Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

Open Access 01-12-2010 | NON-THEMATIC REVIEW

Perspectives on the mesenchymal origin of metastatic cancer

Authors: Leanne C. Huysentruyt, Thomas N. Seyfried

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Emerging evidence suggests that many metastatic cancers arise from cells of the myeloid/macrophage lineage regardless of the primary tissue of origin. A myeloid origin of metastatic cancer stands apart from origins involving clonal evolution or epithelial–mesenchymal transitions. Evidence is reviewed demonstrating that numerous human cancers express multiple properties of macrophages including phagocytosis, fusogenicity, and gene/protein expression. It is unlikely that the macrophage properties expressed in metastatic cancers arise from sporadic random mutations in epithelial cells, but rather from damage to an already existing mesenchymal cell, e.g., a myeloid/macrophage-type cell. Such cells would naturally embody the capacity to express the multiple behaviors of metastatic cells. The view of metastasis as a myeloid/macrophage disease will impact future cancer research and anti-metastatic therapies.
Literature
2.
go back to reference Fidler, I. J., Kim, S. J., & Langley, R. R. (2007). The role of the organ microenvironment in the biology and therapy of cancer metastasis. Journal of Cellular Biochemistry, 101(4), 927–936.PubMedCrossRef Fidler, I. J., Kim, S. J., & Langley, R. R. (2007). The role of the organ microenvironment in the biology and therapy of cancer metastasis. Journal of Cellular Biochemistry, 101(4), 927–936.PubMedCrossRef
3.
go back to reference Ohgaki, H., & Kleihues, P. (2009). Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Science, 100(12), 2235–2241.PubMedCrossRef Ohgaki, H., & Kleihues, P. (2009). Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Science, 100(12), 2235–2241.PubMedCrossRef
4.
go back to reference Wu, J. M., et al. (2008). Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clinical Cancer Research, 14(7), 1938–1946.PubMedCrossRef Wu, J. M., et al. (2008). Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clinical Cancer Research, 14(7), 1938–1946.PubMedCrossRef
5.
go back to reference Jemal, A., et al. (2007). Cancer statistics. CA: A Cancer Journal for Clinicians, 57(1), 43–66.CrossRef Jemal, A., et al. (2007). Cancer statistics. CA: A Cancer Journal for Clinicians, 57(1), 43–66.CrossRef
6.
go back to reference Welch, D. R. (2006). Defining a cancer metastasis. AACR education book 2006 (pp. 111–115). Philadelphia: American Association for Cancer Research. Welch, D. R. (2006). Defining a cancer metastasis. AACR education book 2006 (pp. 111–115). Philadelphia: American Association for Cancer Research.
7.
go back to reference Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef
8.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.PubMedCrossRef Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.PubMedCrossRef
9.
go back to reference Duffy, M. J., McGowan, P. M., & Gallagher, W. M. (2008). Cancer invasion and metastasis: Changing views. The Journal of Pathology, 214(3), 283–293.PubMedCrossRef Duffy, M. J., McGowan, P. M., & Gallagher, W. M. (2008). Cancer invasion and metastasis: Changing views. The Journal of Pathology, 214(3), 283–293.PubMedCrossRef
10.
go back to reference Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Natural Medicines, 12(8), 895–904.CrossRef Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Natural Medicines, 12(8), 895–904.CrossRef
11.
go back to reference Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMedCrossRef
12.
go back to reference Munzarova, M., & Kovarik, J. (1987). Is cancer a macrophage-mediated autoaggressive disease? Lancet, 1(8539), 952–954.PubMedCrossRef Munzarova, M., & Kovarik, J. (1987). Is cancer a macrophage-mediated autoaggressive disease? Lancet, 1(8539), 952–954.PubMedCrossRef
13.
go back to reference Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef
14.
go back to reference Huysentruyt, L. C., et al. (2008). Metastatic cancer cells with macrophage properties: Evidence from a new murine tumor model. International Journal of Cancer, 123(1), 73–84.CrossRef Huysentruyt, L. C., et al. (2008). Metastatic cancer cells with macrophage properties: Evidence from a new murine tumor model. International Journal of Cancer, 123(1), 73–84.CrossRef
15.
go back to reference Pawelek, J. M. (2008). Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: New therapeutic paradigms. Future Oncology, 4(4), 449–452.PubMedCrossRef Pawelek, J. M. (2008). Cancer-cell fusion with migratory bone-marrow-derived cells as an explanation for metastasis: New therapeutic paradigms. Future Oncology, 4(4), 449–452.PubMedCrossRef
16.
go back to reference Steeg, P. S. (2008). Heterogeneity of drug target expression among metastatic lesions: Lessons from a breast cancer autopsy program. Clinical Cancer Research, 14(12), 3643–3645.PubMedCrossRef Steeg, P. S. (2008). Heterogeneity of drug target expression among metastatic lesions: Lessons from a breast cancer autopsy program. Clinical Cancer Research, 14(12), 3643–3645.PubMedCrossRef
17.
go back to reference Bacac, M., & Stamenkovic, I. (2008). Metastatic cancer cell. Annual Review of Pathology, 3, 221–247.PubMedCrossRef Bacac, M., & Stamenkovic, I. (2008). Metastatic cancer cell. Annual Review of Pathology, 3, 221–247.PubMedCrossRef
18.
go back to reference Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759–767.PubMedCrossRef Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759–767.PubMedCrossRef
19.
go back to reference Nowell, P. C. (2002). Tumor progression: A brief historical perspective. Seminars in Cancer Biology, 12(4), 261–266.PubMedCrossRef Nowell, P. C. (2002). Tumor progression: A brief historical perspective. Seminars in Cancer Biology, 12(4), 261–266.PubMedCrossRef
20.
21.
go back to reference Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedCrossRef Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedCrossRef
22.
go back to reference Seyfried, T. N., & Shelton, L. M. (2010). Cancer as a metabolic disease. Nutrition & Metabolism, 7, 7.CrossRef Seyfried, T. N., & Shelton, L. M. (2010). Cancer as a metabolic disease. Nutrition & Metabolism, 7, 7.CrossRef
23.
go back to reference Carro, M. S., et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463(7279), 318–325.PubMedCrossRef Carro, M. S., et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463(7279), 318–325.PubMedCrossRef
24.
go back to reference Hart, I. R. (2009). New evidence for tumour embolism as a mode of metastasis. The Journal of Pathology, 219(3), 275–276.PubMedCrossRef Hart, I. R. (2009). New evidence for tumour embolism as a mode of metastasis. The Journal of Pathology, 219(3), 275–276.PubMedCrossRef
25.
go back to reference Garber, K. (2008). Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. Journal of the National Cancer Institute, 100(4), 232-3–239. Garber, K. (2008). Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. Journal of the National Cancer Institute, 100(4), 232-3–239.
26.
go back to reference Banaei-Bouchareb, L., et al. (2006). A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. The Journal of Endocrinology, 188(3), 467–480.PubMedCrossRef Banaei-Bouchareb, L., et al. (2006). A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. The Journal of Endocrinology, 188(3), 467–480.PubMedCrossRef
27.
go back to reference Mallat, M., Marin-Teva, J. L., & Cheret, C. (2005). Phagocytosis in the developing CNS: More than clearing the corpses. Current Opinion in Neurobiology, 15(1), 101–107.PubMedCrossRef Mallat, M., Marin-Teva, J. L., & Cheret, C. (2005). Phagocytosis in the developing CNS: More than clearing the corpses. Current Opinion in Neurobiology, 15(1), 101–107.PubMedCrossRef
28.
go back to reference Huysentruyt, L. C., Shelton, L. M., & Seyfried, T. N. (2009). Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. International Journal of Cancer, 126, 65–72.CrossRef Huysentruyt, L. C., Shelton, L. M., & Seyfried, T. N. (2009). Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. International Journal of Cancer, 126, 65–72.CrossRef
29.
go back to reference Vignery, A. (2005). Macrophage fusion: Are somatic and cancer cells possible partners? Trends in Cell Biology, 15(4), 188–193.PubMedCrossRef Vignery, A. (2005). Macrophage fusion: Are somatic and cancer cells possible partners? Trends in Cell Biology, 15(4), 188–193.PubMedCrossRef
30.
go back to reference Pawelek, J. M., & Chakraborty, A. K. (2008). Fusion of tumour cells with bone marrow-derived cells: A unifying explanation for metastasis. Nature Reviews Cancer, 8(5), 377–386.PubMedCrossRef Pawelek, J. M., & Chakraborty, A. K. (2008). Fusion of tumour cells with bone marrow-derived cells: A unifying explanation for metastasis. Nature Reviews Cancer, 8(5), 377–386.PubMedCrossRef
31.
go back to reference Pawelek, J. M. (2000). Tumour cell hybridization and metastasis revisited. Melanoma Research, 10(6), 507–514.PubMedCrossRef Pawelek, J. M. (2000). Tumour cell hybridization and metastasis revisited. Melanoma Research, 10(6), 507–514.PubMedCrossRef
32.
go back to reference Rachkovsky, M., et al. (1998). Melanoma × macrophage hybrids with enhanced metastatic potential. Clinical & Experimental Metastasis, 16(4), 299–312. Rachkovsky, M., et al. (1998). Melanoma × macrophage hybrids with enhanced metastatic potential. Clinical & Experimental Metastasis, 16(4), 299–312.
33.
go back to reference Seyfried, T. N. (2001). Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspectives in Biology and Medicine, 44(2), 263–282.PubMedCrossRef Seyfried, T. N. (2001). Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspectives in Biology and Medicine, 44(2), 263–282.PubMedCrossRef
34.
go back to reference Mantovani, A., et al. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef Mantovani, A., et al. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.PubMedCrossRef
35.
go back to reference Morantz, R. A., et al. (1979). Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. Journal of Neurosurgery, 50(3), 298–304.PubMedCrossRef Morantz, R. A., et al. (1979). Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. Journal of Neurosurgery, 50(3), 298–304.PubMedCrossRef
36.
go back to reference Talmadge, J. E., Donkor, M., & Scholar, E. (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Reviews, 26, 373–400.PubMedCrossRef Talmadge, J. E., Donkor, M., & Scholar, E. (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Reviews, 26, 373–400.PubMedCrossRef
37.
go back to reference Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265.PubMedCrossRef Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265.PubMedCrossRef
38.
go back to reference Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.PubMedCrossRef Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.PubMedCrossRef
39.
go back to reference Pollard, J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. Journal of Leukocyte Biology, 84(3), 623–630.PubMedCrossRef Pollard, J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. Journal of Leukocyte Biology, 84(3), 623–630.PubMedCrossRef
40.
go back to reference Stossel, T. (1999). Mechanical responsesof white blood cells. In J. Snyderman (Ed.), Inflammation: Basic principles and clinical correlates (pp. 661–679). New York: Lippincott Williams & Wilkins. Stossel, T. (1999). Mechanical responsesof white blood cells. In J. Snyderman (Ed.), Inflammation: Basic principles and clinical correlates (pp. 661–679). New York: Lippincott Williams & Wilkins.
41.
go back to reference Gordon, S. (1999). Development and distribution of mononuclear phagocytes: Relevance to inflammation. In J. Gallin & R. Snyderman (Eds.), Inflammation: Basic principles and clinical correlates (pp. 35–48). New York: Lippincott Williams & Wilkins. Gordon, S. (1999). Development and distribution of mononuclear phagocytes: Relevance to inflammation. In J. Gallin & R. Snyderman (Eds.), Inflammation: Basic principles and clinical correlates (pp. 35–48). New York: Lippincott Williams & Wilkins.
42.
go back to reference Burke, B., & Lewis, C. E. (Eds.). (2002). The macrophage (2nd ed.). Oxford University Press: New York. Burke, B., & Lewis, C. E. (Eds.). (2002). The macrophage (2nd ed.). Oxford University Press: New York.
43.
go back to reference Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017. Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017.
44.
go back to reference Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol, 22(2), 231–237.PubMedCrossRef Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol, 22(2), 231–237.PubMedCrossRef
45.
go back to reference Sica, A., Saccani, A., & Mantovani, A. (2002). Tumor-associated macrophages: A molecular perspective. International Immunopharmacology, 2(8), 1045–1054.PubMedCrossRef Sica, A., Saccani, A., & Mantovani, A. (2002). Tumor-associated macrophages: A molecular perspective. International Immunopharmacology, 2(8), 1045–1054.PubMedCrossRef
46.
go back to reference Sica, A., et al. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer, 42(6), 717–727.PubMedCrossRef Sica, A., et al. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer, 42(6), 717–727.PubMedCrossRef
47.
go back to reference Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.PubMedCrossRef Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.PubMedCrossRef
48.
go back to reference Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.PubMedCrossRef Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.PubMedCrossRef
49.
go back to reference Kiebish, M. A., et al. (2008). Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. Journal of Lipid Research, 49(12), 2545–2556.PubMedCrossRef Kiebish, M. A., et al. (2008). Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. Journal of Lipid Research, 49(12), 2545–2556.PubMedCrossRef
50.
go back to reference Kojima, S., et al. (1998). Clinical significance of “cannibalism” in urinary cytology of bladder cancer. Acta Cytologica, 42(6), 1365–1369.PubMed Kojima, S., et al. (1998). Clinical significance of “cannibalism” in urinary cytology of bladder cancer. Acta Cytologica, 42(6), 1365–1369.PubMed
51.
go back to reference Youness, E., et al. (1980). Tumor cell phagocytosis. Its occurrence in a patient with medulloblastoma. Archives of Pathology & Laboratory Medicine, 104(12), 651–653. Youness, E., et al. (1980). Tumor cell phagocytosis. Its occurrence in a patient with medulloblastoma. Archives of Pathology & Laboratory Medicine, 104(12), 651–653.
52.
go back to reference Bjerknes, R., Bjerkvig, R., & Laerum, O. D. (1987). Phagocytic capacity of normal and malignant rat glial cells in culture. Journal of the National Cancer Institute, 78(2), 279–288.PubMed Bjerknes, R., Bjerkvig, R., & Laerum, O. D. (1987). Phagocytic capacity of normal and malignant rat glial cells in culture. Journal of the National Cancer Institute, 78(2), 279–288.PubMed
53.
go back to reference Kumar, P. V., Hosseinzadeh, M., & Bedayat, G. R. (2001). Cytologic findings of medulloblastoma in crush smears. Acta Cytologica, 45(4), 542–546.PubMed Kumar, P. V., Hosseinzadeh, M., & Bedayat, G. R. (2001). Cytologic findings of medulloblastoma in crush smears. Acta Cytologica, 45(4), 542–546.PubMed
54.
go back to reference Leenstra, S., et al. (1995). Human malignant astrocytes express macrophage phenotype. Journal of Neuroimmunology, 56(1), 17–25. issn: 0165-5728.PubMedCrossRef Leenstra, S., et al. (1995). Human malignant astrocytes express macrophage phenotype. Journal of Neuroimmunology, 56(1), 17–25. issn: 0165-5728.PubMedCrossRef
55.
go back to reference Goldenberg, D. M., Pavia, R. A., & Tsao, M. C. (1974). In vivo hybridisation of human tumour and normal hamster cells. Nature, 250(5468), 649–651.PubMedCrossRef Goldenberg, D. M., Pavia, R. A., & Tsao, M. C. (1974). In vivo hybridisation of human tumour and normal hamster cells. Nature, 250(5468), 649–651.PubMedCrossRef
56.
go back to reference Marin-Padilla, M. (1977). Erythrophagocytosis by epithelial cells of a breast carcinoma. Cancer, 39(3), 1085–1089.PubMedCrossRef Marin-Padilla, M. (1977). Erythrophagocytosis by epithelial cells of a breast carcinoma. Cancer, 39(3), 1085–1089.PubMedCrossRef
57.
go back to reference Spivak, J. L. (1973). Phagocytic tumour cells. Scandinavian Journal of Haematology, 11(3), 253–256.PubMedCrossRef Spivak, J. L. (1973). Phagocytic tumour cells. Scandinavian Journal of Haematology, 11(3), 253–256.PubMedCrossRef
58.
go back to reference Ghoneum, M., & Gollapudi, S. (2004). Phagocytosis of Candida albicans by metastatic and non metastatic human breast cancer cell lines in vitro. Cancer Detection and Prevention, 28(1), 17–26.PubMedCrossRef Ghoneum, M., & Gollapudi, S. (2004). Phagocytosis of Candida albicans by metastatic and non metastatic human breast cancer cell lines in vitro. Cancer Detection and Prevention, 28(1), 17–26.PubMedCrossRef
59.
go back to reference Abodief, W. T., Dey, P., & Al-Hattab, O. (2006). Cell cannibalism in ductal carcinoma of breast. Cytopathology, 17(5), 304–305.PubMedCrossRef Abodief, W. T., Dey, P., & Al-Hattab, O. (2006). Cell cannibalism in ductal carcinoma of breast. Cytopathology, 17(5), 304–305.PubMedCrossRef
60.
go back to reference Ghoneum, M., et al. (2007). Yeast therapy for the treatment of breast cancer: A nude mice model study. In Vivo, 21(2), 251–258.PubMed Ghoneum, M., et al. (2007). Yeast therapy for the treatment of breast cancer: A nude mice model study. In Vivo, 21(2), 251–258.PubMed
61.
go back to reference Ghoneum, M., et al. (2008). S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellular Ca2+ and the ratio of Bax and Bcl-2. International Journal of Oncology, 33(3), 533–539.PubMed Ghoneum, M., et al. (2008). S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellular Ca2+ and the ratio of Bax and Bcl-2. International Journal of Oncology, 33(3), 533–539.PubMed
62.
go back to reference Coopman, P. J., et al. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clinical Cancer Research, 4(2), 507–515.PubMed Coopman, P. J., et al. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clinical Cancer Research, 4(2), 507–515.PubMed
63.
go back to reference Lee, H., et al. (2007). Phagocytosis of collagen by fibroblasts and invasive cancer cells is mediated by MT1-MMP. Biochemical Society Transactions, 35(Pt 4), 704–706.PubMed Lee, H., et al. (2007). Phagocytosis of collagen by fibroblasts and invasive cancer cells is mediated by MT1-MMP. Biochemical Society Transactions, 35(Pt 4), 704–706.PubMed
64.
go back to reference Lu, X., & Kang, Y. (2009). Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9385–9390.PubMedCrossRef Lu, X., & Kang, Y. (2009). Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9385–9390.PubMedCrossRef
65.
go back to reference Miller, F. R., et al. (1988). Spontaneous fusion between metastatic mammary tumor subpopulations. Journal of Cellular Biochemistry, 36(2), 129–136.PubMedCrossRef Miller, F. R., et al. (1988). Spontaneous fusion between metastatic mammary tumor subpopulations. Journal of Cellular Biochemistry, 36(2), 129–136.PubMedCrossRef
66.
go back to reference Bjerregaard, B., et al. (2006). Syncytin is involved in breast cancer–endothelial cell fusions. Cellular and Molecular Life Sciences, 63(16), 1906–1911.PubMedCrossRef Bjerregaard, B., et al. (2006). Syncytin is involved in breast cancer–endothelial cell fusions. Cellular and Molecular Life Sciences, 63(16), 1906–1911.PubMedCrossRef
67.
go back to reference Mortensen, K., et al. (2004). Spontaneous fusion between cancer cells and endothelial cells. Cellular and Molecular Life Sciences, 61(16), 2125–2131.PubMedCrossRef Mortensen, K., et al. (2004). Spontaneous fusion between cancer cells and endothelial cells. Cellular and Molecular Life Sciences, 61(16), 2125–2131.PubMedCrossRef
68.
go back to reference Athanasou, N. A., et al. (1989). The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: Implications for tumour osteolysis and macrophage biology. British Journal of Cancer, 59(4), 491–498.PubMed Athanasou, N. A., et al. (1989). The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: Implications for tumour osteolysis and macrophage biology. British Journal of Cancer, 59(4), 491–498.PubMed
69.
go back to reference Handerson, T., et al. (2005). Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clinical Cancer Research, 11(8), 2969–2973.PubMedCrossRef Handerson, T., et al. (2005). Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clinical Cancer Research, 11(8), 2969–2973.PubMedCrossRef
70.
go back to reference Calvo, F., et al. (1987). Human breast cancer cells share antigens with the myeloid monocyte lineage. British Journal of Cancer, 56(1), 15–19.PubMed Calvo, F., et al. (1987). Human breast cancer cells share antigens with the myeloid monocyte lineage. British Journal of Cancer, 56(1), 15–19.PubMed
71.
go back to reference Shabo, I., et al. (2008). Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. International Journal of Cancer, 123(4), 780–786.CrossRef Shabo, I., et al. (2008). Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. International Journal of Cancer, 123(4), 780–786.CrossRef
72.
go back to reference Heidemann, J., et al. (2002). Signet-ring cell carcinoma of unknown primary location. Metastatic to lower back musculature—remission following FU/FA chemotherapy. Zeitschrift für Gastroenterologie, 40(1), 33–36.PubMedCrossRef Heidemann, J., et al. (2002). Signet-ring cell carcinoma of unknown primary location. Metastatic to lower back musculature—remission following FU/FA chemotherapy. Zeitschrift für Gastroenterologie, 40(1), 33–36.PubMedCrossRef
73.
go back to reference Hedley, D. W., Leary, J. A., & Kirsten, F. (1985). Metastatic adenocarcinoma of unknown primary site: Abnormalities of cellular DNA content and survival. European Journal of Cancer & Clinical Oncology, 21(2), 185–189.CrossRef Hedley, D. W., Leary, J. A., & Kirsten, F. (1985). Metastatic adenocarcinoma of unknown primary site: Abnormalities of cellular DNA content and survival. European Journal of Cancer & Clinical Oncology, 21(2), 185–189.CrossRef
74.
go back to reference Chandrasoma, P. (1980). Polymorph phagocytosis by cancer cells in an endometrial adenoacanthoma. Cancer, 45(9), 2348–2351.PubMedCrossRef Chandrasoma, P. (1980). Polymorph phagocytosis by cancer cells in an endometrial adenoacanthoma. Cancer, 45(9), 2348–2351.PubMedCrossRef
75.
go back to reference Caruso, R. A., et al. (2002). Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas. Ultrastructural Pathology, 26(5), 315–321.PubMedCrossRef Caruso, R. A., et al. (2002). Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas. Ultrastructural Pathology, 26(5), 315–321.PubMedCrossRef
76.
go back to reference Ji, Y., et al. (1999). Effect of cell fusion on metastatic ability of mouse hepatocarcinoma cell lines. World Journal of Gastroenterology, 5(1), 22–24.PubMed Ji, Y., et al. (1999). Effect of cell fusion on metastatic ability of mouse hepatocarcinoma cell lines. World Journal of Gastroenterology, 5(1), 22–24.PubMed
77.
go back to reference DeSimone, P. A., East, R., & Powell, R. D., Jr. (1980). Phagocytic tumor cell activity in oat cell carcinoma of the lung. Human Pathology, 11(5 Suppl), 535–539.PubMed DeSimone, P. A., East, R., & Powell, R. D., Jr. (1980). Phagocytic tumor cell activity in oat cell carcinoma of the lung. Human Pathology, 11(5 Suppl), 535–539.PubMed
78.
go back to reference Falini, B., et al. (1980). Erythrophagocytosis by undifferentiated lung carcinoma cells. Cancer, 46(5), 1140–1145.PubMedCrossRef Falini, B., et al. (1980). Erythrophagocytosis by undifferentiated lung carcinoma cells. Cancer, 46(5), 1140–1145.PubMedCrossRef
79.
go back to reference Molad, Y., et al. (1991). Hemophagocytosis by small cell lung carcinoma. American Journal of Hematology, 36(2), 154–156.PubMedCrossRef Molad, Y., et al. (1991). Hemophagocytosis by small cell lung carcinoma. American Journal of Hematology, 36(2), 154–156.PubMedCrossRef
80.
go back to reference Richters, A., Sherwin, R. P., & Richters, V. (1971). The lymphocyte and human lung cancers. Cancer Research, 31(3), 214–222.PubMed Richters, A., Sherwin, R. P., & Richters, V. (1971). The lymphocyte and human lung cancers. Cancer Research, 31(3), 214–222.PubMed
81.
go back to reference Ruff, M. R., & Pert, C. B. (1984). Small cell carcinoma of the lung: Macrophage-specific antigens suggest hemopoietic stem cell origin. Science, 225(4666), 1034–1036.PubMedCrossRef Ruff, M. R., & Pert, C. B. (1984). Small cell carcinoma of the lung: Macrophage-specific antigens suggest hemopoietic stem cell origin. Science, 225(4666), 1034–1036.PubMedCrossRef
82.
go back to reference Gazdar, A. F., et al. (1985). Origin of human small cell lung cancer. Science, 229(4714), 679–680.PubMedCrossRef Gazdar, A. F., et al. (1985). Origin of human small cell lung cancer. Science, 229(4714), 679–680.PubMedCrossRef
83.
go back to reference Ruff, M. R., & Pert, C. B. (1985). Origin of human small cell lung cancer. Science, 229(4714), 680.PubMedCrossRef Ruff, M. R., & Pert, C. B. (1985). Origin of human small cell lung cancer. Science, 229(4714), 680.PubMedCrossRef
84.
go back to reference Bunn, P. A., Jr., et al. (1985). Small cell lung cancer, endocrine cells of the fetal bronchus, and other neuroendocrine cells express the Leu-7 antigenic determinant present on natural killer cells. Blood, 65(3), 764–768.PubMed Bunn, P. A., Jr., et al. (1985). Small cell lung cancer, endocrine cells of the fetal bronchus, and other neuroendocrine cells express the Leu-7 antigenic determinant present on natural killer cells. Blood, 65(3), 764–768.PubMed
85.
go back to reference Koren, H. S., Handwerger, B. S., & Wunderlich, J. R. (1975). Identification of macrophage-like characteristics in a cultured murine tumor line. Journal of Immunology, 114(2 pt 2), 894–897. Koren, H. S., Handwerger, B. S., & Wunderlich, J. R. (1975). Identification of macrophage-like characteristics in a cultured murine tumor line. Journal of Immunology, 114(2 pt 2), 894–897.
86.
go back to reference Amaravadi, R. K., et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. The Journal of Clinical Investigation, 117(2), 326–336.PubMedCrossRef Amaravadi, R. K., et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. The Journal of Clinical Investigation, 117(2), 326–336.PubMedCrossRef
87.
go back to reference Radosevic, K., et al. (1995). Occurrence and a possible mechanism of penetration of natural killer cells into K562 target cells during the cytotoxic interaction. Cytometry, 20(4), 273–280.PubMedCrossRef Radosevic, K., et al. (1995). Occurrence and a possible mechanism of penetration of natural killer cells into K562 target cells during the cytotoxic interaction. Cytometry, 20(4), 273–280.PubMedCrossRef
88.
go back to reference Kerbel, R. S., et al. (1983). Spontaneous fusion in vivo between normal host and tumor cells: Possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Molecular and Cellular Biology, 3(4), 523–538.PubMed Kerbel, R. S., et al. (1983). Spontaneous fusion in vivo between normal host and tumor cells: Possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Molecular and Cellular Biology, 3(4), 523–538.PubMed
89.
go back to reference Larizza, L., Schirrmacher, V., & Pfluger, E. (1984). Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. The Journal of Experimental Medicine, 160(5), 1579–1584.PubMedCrossRef Larizza, L., Schirrmacher, V., & Pfluger, E. (1984). Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. The Journal of Experimental Medicine, 160(5), 1579–1584.PubMedCrossRef
90.
go back to reference De Baetselier, P., et al. (1984). Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells. Cancer and Metastasis Reviews, 3(1), 5–24.PubMedCrossRef De Baetselier, P., et al. (1984). Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells. Cancer and Metastasis Reviews, 3(1), 5–24.PubMedCrossRef
91.
go back to reference De Baetselier, P., et al. (1984). Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma by in vivo fusion with normal host cells. International Journal of Cancer, 34(5), 731–738.CrossRef De Baetselier, P., et al. (1984). Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma by in vivo fusion with normal host cells. International Journal of Cancer, 34(5), 731–738.CrossRef
92.
go back to reference Lugini, L., et al. (2003). Potent phagocytic activity discriminates metastatic and primary human malignant melanomas: A key role of ezrin. Laboratory Investigation, 83(11), 1555–1567.PubMedCrossRef Lugini, L., et al. (2003). Potent phagocytic activity discriminates metastatic and primary human malignant melanomas: A key role of ezrin. Laboratory Investigation, 83(11), 1555–1567.PubMedCrossRef
93.
go back to reference Lugini, L., et al. (2006). Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Research, 66(7), 3629–3638.PubMedCrossRef Lugini, L., et al. (2006). Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Research, 66(7), 3629–3638.PubMedCrossRef
94.
go back to reference Fais, S. (2004). A role for ezrin in a neglected metastatic tumor function. Trends in Molecular Medicine, 10(6), 249–250.PubMedCrossRef Fais, S. (2004). A role for ezrin in a neglected metastatic tumor function. Trends in Molecular Medicine, 10(6), 249–250.PubMedCrossRef
95.
go back to reference Breier, F., et al. (1999). Primary invasive signet-ring cell melanoma. Journal of Cutaneous Pathology, 26(10), 533–536.PubMedCrossRef Breier, F., et al. (1999). Primary invasive signet-ring cell melanoma. Journal of Cutaneous Pathology, 26(10), 533–536.PubMedCrossRef
96.
go back to reference Monteagudo, C., et al. (1997). Erythrophagocytic tumour cells in melanoma and squamous cell carcinoma of the skin. Histopathology, 31(4), 367–373.PubMedCrossRef Monteagudo, C., et al. (1997). Erythrophagocytic tumour cells in melanoma and squamous cell carcinoma of the skin. Histopathology, 31(4), 367–373.PubMedCrossRef
97.
go back to reference Chakraborty, A. K., et al. (2000). A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Research, 60(9), 2512–2519.PubMed Chakraborty, A. K., et al. (2000). A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Research, 60(9), 2512–2519.PubMed
98.
go back to reference Chakraborty, A. K., et al. (2001). Human monocyte × mouse melanoma fusion hybrids express human gene. Gene, 275(1), 103–106.PubMedCrossRef Chakraborty, A. K., et al. (2001). Human monocyte × mouse melanoma fusion hybrids express human gene. Gene, 275(1), 103–106.PubMedCrossRef
99.
go back to reference Brocker, E. B., Suter, L., & Sorg, C. (1984). HLA-DR antigen expression in primary melanomas of the skin. The Journal of Investigative Dermatology, 82(3), 244–247.PubMedCrossRef Brocker, E. B., Suter, L., & Sorg, C. (1984). HLA-DR antigen expression in primary melanomas of the skin. The Journal of Investigative Dermatology, 82(3), 244–247.PubMedCrossRef
100.
go back to reference Facchetti, F., Bertalot, G., & Grigolato, P. G. (1991). KP1 (CD 68) staining of malignant melanomas. Histopathology, 19(2), 141–145.PubMedCrossRef Facchetti, F., Bertalot, G., & Grigolato, P. G. (1991). KP1 (CD 68) staining of malignant melanomas. Histopathology, 19(2), 141–145.PubMedCrossRef
101.
go back to reference Munzarova, M., Rejthar, A., & Mechl, Z. (1991). Do some malignant melanoma cells share antigens with the myeloid monocyte lineage? Neoplasma, 38(4), 401–405.PubMed Munzarova, M., Rejthar, A., & Mechl, Z. (1991). Do some malignant melanoma cells share antigens with the myeloid monocyte lineage? Neoplasma, 38(4), 401–405.PubMed
102.
go back to reference Busund, L. T., et al. (2003). Spontaneously formed tumorigenic hybrids of Meth A sarcoma cells and macrophages in vivo. International Journal of Cancer, 106(2), 153–159.CrossRef Busund, L. T., et al. (2003). Spontaneously formed tumorigenic hybrids of Meth A sarcoma cells and macrophages in vivo. International Journal of Cancer, 106(2), 153–159.CrossRef
103.
go back to reference Savage, D. G., et al. (2004). Hemophagocytic, non-secretory multiple myeloma. Leukaemia & Lymphoma, 45(5), 1061–1064.CrossRef Savage, D. G., et al. (2004). Hemophagocytic, non-secretory multiple myeloma. Leukaemia & Lymphoma, 45(5), 1061–1064.CrossRef
104.
go back to reference Andersen, T. L., et al. (2010). Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. British Journal of Haematology, 148(4), 551–561.PubMedCrossRef Andersen, T. L., et al. (2010). Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. British Journal of Haematology, 148(4), 551–561.PubMedCrossRef
105.
go back to reference Yasunaga, M., et al. (2008). Ovarian undifferentiated carcinoma resembling giant cell carcinoma of the lung. Pathology International, 58(4), 244–248.PubMedCrossRef Yasunaga, M., et al. (2008). Ovarian undifferentiated carcinoma resembling giant cell carcinoma of the lung. Pathology International, 58(4), 244–248.PubMedCrossRef
106.
go back to reference Talmadge, J. E., Key, M. E., & Hart, I. R. (1981). Characterization of a murine ovarian reticulum cell sarcoma of histiocytic origin. Cancer Research, 41(4), 1271–1280.PubMed Talmadge, J. E., Key, M. E., & Hart, I. R. (1981). Characterization of a murine ovarian reticulum cell sarcoma of histiocytic origin. Cancer Research, 41(4), 1271–1280.PubMed
107.
go back to reference Khayyata, S., Basturk, O., & Adsay, N. V. (2005). Invasive micropapillary carcinomas of the ampullo-pancreatobiliary region and their association with tumor-infiltrating neutrophils. Modern Pathology, 18(11), 1504–1511.PubMedCrossRef Khayyata, S., Basturk, O., & Adsay, N. V. (2005). Invasive micropapillary carcinomas of the ampullo-pancreatobiliary region and their association with tumor-infiltrating neutrophils. Modern Pathology, 18(11), 1504–1511.PubMedCrossRef
108.
go back to reference Schorlemmer, H. U., et al. (1988). Similarities in function between pancreatic tumor cells and macrophages and their inhibition by murine monoclonal antibodies. Behring Institute Mitteilungen, 82, 240–264.PubMed Schorlemmer, H. U., et al. (1988). Similarities in function between pancreatic tumor cells and macrophages and their inhibition by murine monoclonal antibodies. Behring Institute Mitteilungen, 82, 240–264.PubMed
109.
go back to reference Imai, S., et al. (1981). Giant cell carcinoma of the pancreas. Acta Pathologica Japonica, 31(1), 129–133.PubMed Imai, S., et al. (1981). Giant cell carcinoma of the pancreas. Acta Pathologica Japonica, 31(1), 129–133.PubMed
110.
go back to reference Shabo, I., et al. (2009). Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. International Journal of Cancer, 125(8), 1826–1831.CrossRef Shabo, I., et al. (2009). Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. International Journal of Cancer, 125(8), 1826–1831.CrossRef
111.
go back to reference Chetty, R., & Cvijan, D. (1997). Giant (bizarre) cell variant of renal carcinoma. Histopathology, 30(6), 585–587.PubMedCrossRef Chetty, R., & Cvijan, D. (1997). Giant (bizarre) cell variant of renal carcinoma. Histopathology, 30(6), 585–587.PubMedCrossRef
112.
go back to reference Chakraborty, A., et al. (2004). Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplantation, 34(2), 183–186.PubMedCrossRef Chakraborty, A., et al. (2004). Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplantation, 34(2), 183–186.PubMedCrossRef
113.
go back to reference Yilmaz, Y., et al. (2005). Donor Y chromosome in renal carcinoma cells of a female BMT recipient: Visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplantation, 35(10), 1021–1024.PubMedCrossRef Yilmaz, Y., et al. (2005). Donor Y chromosome in renal carcinoma cells of a female BMT recipient: Visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplantation, 35(10), 1021–1024.PubMedCrossRef
114.
go back to reference Etcubanas, E., et al. (1989). Rhabdomyosarcoma, presenting as disseminated malignancy from an unknown primary site: A retrospective study of ten pediatric cases. Medical and Pediatric Oncology, 17(1), 39–44.PubMedCrossRef Etcubanas, E., et al. (1989). Rhabdomyosarcoma, presenting as disseminated malignancy from an unknown primary site: A retrospective study of ten pediatric cases. Medical and Pediatric Oncology, 17(1), 39–44.PubMedCrossRef
115.
go back to reference Tsoi, W. C., & Feng, C. S. (1997). Hemophagocytosis by rhabdomyosarcoma cells in bone marrow. American Journal of Hematology, 54(4), 340–342.PubMedCrossRef Tsoi, W. C., & Feng, C. S. (1997). Hemophagocytosis by rhabdomyosarcoma cells in bone marrow. American Journal of Hematology, 54(4), 340–342.PubMedCrossRef
116.
go back to reference Fais, S. (2007). Cannibalism: A way to feed on metastatic tumors. Cancer Letters, 258(2), 155–164.PubMedCrossRef Fais, S. (2007). Cannibalism: A way to feed on metastatic tumors. Cancer Letters, 258(2), 155–164.PubMedCrossRef
117.
go back to reference Matarrese, P., et al. (2008). Xeno-cannibalism as an exacerbation of self-cannibalism: A possible fruitful survival strategy for cancer cells. Current Pharmaceutical Design, 14(3), 245–252.PubMedCrossRef Matarrese, P., et al. (2008). Xeno-cannibalism as an exacerbation of self-cannibalism: A possible fruitful survival strategy for cancer cells. Current Pharmaceutical Design, 14(3), 245–252.PubMedCrossRef
118.
go back to reference Overholtzer, M., & Brugge, J. S. (2008). The cell biology of cell-in-cell structures. Nature Reviews Molecular Cell Biology, 9(10), 796–809.PubMedCrossRef Overholtzer, M., & Brugge, J. S. (2008). The cell biology of cell-in-cell structures. Nature Reviews Molecular Cell Biology, 9(10), 796–809.PubMedCrossRef
119.
go back to reference Gupta, K., & Dey, P. (2003). Cell cannibalism: Diagnostic marker of malignancy. Diagnostic Cytopathology, 28(2), 86–87.PubMedCrossRef Gupta, K., & Dey, P. (2003). Cell cannibalism: Diagnostic marker of malignancy. Diagnostic Cytopathology, 28(2), 86–87.PubMedCrossRef
120.
121.
go back to reference Warner, T. F. (1975). Cell hybridizaiton: An explanation for the phenotypic diversity of certain tumours. Medical Hypotheses, 1(1), 51–57.PubMedCrossRef Warner, T. F. (1975). Cell hybridizaiton: An explanation for the phenotypic diversity of certain tumours. Medical Hypotheses, 1(1), 51–57.PubMedCrossRef
122.
go back to reference Munzarova, M., Lauerova, L., & Capkova, J. (1992). Are advanced malignant melanoma cells hybrids between melanocytes and macrophages? Melanoma Research, 2(2), 127–129.PubMedCrossRef Munzarova, M., Lauerova, L., & Capkova, J. (1992). Are advanced malignant melanoma cells hybrids between melanocytes and macrophages? Melanoma Research, 2(2), 127–129.PubMedCrossRef
123.
go back to reference Lu, X., & Kang, Y. (2009). Cell fusion as a hidden force in tumor progression. Cancer Research, 69(22), 8536–8539.PubMedCrossRef Lu, X., & Kang, Y. (2009). Cell fusion as a hidden force in tumor progression. Cancer Research, 69(22), 8536–8539.PubMedCrossRef
124.
go back to reference Duelli, D., & Lazebnik, Y. (2007). Cell-to-cell fusion as a link between viruses and cancer. Nature Reviews Cancer, 7(12), 968–976.PubMedCrossRef Duelli, D., & Lazebnik, Y. (2007). Cell-to-cell fusion as a link between viruses and cancer. Nature Reviews Cancer, 7(12), 968–976.PubMedCrossRef
125.
go back to reference Pawelek, J. M. (2005). Tumour-cell fusion as a source of myeloid traits in cancer. The Lancet Oncology, 6(12), 988–993.PubMedCrossRef Pawelek, J. M. (2005). Tumour-cell fusion as a source of myeloid traits in cancer. The Lancet Oncology, 6(12), 988–993.PubMedCrossRef
126.
go back to reference Chettibi, S., & Ferguson, M. (1999). Wound repair: An overview. In J. Snyderman (Ed.), Inflammation: Basic principles and clinical correlates (pp. 865–81). New York: Lippincott Williams & Wilkins. Chettibi, S., & Ferguson, M. (1999). Wound repair: An overview. In J. Snyderman (Ed.), Inflammation: Basic principles and clinical correlates (pp. 865–81). New York: Lippincott Williams & Wilkins.
127.
go back to reference Sunderkotter, C., et al. (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55(3), 410–422.PubMed Sunderkotter, C., et al. (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55(3), 410–422.PubMed
128.
go back to reference Martin, P., & Leibovich, S. J. (2005). Inflammatory cells during wound repair: The good, the bad and the ugly. Trends in Cell Biology, 15(11), 599–607.PubMedCrossRef Martin, P., & Leibovich, S. J. (2005). Inflammatory cells during wound repair: The good, the bad and the ugly. Trends in Cell Biology, 15(11), 599–607.PubMedCrossRef
129.
go back to reference Vignery, A. (2000). Osteoclasts and giant cells: Macrophage–macrophage fusion mechanism. International Journal of Experimental Pathology, 81(5), 291–304.PubMedCrossRef Vignery, A. (2000). Osteoclasts and giant cells: Macrophage–macrophage fusion mechanism. International Journal of Experimental Pathology, 81(5), 291–304.PubMedCrossRef
130.
go back to reference Bellingan, G. J., et al. (1996). In vivo fate of the inflammatory macrophage during the resolution of inflammation: Inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. Journal of Immunology, 157(6), 2577–2585. Bellingan, G. J., et al. (1996). In vivo fate of the inflammatory macrophage during the resolution of inflammation: Inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. Journal of Immunology, 157(6), 2577–2585.
131.
go back to reference Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6(12), 1191–1197.PubMedCrossRef Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6(12), 1191–1197.PubMedCrossRef
132.
go back to reference Diment, S., Leech, M. S., & Stahl, P. D. (1988). Cathepsin D is membrane-associated in macrophage endosomes. The Journal of Biological Chemistry, 263(14), 6901–6907.PubMed Diment, S., Leech, M. S., & Stahl, P. D. (1988). Cathepsin D is membrane-associated in macrophage endosomes. The Journal of Biological Chemistry, 263(14), 6901–6907.PubMed
133.
go back to reference Stehle, G., et al. (1997). Plasma protein (albumin) catabolism by the tumor itself—Implications for tumor metabolism and the genesis of cachexia. Critical Reviews in Oncology/Hematology, 26(2), 77–100.PubMedCrossRef Stehle, G., et al. (1997). Plasma protein (albumin) catabolism by the tumor itself—Implications for tumor metabolism and the genesis of cachexia. Critical Reviews in Oncology/Hematology, 26(2), 77–100.PubMedCrossRef
134.
go back to reference Steinhaus, J. (1981). Ueber carcinom-einschlusse. Virchows Archiv, 126, 533–535. Steinhaus, J. (1981). Ueber carcinom-einschlusse. Virchows Archiv, 126, 533–535.
135.
go back to reference Mizushima, N., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.PubMedCrossRef Mizushima, N., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.PubMedCrossRef
136.
137.
go back to reference Gotway, M.B., Conomos, P.J.,Bremner, R.M..Pleural metastatic disease from glioblastoma multiforme. Journal of Thoracic Imaging (in press). Gotway, M.B., Conomos, P.J.,Bremner, R.M..Pleural metastatic disease from glioblastoma multiforme. Journal of Thoracic Imaging (in press).
138.
go back to reference Rubinstein, L. J. (1972). Tumors of the central nervous system. Washington: Armed Forces Institute of Pathology. 400. Rubinstein, L. J. (1972). Tumors of the central nervous system. Washington: Armed Forces Institute of Pathology. 400.
139.
go back to reference Laerum, O. D., et al. (1984). Invasiveness of primary brain tumors. Cancer and Metastasis Reviews, 3(3), 223–236.PubMedCrossRef Laerum, O. D., et al. (1984). Invasiveness of primary brain tumors. Cancer and Metastasis Reviews, 3(3), 223–236.PubMedCrossRef
140.
go back to reference Taha, M., et al. (2005). Extra-cranial metastasis of glioblastoma multiforme presenting as acute parotitis. British Journal of Neurosurgery, 19(4), 348–351.PubMedCrossRef Taha, M., et al. (2005). Extra-cranial metastasis of glioblastoma multiforme presenting as acute parotitis. British Journal of Neurosurgery, 19(4), 348–351.PubMedCrossRef
141.
go back to reference Hoffman, H. J., & Duffner, P. K. (1985). Extraneural metastases of central nervous system tumors. Cancer, 56(7 Suppl), 1778–1782.PubMedCrossRef Hoffman, H. J., & Duffner, P. K. (1985). Extraneural metastases of central nervous system tumors. Cancer, 56(7 Suppl), 1778–1782.PubMedCrossRef
142.
go back to reference Ng, W. H., Yeo, T. T., & Kaye, A. H. (2005). Spinal and extracranial metastatic dissemination of malignant glioma. Journal of Clinical Neuroscience, 12(4), 379–382.PubMedCrossRef Ng, W. H., Yeo, T. T., & Kaye, A. H. (2005). Spinal and extracranial metastatic dissemination of malignant glioma. Journal of Clinical Neuroscience, 12(4), 379–382.PubMedCrossRef
143.
go back to reference Ghoneum, M., et al. (2005). Human squamous cell carcinoma of the tongue and colon undergoes apoptosis upon phagocytosis of Saccharomyces cerevisiae, the baker’s yeast, in vitro. Anticancer Research, 25(2A), 981–989.PubMed Ghoneum, M., et al. (2005). Human squamous cell carcinoma of the tongue and colon undergoes apoptosis upon phagocytosis of Saccharomyces cerevisiae, the baker’s yeast, in vitro. Anticancer Research, 25(2A), 981–989.PubMed
144.
go back to reference Mukherjee, P., Abate, L. E., & Seyfried, T. N. (2004). Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clinical Cancer Research, 10(16), 5622–5629.PubMedCrossRef Mukherjee, P., Abate, L. E., & Seyfried, T. N. (2004). Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clinical Cancer Research, 10(16), 5622–5629.PubMedCrossRef
145.
go back to reference Mukherjee, P., et al. (2002). Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. British Journal of Cancer, 86(10), 1615–1621.PubMedCrossRef Mukherjee, P., et al. (2002). Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. British Journal of Cancer, 86(10), 1615–1621.PubMedCrossRef
146.
go back to reference Seyfried, T. N., & Mukherjee, P. (2005). Anti-angiogenic and pro-apoptotic effects of dietary restriction in experimental brain cancer: Role of glucose and ketone bodies. In G. G. Meadows (Ed.), Integration/Interaction of oncologic growth. New York: Kluwer Academic. Seyfried, T. N., & Mukherjee, P. (2005). Anti-angiogenic and pro-apoptotic effects of dietary restriction in experimental brain cancer: Role of glucose and ketone bodies. In G. G. Meadows (Ed.), Integration/Interaction of oncologic growth. New York: Kluwer Academic.
147.
go back to reference Zhou, W., et al. (2007). The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutrition and Metabolism (London), 4, 5.CrossRef Zhou, W., et al. (2007). The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutrition and Metabolism (London), 4, 5.CrossRef
148.
go back to reference Marsh, J., Mukherjee, P., & Seyfried, T. N. (2008). Akt-dependent proapoptotic effects of caloric restriction on late-stage management of a PTEN/TSC2-deficient mouse astrocytoma. Proceedings of the American Association for Cancer Research, 99, 1250. Marsh, J., Mukherjee, P., & Seyfried, T. N. (2008). Akt-dependent proapoptotic effects of caloric restriction on late-stage management of a PTEN/TSC2-deficient mouse astrocytoma. Proceedings of the American Association for Cancer Research, 99, 1250.
149.
go back to reference Dong, W., et al. (1998). Altered alveolar macrophage function in calorie-restricted rats. American Journal of Respiratory Cell and Molecular Biology, 19(3), 462–469.PubMed Dong, W., et al. (1998). Altered alveolar macrophage function in calorie-restricted rats. American Journal of Respiratory Cell and Molecular Biology, 19(3), 462–469.PubMed
150.
go back to reference Zimmer, C., et al. (1995). MR imaging of phagocytosis in experimental gliomas. Radiology, 197(2), 533–538.PubMed Zimmer, C., et al. (1995). MR imaging of phagocytosis in experimental gliomas. Radiology, 197(2), 533–538.PubMed
151.
go back to reference Camargo, F. D., Chambers, S. M., & Goodell, M. A. (2004). Stem cell plasticity: From transdifferentiation to macrophage fusion. Cell Proliferation, 37(1), 55–65.PubMedCrossRef Camargo, F. D., Chambers, S. M., & Goodell, M. A. (2004). Stem cell plasticity: From transdifferentiation to macrophage fusion. Cell Proliferation, 37(1), 55–65.PubMedCrossRef
152.
go back to reference Camargo, F. D., Finegold, M., & Goodell, M. A. (2004). Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. The Journal of Clinical Investigation, 113(9), 1266–1270.PubMed Camargo, F. D., Finegold, M., & Goodell, M. A. (2004). Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. The Journal of Clinical Investigation, 113(9), 1266–1270.PubMed
153.
go back to reference Parris, G. E. (2005). The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones. Medical Hypotheses, 64(5), 1011–1014.PubMedCrossRef Parris, G. E. (2005). The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones. Medical Hypotheses, 64(5), 1011–1014.PubMedCrossRef
154.
go back to reference Mekler, L. B. (1971). Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestnik Akademii Meditsinskikh Nauk SSSR, 26(8), 80–89.PubMed Mekler, L. B. (1971). Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestnik Akademii Meditsinskikh Nauk SSSR, 26(8), 80–89.PubMed
155.
go back to reference Rachkovsky, M., & Pawelek, J. (1999). Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with Cloudman S91 melanoma cells. Cell Growth & Differentiation, 10(7), 517–524. Rachkovsky, M., & Pawelek, J. (1999). Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with Cloudman S91 melanoma cells. Cell Growth & Differentiation, 10(7), 517–524.
156.
go back to reference Ades, L., Guardiola, P., & Socie, G. (2002). Second malignancies after allogeneic hematopoietic stem cell transplantation: New insight and current problems. Blood Reviews, 16(2), 135–146.PubMedCrossRef Ades, L., Guardiola, P., & Socie, G. (2002). Second malignancies after allogeneic hematopoietic stem cell transplantation: New insight and current problems. Blood Reviews, 16(2), 135–146.PubMedCrossRef
157.
go back to reference Guillemin, G. J., & Brew, B. J. (2004). Microglia, macrophages, perivascular macrophages, and pericytes: A review of function and identification. Journal of Leukocyte Biology, 75(3), 388–397.PubMedCrossRef Guillemin, G. J., & Brew, B. J. (2004). Microglia, macrophages, perivascular macrophages, and pericytes: A review of function and identification. Journal of Leukocyte Biology, 75(3), 388–397.PubMedCrossRef
158.
go back to reference Seyfried, T.N., Shelton, L.M., Mukherjee, P. (2010) Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncology, 11(9), 811–813. Seyfried, T.N., Shelton, L.M., Mukherjee, P. (2010) Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncology, 11(9), 811–813.
159.
go back to reference Pavlidis, N., & Fizazi, K. (2009). Carcinoma of unknown primary (CUP). Critical Reviews in Oncology/Hematology, 69(3), 271–278.PubMedCrossRef Pavlidis, N., & Fizazi, K. (2009). Carcinoma of unknown primary (CUP). Critical Reviews in Oncology/Hematology, 69(3), 271–278.PubMedCrossRef
160.
go back to reference Carlson, H. R. (2009). Carcinoma of unknown primary: Searching for the origin of metastases. Jaapa, 22(8), 18–21.PubMed Carlson, H. R. (2009). Carcinoma of unknown primary: Searching for the origin of metastases. Jaapa, 22(8), 18–21.PubMed
161.
go back to reference Cuezva, J. M., et al. (2002). The bioenergetic signature of cancer: A marker of tumor progression. Cancer Research, 62(22), 6674–6681.PubMed Cuezva, J. M., et al. (2002). The bioenergetic signature of cancer: A marker of tumor progression. Cancer Research, 62(22), 6674–6681.PubMed
162.
go back to reference Galluzzi, L., et al. (2010). Mitochondrial gateways to cancer. Molecular Aspects of Medicine, 31(1), 1–20.PubMedCrossRef Galluzzi, L., et al. (2010). Mitochondrial gateways to cancer. Molecular Aspects of Medicine, 31(1), 1–20.PubMedCrossRef
163.
go back to reference John, A. P. (2001). Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: The impact of this on the treatment of cancer. Medical Hypotheses, 57(4), 429–431.PubMedCrossRef John, A. P. (2001). Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: The impact of this on the treatment of cancer. Medical Hypotheses, 57(4), 429–431.PubMedCrossRef
164.
go back to reference Ramanathan, A., Wang, C., & Schreiber, S. L. (2005). Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 5992–5997.PubMedCrossRef Ramanathan, A., Wang, C., & Schreiber, S. L. (2005). Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 5992–5997.PubMedCrossRef
165.
go back to reference Chen, Y., et al. (2009). Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS ONE, 4(9), e7033.PubMedCrossRef Chen, Y., et al. (2009). Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS ONE, 4(9), e7033.PubMedCrossRef
166.
go back to reference Seyfried, T. N., & Mukherjee, P. (2005). Targeting energy metabolism in brain cancer: Review and hypothesis. Nutrition and Metabolism (London), 2, 30.CrossRef Seyfried, T. N., & Mukherjee, P. (2005). Targeting energy metabolism in brain cancer: Review and hypothesis. Nutrition and Metabolism (London), 2, 30.CrossRef
167.
go back to reference Butow, R. A., & Avadhani, N. G. (2004). Mitochondrial signaling: The retrograde response. Molecular Cell, 14(1), 1–15.PubMedCrossRef Butow, R. A., & Avadhani, N. G. (2004). Mitochondrial signaling: The retrograde response. Molecular Cell, 14(1), 1–15.PubMedCrossRef
168.
go back to reference Singh, K. K., et al. (2005). Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene, 354, 140–146.PubMedCrossRef Singh, K. K., et al. (2005). Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene, 354, 140–146.PubMedCrossRef
169.
go back to reference Soto, A. M., & Sonnenschein, C. (2004). The somatic mutation theory of cancer: Growing problems with the paradigm? Bioessays, 26(10), 1097–1107.PubMedCrossRef Soto, A. M., & Sonnenschein, C. (2004). The somatic mutation theory of cancer: Growing problems with the paradigm? Bioessays, 26(10), 1097–1107.PubMedCrossRef
170.
go back to reference Lewis, C., & Murdoch, C. (2005). Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. The American Journal of Pathology, 167(3), 627–635.PubMed Lewis, C., & Murdoch, C. (2005). Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. The American Journal of Pathology, 167(3), 627–635.PubMed
171.
go back to reference DeBerardinis, R. J., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345–19350.PubMedCrossRef DeBerardinis, R. J., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345–19350.PubMedCrossRef
172.
go back to reference Newsholme, P. (2001). Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? The Journal of Nutrition, 131(9 Suppl), 2515S–2522S. discussion 2523S–4S.PubMed Newsholme, P. (2001). Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? The Journal of Nutrition, 131(9 Suppl), 2515S–2522S. discussion 2523S–4S.PubMed
173.
go back to reference Detmer, S. A., & Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 8(11), 870–879.PubMedCrossRef Detmer, S. A., & Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 8(11), 870–879.PubMedCrossRef
174.
go back to reference Nygren, J. M., et al. (2008). Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nature Cell Biology, 10(5), 584–592.PubMedCrossRef Nygren, J. M., et al. (2008). Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nature Cell Biology, 10(5), 584–592.PubMedCrossRef
175.
go back to reference Johansson, C. B., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10(5), 575–583.PubMedCrossRef Johansson, C. B., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10(5), 575–583.PubMedCrossRef
177.
go back to reference Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef
178.
go back to reference D’Agostino, D. M., et al. (2005). Mitochondria as functional targets of proteins coded by human tumor viruses. Advances in Cancer Research, 94, 87–142.PubMedCrossRef D’Agostino, D. M., et al. (2005). Mitochondria as functional targets of proteins coded by human tumor viruses. Advances in Cancer Research, 94, 87–142.PubMedCrossRef
179.
go back to reference Clippinger, A. J., & Bouchard, M. J. (2008). Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. Journal of Virology, 82(14), 6798–6811.PubMedCrossRef Clippinger, A. J., & Bouchard, M. J. (2008). Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. Journal of Virology, 82(14), 6798–6811.PubMedCrossRef
180.
go back to reference Koike, K. (2009). Hepatitis B virus X gene is implicated in liver carcinogenesis. Cancer Letters, 286(1), 60–68.PubMedCrossRef Koike, K. (2009). Hepatitis B virus X gene is implicated in liver carcinogenesis. Cancer Letters, 286(1), 60–68.PubMedCrossRef
181.
go back to reference Smith, A. E., & Kenyon, D. H. (1973). A unifying concept of carcinogenesis and its therapeutic implications. Oncology, 27(5), 459–479.PubMedCrossRef Smith, A. E., & Kenyon, D. H. (1973). A unifying concept of carcinogenesis and its therapeutic implications. Oncology, 27(5), 459–479.PubMedCrossRef
182.
go back to reference Glinsky, G. V., Berezovska, O., & Glinskii, A. B. (2005). Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. The Journal of Clinical Investigation, 115(6), 1503–1521.PubMedCrossRef Glinsky, G. V., Berezovska, O., & Glinskii, A. B. (2005). Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. The Journal of Clinical Investigation, 115(6), 1503–1521.PubMedCrossRef
183.
go back to reference Willenbring, H., et al. (2004). Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Natural Medicines, 10(7), 744–748.CrossRef Willenbring, H., et al. (2004). Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Natural Medicines, 10(7), 744–748.CrossRef
184.
go back to reference Harris, H. (1988). The analysis of malignancy by cell fusion: The position in 1988. Cancer Research, 48(12), 3302–3306.PubMed Harris, H. (1988). The analysis of malignancy by cell fusion: The position in 1988. Cancer Research, 48(12), 3302–3306.PubMed
185.
go back to reference Shelton, L. M., et al. (2010). A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. Journal Neurooncol, 99, 165–176.CrossRef Shelton, L. M., et al. (2010). A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. Journal Neurooncol, 99, 165–176.CrossRef
Metadata
Title
Perspectives on the mesenchymal origin of metastatic cancer
Authors
Leanne C. Huysentruyt
Thomas N. Seyfried
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9254-z

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine