Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres

Authors: Qing Ji, Xinbao Hao, Yang Meng, Min Zhang, Jeffrey DeSano, Daiming Fan, Liang Xu

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

MicroRNAs (miRNAs), some of which function as oncogenes or tumor suppressor genes, are involved in carcinogenesis via regulating cell proliferation and/or cell death. MicroRNA miR-34 was recently found to be a direct target of p53, functioning downstream of the p53 pathway as a tumor suppressor. miR-34 targets Notch, HMGA2, and Bcl-2, genes involved in the self-renewal and survival of cancer stem cells. The role of miR-34 in gastric cancer has not been reported previously. In this study, we examined the effects of miR-34 restoration on p53-mutant human gastric cancer cells and potential target gene expression.

Methods

Human gastric cancer cells were transfected with miR-34 mimics or infected with the lentiviral miR-34-MIF expression system, and validated by miR-34 reporter assay using Bcl-2 3'UTR reporter. Potential target gene expression was assessed by Western blot for proteins, and by quantitative real-time RT-PCR for mRNAs. The effects of miR-34 restoration were assessed by cell growth assay, cell cycle analysis, caspase-3 activation, and cytotoxicity assay, as well as by tumorsphere formation and growth.

Results

Human gastric cancer Kato III cells with miR-34 restoration reduced the expression of target genes Bcl-2, Notch, and HMGA2. Bcl-2 3'UTR reporter assay showed that the transfected miR-34s were functional and confirmed that Bcl-2 is a direct target of miR-34. Restoration of miR-34 chemosensitized Kato III cells with a high level of Bcl-2, but not MKN-45 cells with a low level of Bcl-2. miR-34 impaired cell growth, accumulated the cells in G1 phase, increased caspase-3 activation, and, more significantly, inhibited tumorsphere formation and growth.

Conclusion

Our results demonstrate that in p53-deficient human gastric cancer cells, restoration of functional miR-34 inhibits cell growth and induces chemosensitization and apoptosis, indicating that miR-34 may restore p53 function. Restoration of miR-34 inhibits tumorsphere formation and growth, which is reported to be correlated to the self-renewal of cancer stem cells. The mechanism of miR-34-mediated suppression of self-renewal appears to be related to the direct modulation of downstream targets Bcl-2, Notch, and HMGA2, indicating that miR-34 may be involved in gastric cancer stem cell self-renewal/differentiation decision-making. Our study suggests that restoration of the tumor suppressor miR-34 may provide a novel molecular therapy for p53-mutant gastric cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hatfield S, Ruohola-Baker H: microRNA and stem cell function. Cell Tissue Res. 2008, 331 (1): 57-66.CrossRefPubMed Hatfield S, Ruohola-Baker H: microRNA and stem cell function. Cell Tissue Res. 2008, 331 (1): 57-66.CrossRefPubMed
2.
go back to reference Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67 (19): 8994-9000.CrossRefPubMed Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67 (19): 8994-9000.CrossRefPubMed
3.
go back to reference Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131 (6): 1109-1123.CrossRefPubMed Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131 (6): 1109-1123.CrossRefPubMed
4.
go back to reference Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6 (13): 1586-1593.CrossRefPubMed Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6 (13): 1586-1593.CrossRefPubMed
6.
go back to reference Domen J, Gandy KL, Weissman IL: Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood. 1998, 91 (7): 2272-2282.PubMed Domen J, Gandy KL, Weissman IL: Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood. 1998, 91 (7): 2272-2282.PubMed
7.
go back to reference Domen J, Cheshier SH, Weissman IL: The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med. 2000, 191 (2): 253-264.CrossRefPubMedPubMedCentral Domen J, Cheshier SH, Weissman IL: The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med. 2000, 191 (2): 253-264.CrossRefPubMedPubMedCentral
8.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26 (5): 745-752.CrossRefPubMedPubMedCentral Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26 (5): 745-752.CrossRefPubMedPubMedCentral
9.
go back to reference Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26 (5): 731-743.CrossRefPubMed Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26 (5): 731-743.CrossRefPubMed
10.
go back to reference Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17 (15): 1298-1307.CrossRefPubMed Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17 (15): 1298-1307.CrossRefPubMed
11.
go back to reference He X, He L, Hannon GJ: The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007, 67 (23): 11099-11101.CrossRefPubMed He X, He L, Hannon GJ: The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007, 67 (23): 11099-11101.CrossRefPubMed
12.
go back to reference He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447 (7148): 1130-1134.CrossRefPubMedPubMedCentral He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447 (7148): 1130-1134.CrossRefPubMedPubMedCentral
13.
go back to reference Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104 (39): 15472-15477.CrossRefPubMedPubMedCentral Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104 (39): 15472-15477.CrossRefPubMedPubMedCentral
14.
go back to reference Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004, 6 (6): R605-615.CrossRefPubMedPubMedCentral Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004, 6 (6): R605-615.CrossRefPubMedPubMedCentral
15.
go back to reference Meng Y, Tang W, Dai Y, Wu X, Liu M, Ji Q, Ji M, Pienta K, Lawrence T, Xu L: Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol Cancer Ther. 2008, 7 (7): 2192-2202.CrossRefPubMedPubMedCentral Meng Y, Tang W, Dai Y, Wu X, Liu M, Ji Q, Ji M, Pienta K, Lawrence T, Xu L: Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol Cancer Ther. 2008, 7 (7): 2192-2202.CrossRefPubMedPubMedCentral
16.
go back to reference Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007, 67 (18): 8433-8438.CrossRefPubMed Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007, 67 (18): 8433-8438.CrossRefPubMed
17.
go back to reference Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022.CrossRefPubMed Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022.CrossRefPubMed
18.
go back to reference Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ, deVere White RW: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007, 104 (50): 19983-19988.CrossRefPubMedPubMedCentral Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ, deVere White RW: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007, 104 (50): 19983-19988.CrossRefPubMedPubMedCentral
19.
go back to reference Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH: Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 2002, 1 (5): 337-346.PubMed Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH: Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 2002, 1 (5): 337-346.PubMed
20.
go back to reference Xu L, Frederik P, Pirollo KF, Tang WH, Rait A, Xiang LM, Huang W, Cruz I, Yin Y, Chang EH: Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum Gene Ther. 2002, 13 (3): 469-481.CrossRefPubMed Xu L, Frederik P, Pirollo KF, Tang WH, Rait A, Xiang LM, Huang W, Cruz I, Yin Y, Chang EH: Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum Gene Ther. 2002, 13 (3): 469-481.CrossRefPubMed
21.
go back to reference Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, Rait A, Chang EH: Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med. 2001, 7 (10): 723-734.PubMedPubMedCentral Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, Rait A, Chang EH: Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med. 2001, 7 (10): 723-734.PubMedPubMedCentral
22.
go back to reference Xu L, Pirollo KF, Chang EH: Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release. 2001, 74 (1–3): 115-128.CrossRefPubMed Xu L, Pirollo KF, Chang EH: Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release. 2001, 74 (1–3): 115-128.CrossRefPubMed
23.
go back to reference Xu L, Pirollo KF, Rait A, Murray AL, Chang EH: Systemic p53 Gene Therapy In Combination with Radiation Results in Human Tumor Regression. Tumor Targeting. 1999, 4: 92-104. Xu L, Pirollo KF, Rait A, Murray AL, Chang EH: Systemic p53 Gene Therapy In Combination with Radiation Results in Human Tumor Regression. Tumor Targeting. 1999, 4: 92-104.
25.
go back to reference Zinkel S, Gross A, Yang E: BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006, 13 (8): 1351-1359.CrossRefPubMed Zinkel S, Gross A, Yang E: BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006, 13 (8): 1351-1359.CrossRefPubMed
26.
go back to reference Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98 (24): 1777-1785.CrossRefPubMed Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98 (24): 1777-1785.CrossRefPubMed
27.
go back to reference Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006, 66 (12): 6063-6071.CrossRefPubMedPubMedCentral Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006, 66 (12): 6063-6071.CrossRefPubMedPubMedCentral
28.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, et al: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435 (7042): 677-681.CrossRefPubMed Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, et al: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435 (7042): 677-681.CrossRefPubMed
29.
go back to reference Chao DT, Korsmeyer SJ: BCL-2 family: regulators of cell death. Annual Review of Immunology. 1998, 16: 395-419.CrossRefPubMed Chao DT, Korsmeyer SJ: BCL-2 family: regulators of cell death. Annual Review of Immunology. 1998, 16: 395-419.CrossRefPubMed
30.
go back to reference Reed JC: Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Seminars in Hematology. 1997, 34 (4 Suppl 5): 9-19.PubMed Reed JC: Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Seminars in Hematology. 1997, 34 (4 Suppl 5): 9-19.PubMed
31.
32.
go back to reference Reed JC, Jurgensmeier JM, Matsuyama S: Bcl-2 family proteins and mitochondria. Biochimica et Biophysica Acta. 1998, 1366 (1–2): 127-137.CrossRefPubMed Reed JC, Jurgensmeier JM, Matsuyama S: Bcl-2 family proteins and mitochondria. Biochimica et Biophysica Acta. 1998, 1366 (1–2): 127-137.CrossRefPubMed
33.
go back to reference Korsmeyer SJ: BCL-2 gene family and the regulation of programmed cell death. Cancer Research. 1999, 59 (7 Suppl): 1693s-1700s.PubMed Korsmeyer SJ: BCL-2 gene family and the regulation of programmed cell death. Cancer Research. 1999, 59 (7 Suppl): 1693s-1700s.PubMed
34.
go back to reference Han Z, Hong L, Han Y, Wu K, Han S, Shen H, Li C, Yao L, Qiao T, Fan D: Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. J Exp Clin Cancer Res. 2007, 26 (2): 261-268.PubMed Han Z, Hong L, Han Y, Wu K, Han S, Shen H, Li C, Yao L, Qiao T, Fan D: Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. J Exp Clin Cancer Res. 2007, 26 (2): 261-268.PubMed
35.
go back to reference DiPaola RS, Aisner J: Overcoming bcl-2- and p53-mediated resistance in prostate cancer. Seminars in Oncology. 1999, 26 (1 Suppl 2): 112-116.PubMed DiPaola RS, Aisner J: Overcoming bcl-2- and p53-mediated resistance in prostate cancer. Seminars in Oncology. 1999, 26 (1 Suppl 2): 112-116.PubMed
36.
37.
go back to reference Reed JC: Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Advances in Pharmacology. 1997, 41: 501-532.CrossRefPubMed Reed JC: Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Advances in Pharmacology. 1997, 41: 501-532.CrossRefPubMed
38.
go back to reference Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT: Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clinical Cancer Research. 1996, 2 (2): 389-398.PubMed Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT: Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clinical Cancer Research. 1996, 2 (2): 389-398.PubMed
39.
40.
go back to reference Bruckheimer EM, Brisbay S, Johnson DJ, Gingrich JR, Greenberg N, McDonnell TJ: Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene. 2000, 19 (46): 5251-5258.CrossRefPubMed Bruckheimer EM, Brisbay S, Johnson DJ, Gingrich JR, Greenberg N, McDonnell TJ: Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene. 2000, 19 (46): 5251-5258.CrossRefPubMed
41.
go back to reference Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008, 15 (3): 504-514.CrossRefPubMed Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008, 15 (3): 504-514.CrossRefPubMed
42.
go back to reference Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell. 2007, 1 (5): 555-567.CrossRefPubMedPubMedCentral Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell. 2007, 1 (5): 555-567.CrossRefPubMedPubMedCentral
43.
go back to reference Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007, 104 (3): 973-978.CrossRefPubMedPubMedCentral Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007, 104 (3): 973-978.CrossRefPubMedPubMedCentral
44.
go back to reference Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67 (3): 1030-1037.CrossRefPubMed Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67 (3): 1030-1037.CrossRefPubMed
45.
go back to reference Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006, 103 (30): 11154-11159.CrossRefPubMedPubMedCentral Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006, 103 (30): 11154-11159.CrossRefPubMedPubMedCentral
46.
go back to reference Wicha MS: Breast cancer stem cells: the other side of the story. Stem Cell Rev. 2007, 3 (2): 110-112. discussion 113CrossRefPubMed Wicha MS: Breast cancer stem cells: the other side of the story. Stem Cell Rev. 2007, 3 (2): 110-112. discussion 113CrossRefPubMed
47.
48.
go back to reference Wicha MS: Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res. 2006, 12 (19): 5606-5607.CrossRefPubMed Wicha MS: Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res. 2006, 12 (19): 5606-5607.CrossRefPubMed
49.
go back to reference Farnie G, Clarke RB: Breast stem cells and cancer. Ernst Schering Found Symp Proc. 2006, 5: 141-153.PubMed Farnie G, Clarke RB: Breast stem cells and cancer. Ernst Schering Found Symp Proc. 2006, 5: 141-153.PubMed
50.
go back to reference Al-Hajj M: Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007, 19 (1): 61-64.PubMed Al-Hajj M: Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007, 19 (1): 61-64.PubMed
51.
go back to reference Yang YC, Wang SW, Hung HY, Chang CC, Wu IC, Huang YL, Lin TM, Tsai JL, Chen A, Kuo FC, et al: Isolation and characterization of human gastric cell lines with stem cell phenotypes. J Gastroenterol Hepatol. 2007, 22 (9): 1460-1468.CrossRefPubMed Yang YC, Wang SW, Hung HY, Chang CC, Wu IC, Huang YL, Lin TM, Tsai JL, Chen A, Kuo FC, et al: Isolation and characterization of human gastric cell lines with stem cell phenotypes. J Gastroenterol Hepatol. 2007, 22 (9): 1460-1468.CrossRefPubMed
52.
go back to reference Katoh M: Dysregulation of stem cell signaling network due to germline mutation, SNP, helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007, 6 (6): 832-839.CrossRefPubMed Katoh M: Dysregulation of stem cell signaling network due to germline mutation, SNP, helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007, 6 (6): 832-839.CrossRefPubMed
53.
go back to reference Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS: Stem cells in normal breast development and breast cancer. Cell Prolif. 2003, 36 (Suppl 1): 59-72.CrossRefPubMed Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS: Stem cells in normal breast development and breast cancer. Cell Prolif. 2003, 36 (Suppl 1): 59-72.CrossRefPubMed
Metadata
Title
Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres
Authors
Qing Ji
Xinbao Hao
Yang Meng
Min Zhang
Jeffrey DeSano
Daiming Fan
Liang Xu
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-266

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine