.PubMedCrossRef
200.
go back to reference Carpenter, G., Lembach, K. J., Morrison, M. M., & Cohen, S. (1975). Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. The Journal of Biological Chemistry, 250(11), 4297–4304.PubMed Carpenter, G., Lembach, K. J., Morrison, M. M., & Cohen, S. (1975). Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. The Journal of Biological Chemistry, 250(11), 4297–4304.PubMed
201.
go back to reference Carpenter, G., King Jr., L., & Cohen, S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 276(5686), 409–410.PubMedCrossRef Carpenter, G., King Jr., L., & Cohen, S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 276(5686), 409–410.PubMedCrossRef
202.
go back to reference Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., et al. (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 309(5967), 418–425.PubMedCrossRef Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., et al. (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 309(5967), 418–425.PubMedCrossRef
203.
go back to reference Liao, H. W., Hsu, J. M., Xia, W., Wang, H. L., Wang, Y. N., Chang, W. C., et al. (2015). PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. The Journal of clinical investigation., 125(12), 4529–4543.PubMedPubMedCentralCrossRef Liao, H. W., Hsu, J. M., Xia, W., Wang, H. L., Wang, Y. N., Chang, W. C., et al. (2015). PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. The Journal of clinical investigation., 125(12), 4529–4543.PubMedPubMedCentralCrossRef
204.
go back to reference Mai, A., Cheng, D., Bedford, M. T., Valente, S., Nebbioso, A., Perrone, A., et al. (2008). Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. Journal of medicinal chemistry., 51(7), 2279–2290.PubMedCrossRef Mai, A., Cheng, D., Bedford, M. T., Valente, S., Nebbioso, A., Perrone, A., et al. (2008). Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. Journal of medicinal chemistry., 51(7), 2279–2290.PubMedCrossRef
205.
go back to reference Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.PubMedCrossRef Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.PubMedCrossRef
206.
go back to reference Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 161(2), 205–214.PubMedCrossRef Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 161(2), 205–214.PubMedCrossRef
207.
go back to reference Li, C. W., Lim, S. O., Xia, W., Lee, H. H., Chan, L. C., Kuo, C. W., et al. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632.PubMedPubMedCentralCrossRef Li, C. W., Lim, S. O., Xia, W., Lee, H. H., Chan, L. C., Kuo, C. W., et al. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632.PubMedPubMedCentralCrossRef
208.
go back to reference Yang, X., Zhang, X., Mortenson, E. D., Radkevich-Brown, O., Wang, Y., & Fu, Y. X. (2013). Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Molecular therapy : the journal of the American Society of Gene Therapy., 21(1), 91–100.CrossRef Yang, X., Zhang, X., Mortenson, E. D., Radkevich-Brown, O., Wang, Y., & Fu, Y. X. (2013). Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Molecular therapy : the journal of the American Society of Gene Therapy., 21(1), 91–100.CrossRef
Metadata
Title
The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer
Authors
Jennifer L. Hsu
Mien-Chie Hung
Publication date
01-12-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9649-6

Other articles of this Issue 4/2016

Cancer and Metastasis Reviews 4/2016 Go to the issue

Announcement

Biography—Li Ma

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine