Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network

Author: Lakshmanane Boominathan

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians—p53, p73, and p63—of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.
Literature
1.
go back to reference Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.PubMedCrossRef Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.PubMedCrossRef
2.
go back to reference Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.PubMedCrossRef Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.PubMedCrossRef
3.
go back to reference Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.PubMed Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.PubMed
4.
go back to reference Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMed Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMed
5.
go back to reference Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed
6.
go back to reference Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.PubMedCrossRef Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.PubMedCrossRef
7.
go back to reference Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.PubMed Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.PubMed
8.
go back to reference Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.CrossRef Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.CrossRef
9.
go back to reference Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.PubMedCrossRef Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.PubMedCrossRef
10.
go back to reference Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.PubMedCrossRef Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.PubMedCrossRef
11.
go back to reference Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.PubMed Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.PubMed
12.
go back to reference Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.PubMedCrossRef Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.PubMedCrossRef
13.
go back to reference Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.CrossRef Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.CrossRef
14.
go back to reference Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.PubMedCrossRef Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.PubMedCrossRef
15.
go back to reference Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press) Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press)
16.
go back to reference Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedCrossRef Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedCrossRef
17.
go back to reference Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.PubMedCrossRef Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.PubMedCrossRef
18.
go back to reference Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.PubMedCrossRef Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.PubMedCrossRef
19.
go back to reference Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.CrossRef Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.CrossRef
20.
go back to reference He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.PubMedCrossRef He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.PubMedCrossRef
21.
go back to reference Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.CrossRef Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.CrossRef
22.
go back to reference Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.PubMedCrossRef Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.PubMedCrossRef
23.
go back to reference Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.PubMed Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.PubMed
24.
go back to reference Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.PubMedCrossRef Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.PubMedCrossRef
25.
go back to reference Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMedCrossRef Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMedCrossRef
26.
go back to reference Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.PubMedCrossRef Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.PubMedCrossRef
27.
go back to reference Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMedCrossRef Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMedCrossRef
28.
go back to reference Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.PubMed Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.PubMed
29.
go back to reference Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734. Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734.
30.
go back to reference Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.PubMedCrossRef Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.PubMedCrossRef
31.
go back to reference Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.PubMedCrossRef Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.PubMedCrossRef
32.
go back to reference Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.PubMedCrossRef Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.PubMedCrossRef
33.
go back to reference Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.PubMedCrossRef Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.PubMedCrossRef
34.
go back to reference Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.PubMed Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.PubMed
35.
go back to reference Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedCrossRef Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedCrossRef
36.
go back to reference Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.CrossRef Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.CrossRef
37.
go back to reference Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.PubMedCrossRef Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.PubMedCrossRef
38.
go back to reference Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMedCrossRef Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMedCrossRef
39.
go back to reference Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.PubMedCrossRef Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.PubMedCrossRef
40.
go back to reference Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111. Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111.
41.
go back to reference Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMedCrossRef Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMedCrossRef
42.
go back to reference Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.PubMedCrossRef Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.PubMedCrossRef
43.
go back to reference Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.PubMedCrossRef Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.PubMedCrossRef
44.
go back to reference Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.PubMedCrossRef Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.PubMedCrossRef
45.
go back to reference Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.PubMedCrossRef Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.PubMedCrossRef
46.
go back to reference Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.PubMedCrossRef Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.PubMedCrossRef
47.
go back to reference Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.PubMedCrossRef Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.PubMedCrossRef
48.
go back to reference Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMedCrossRef Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMedCrossRef
49.
go back to reference Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.PubMedCrossRef Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.PubMedCrossRef
50.
go back to reference Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedCrossRef Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedCrossRef
51.
go back to reference Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press) Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press)
52.
go back to reference Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.PubMedCrossRef Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.PubMedCrossRef
55.
go back to reference Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.PubMedCrossRef Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.PubMedCrossRef
56.
go back to reference Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.PubMedCrossRef Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.PubMedCrossRef
57.
go back to reference Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.PubMedCrossRef Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.PubMedCrossRef
58.
go back to reference Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.PubMedCrossRef Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.PubMedCrossRef
59.
go back to reference Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef
60.
go back to reference Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12). Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12).
61.
go back to reference Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedCrossRef Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedCrossRef
62.
go back to reference Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.PubMedCrossRef Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.PubMedCrossRef
63.
go back to reference Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.PubMedCrossRef Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.PubMedCrossRef
64.
go back to reference Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMedCrossRef Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMedCrossRef
65.
go back to reference Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.PubMedCrossRef Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.PubMedCrossRef
66.
go back to reference Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRef Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRef
67.
go back to reference Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.PubMedCrossRef Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.PubMedCrossRef
68.
go back to reference Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.PubMedCrossRef Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.PubMedCrossRef
69.
go back to reference Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.PubMedCrossRef Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.PubMedCrossRef
70.
go back to reference Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.CrossRef Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.CrossRef
71.
go back to reference Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.PubMedCrossRef Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.PubMedCrossRef
72.
go back to reference Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.PubMedCrossRef Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.PubMedCrossRef
73.
go back to reference Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedCrossRef Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedCrossRef
74.
go back to reference Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.CrossRef Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.CrossRef
75.
go back to reference Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.PubMedCrossRef Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.PubMedCrossRef
76.
go back to reference Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.PubMedCrossRef Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.PubMedCrossRef
77.
go back to reference Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.PubMed Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.PubMed
78.
go back to reference Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.PubMedCrossRef Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.PubMedCrossRef
79.
go back to reference Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.PubMedCrossRef Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.PubMedCrossRef
80.
go back to reference Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.PubMedCrossRef Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.PubMedCrossRef
81.
go back to reference Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.PubMedCrossRef Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.PubMedCrossRef
82.
go back to reference Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.PubMedCrossRef Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.PubMedCrossRef
83.
go back to reference Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.PubMedCrossRef Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.PubMedCrossRef
84.
go back to reference Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.PubMedCrossRef Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.PubMedCrossRef
85.
go back to reference Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef
86.
go back to reference Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631. Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631.
87.
go back to reference Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.CrossRef Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.CrossRef
88.
go back to reference Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.PubMed Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.PubMed
89.
go back to reference Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.PubMedCrossRef Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.PubMedCrossRef
90.
go back to reference Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.PubMedCrossRef Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.PubMedCrossRef
91.
go back to reference Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.PubMedCrossRef Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.PubMedCrossRef
92.
go back to reference Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.PubMedCrossRef Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.PubMedCrossRef
93.
go back to reference Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.PubMedCrossRef Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.PubMedCrossRef
94.
go back to reference Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.PubMedCrossRef Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.PubMedCrossRef
95.
go back to reference Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.PubMedCrossRef Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.PubMedCrossRef
96.
go back to reference Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.PubMed Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.PubMed
97.
go back to reference Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.PubMedCrossRef Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.PubMedCrossRef
98.
go back to reference Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.PubMedCrossRef Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.PubMedCrossRef
99.
go back to reference Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.CrossRef Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.CrossRef
100.
go back to reference Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.PubMedCrossRef Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.PubMedCrossRef
101.
go back to reference Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.PubMedCrossRef Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.PubMedCrossRef
102.
go back to reference Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.PubMed Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.PubMed
103.
go back to reference Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.PubMedCrossRef Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.PubMedCrossRef
104.
go back to reference Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.PubMedCrossRef Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.PubMedCrossRef
105.
go back to reference Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.PubMedCrossRef Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.PubMedCrossRef
106.
go back to reference Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.CrossRef Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.CrossRef
107.
go back to reference Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.PubMedCrossRef Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.PubMedCrossRef
108.
go back to reference Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.PubMedCrossRef Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.PubMedCrossRef
109.
go back to reference Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.CrossRef Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.CrossRef
110.
go back to reference Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.PubMedCrossRef Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.PubMedCrossRef
111.
go back to reference Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.PubMedCrossRef Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.PubMedCrossRef
113.
go back to reference Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.PubMedCrossRef Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.PubMedCrossRef
114.
go back to reference Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.PubMedCrossRef Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.PubMedCrossRef
115.
go back to reference Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.PubMedCrossRef Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.PubMedCrossRef
116.
go back to reference Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.PubMedCrossRef Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.PubMedCrossRef
118.
go back to reference Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.PubMedCrossRef Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.PubMedCrossRef
119.
go back to reference Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.CrossRef Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.CrossRef
120.
go back to reference Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.PubMedCrossRef Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.PubMedCrossRef
121.
go back to reference Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.PubMedCrossRef Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.PubMedCrossRef
122.
go back to reference Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.PubMedCrossRef Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.PubMedCrossRef
123.
go back to reference Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.PubMedCrossRef Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.PubMedCrossRef
124.
go back to reference Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.PubMedCrossRef Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.PubMedCrossRef
125.
go back to reference Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.PubMed Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.PubMed
126.
go back to reference Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.PubMed Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.PubMed
127.
go back to reference Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453. Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453.
128.
go back to reference Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.PubMedCrossRef Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.PubMedCrossRef
129.
go back to reference Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.PubMedCrossRef Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.PubMedCrossRef
130.
go back to reference Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.PubMedCrossRef Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.PubMedCrossRef
132.
go back to reference Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.PubMedCrossRef Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.PubMedCrossRef
133.
go back to reference Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.PubMedCrossRef Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.PubMedCrossRef
134.
go back to reference Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.PubMedCrossRef Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.PubMedCrossRef
135.
go back to reference Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.PubMedCrossRef Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.PubMedCrossRef
136.
go back to reference Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.CrossRef Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.CrossRef
137.
go back to reference Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.PubMedCrossRef Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.PubMedCrossRef
138.
go back to reference Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.PubMedCrossRef Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.PubMedCrossRef
139.
go back to reference Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.PubMedCrossRef Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.PubMedCrossRef
140.
go back to reference Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.PubMedCrossRef Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.PubMedCrossRef
141.
go back to reference Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.PubMedCrossRef Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.PubMedCrossRef
142.
go back to reference Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.PubMedCrossRef Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.PubMedCrossRef
143.
go back to reference Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMedCrossRef Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMedCrossRef
144.
go back to reference Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.CrossRef Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.CrossRef
145.
go back to reference Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.PubMedCrossRef Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.PubMedCrossRef
146.
go back to reference Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.PubMedCrossRef Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.PubMedCrossRef
147.
go back to reference Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.PubMedCrossRef Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.PubMedCrossRef
148.
go back to reference Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.PubMed Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.PubMed
149.
go back to reference Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.PubMedCrossRef Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.PubMedCrossRef
150.
go back to reference Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRef Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRef
151.
go back to reference Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef
152.
go back to reference Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.PubMed Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.PubMed
153.
go back to reference Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.PubMedCrossRef Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.PubMedCrossRef
154.
go back to reference Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.PubMedCrossRef Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.PubMedCrossRef
155.
go back to reference Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.CrossRef Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.CrossRef
156.
go back to reference Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMedCrossRef Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMedCrossRef
157.
go back to reference Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.PubMedCrossRef Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.PubMedCrossRef
158.
go back to reference Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.PubMedCrossRef Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.PubMedCrossRef
159.
go back to reference Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedCrossRef Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedCrossRef
160.
go back to reference He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.PubMedCrossRef He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.PubMedCrossRef
161.
go back to reference Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRef Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRef
162.
go back to reference Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.PubMedCrossRef Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.PubMedCrossRef
163.
go back to reference Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.PubMedCrossRef Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.PubMedCrossRef
164.
go back to reference Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.PubMedCrossRef Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.PubMedCrossRef
165.
go back to reference Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.PubMedCrossRef Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.PubMedCrossRef
166.
go back to reference Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.CrossRef Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.CrossRef
167.
go back to reference Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.PubMed Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.PubMed
168.
go back to reference Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.PubMedCrossRef Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.PubMedCrossRef
169.
go back to reference Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.CrossRef Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.CrossRef
170.
go back to reference Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.CrossRef Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.CrossRef
171.
go back to reference Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.PubMedCrossRef Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.PubMedCrossRef
172.
go back to reference Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMedCrossRef Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMedCrossRef
173.
go back to reference Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef
174.
go back to reference Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.PubMedCrossRef Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.PubMedCrossRef
175.
go back to reference Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.PubMedCrossRef Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.PubMedCrossRef
176.
go back to reference Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.PubMedCrossRef Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.PubMedCrossRef
177.
go back to reference Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.PubMedCrossRef Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.PubMedCrossRef
178.
go back to reference Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedCrossRef Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedCrossRef
179.
go back to reference Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.PubMedCrossRef Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.PubMedCrossRef
180.
go back to reference Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.PubMedCrossRef Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.PubMedCrossRef
181.
go back to reference Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.CrossRef Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.CrossRef
182.
go back to reference Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.PubMedCrossRef Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.PubMedCrossRef
183.
go back to reference Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedCrossRef Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedCrossRef
184.
go back to reference Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.PubMedCrossRef Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.PubMedCrossRef
185.
go back to reference Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.PubMedCrossRef Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.PubMedCrossRef
186.
go back to reference Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.CrossRef Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.CrossRef
187.
go back to reference Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.PubMedCrossRef Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.PubMedCrossRef
188.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef
189.
go back to reference Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRef Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRef
190.
go back to reference Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedCrossRef Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedCrossRef
191.
go back to reference Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.PubMedCrossRef Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.PubMedCrossRef
192.
go back to reference Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.CrossRef Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.CrossRef
193.
go back to reference Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.PubMedCrossRef Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.PubMedCrossRef
194.
go back to reference He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedCrossRef He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedCrossRef
195.
go back to reference He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.PubMedCrossRef He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.PubMedCrossRef
196.
go back to reference Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.PubMedCrossRef Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.PubMedCrossRef
197.
go back to reference Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.CrossRef Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.CrossRef
198.
go back to reference Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.PubMedCrossRef Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.PubMedCrossRef
199.
go back to reference Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.PubMedCrossRef Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.PubMedCrossRef
200.
go back to reference Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.PubMedCrossRef Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.PubMedCrossRef
201.
go back to reference Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.PubMedCrossRef Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.PubMedCrossRef
202.
go back to reference Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.CrossRef Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.CrossRef
203.
go back to reference Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMedCrossRef Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMedCrossRef
204.
go back to reference Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedCrossRef Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedCrossRef
205.
go back to reference Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.PubMedCrossRef Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.PubMedCrossRef
206.
go back to reference Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.PubMedCrossRef Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.PubMedCrossRef
208.
go back to reference Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.PubMedCrossRef Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.PubMedCrossRef
209.
go back to reference Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.PubMedCrossRef Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.PubMedCrossRef
210.
go back to reference Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRef Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRef
211.
go back to reference Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.PubMed Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.PubMed
212.
go back to reference Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.PubMedCrossRef Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.PubMedCrossRef
213.
go back to reference Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.PubMedCrossRef Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.PubMedCrossRef
214.
go back to reference Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.PubMedCrossRef Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.PubMedCrossRef
215.
go back to reference Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.PubMedCrossRef Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.PubMedCrossRef
216.
go back to reference Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.PubMedCrossRef Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.PubMedCrossRef
217.
go back to reference Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.PubMedCrossRef Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.PubMedCrossRef
218.
go back to reference Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.PubMedCrossRef Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.PubMedCrossRef
219.
go back to reference Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMedCrossRef Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMedCrossRef
220.
go back to reference Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.PubMedCrossRef Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.PubMedCrossRef
221.
go back to reference Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.PubMedCrossRef Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.PubMedCrossRef
222.
go back to reference Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.PubMedCrossRef Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.PubMedCrossRef
223.
go back to reference Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press) Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press)
224.
go back to reference Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press) Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press)
225.
go back to reference Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.PubMedCrossRef Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.PubMedCrossRef
226.
go back to reference Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.PubMedCrossRef Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.PubMedCrossRef
227.
go back to reference Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMedCrossRef Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMedCrossRef
228.
go back to reference Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.PubMedCrossRef Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.PubMedCrossRef
229.
go back to reference Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.CrossRef Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.CrossRef
230.
go back to reference Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.PubMedCrossRef Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.PubMedCrossRef
231.
go back to reference Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedCrossRef Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedCrossRef
232.
go back to reference Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.PubMedCrossRef Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.PubMedCrossRef
233.
go back to reference Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedCrossRef Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedCrossRef
234.
go back to reference Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMedCrossRef Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMedCrossRef
235.
go back to reference Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.PubMedCrossRef Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.PubMedCrossRef
236.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef
237.
go back to reference Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.PubMed Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.PubMed
238.
go back to reference Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed
239.
go back to reference Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.PubMedCrossRef Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.PubMedCrossRef
240.
go back to reference Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.PubMedCrossRef Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.PubMedCrossRef
241.
go back to reference Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.PubMedCrossRef Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.PubMedCrossRef
242.
go back to reference Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.PubMedCrossRef Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.PubMedCrossRef
243.
go back to reference Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.PubMedCrossRef Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.PubMedCrossRef
244.
go back to reference Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.PubMedCrossRef Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.PubMedCrossRef
245.
go back to reference Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.PubMedCrossRef Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.PubMedCrossRef
246.
go back to reference Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.PubMedCrossRef Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.PubMedCrossRef
247.
go back to reference Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press) Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press)
248.
go back to reference Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.PubMedCrossRef Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.PubMedCrossRef
249.
go back to reference Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.PubMedCrossRef Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.PubMedCrossRef
250.
go back to reference Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.PubMedCrossRef Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.PubMedCrossRef
251.
go back to reference Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952. Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952.
252.
go back to reference Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.PubMed Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.PubMed
253.
go back to reference Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.PubMedCrossRef Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.PubMedCrossRef
254.
go back to reference Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.PubMedCrossRef Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.PubMedCrossRef
255.
go back to reference Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.PubMedCrossRef Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.PubMedCrossRef
256.
257.
go back to reference Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.PubMedCrossRef Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.PubMedCrossRef
258.
go back to reference Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.PubMedCrossRef Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.PubMedCrossRef
259.
go back to reference Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.PubMed Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.PubMed
Metadata
Title
The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network
Author
Lakshmanane Boominathan
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9257-9

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine