Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008

The tyrosine phosphatase Shp2 (PTPN11) in cancer

Authors: Gordon Chan, Demetrios Kalaitzidis, Benjamin G. Neel

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Diverse cellular processes are regulated by tyrosyl phosphorylation, which is controlled by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). De-regulated tyrosyl phosphorylation, evoked by gain-of-function mutations and/or over-expression of PTKs, contributes to the pathogenesis of many cancers and other human diseases. PTPs, because they oppose the action of PTKs, had been considered to be prime suspects for potential tumor suppressor genes. Surprisingly, few, if any, tumor suppressor PTPs have been identified. However, the Src homology-2 domain-containing phosphatase Shp2 (encoded by PTPN11) is a bona fide proto-oncogene. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, whereas somatic PTPN11 mutations occur in several types of hematologic malignancies, most notably juvenile myelomonocytic leukemia and, more rarely, in solid tumors. Shp2 also is an essential component in several other oncogene signaling pathways. Elucidation of the events underlying Shp2-evoked transformation may provide new insights into oncogenic mechanisms and novel targets for anti-cancer therapy.
Literature
1.
go back to reference Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRef Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRef
2.
go back to reference Neel, B. G., Gu, H., & Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284–293.PubMedCrossRef Neel, B. G., Gu, H., & Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284–293.PubMedCrossRef
3.
go back to reference Pao, L. I., Badour, K., Siminovitch, K. A., & Neel, B. G. (2007). Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annual Review of Immunology, 25, 473–523.PubMedCrossRef Pao, L. I., Badour, K., Siminovitch, K. A., & Neel, B. G. (2007). Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annual Review of Immunology, 25, 473–523.PubMedCrossRef
4.
go back to reference Feng, G. S. (1999). Shp-2 tyrosine phosphatase: signaling one cell or many. Experimental Cell Research, 253(1), 47–54.PubMedCrossRef Feng, G. S. (1999). Shp-2 tyrosine phosphatase: signaling one cell or many. Experimental Cell Research, 253(1), 47–54.PubMedCrossRef
5.
go back to reference Chan, R. J., & Feng, G. S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862–867.PubMedCrossRef Chan, R. J., & Feng, G. S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862–867.PubMedCrossRef
6.
go back to reference Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics, 29(4), 465–468.PubMedCrossRef Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics, 29(4), 465–468.PubMedCrossRef
7.
go back to reference Tartaglia, M., & Gelb, B. D. (2005). Noonan syndrome and related disorders: Genetics and pathogenesis. Annual Review of Genomics and Human Genetics, 6, 45–68.PubMedCrossRef Tartaglia, M., & Gelb, B. D. (2005). Noonan syndrome and related disorders: Genetics and pathogenesis. Annual Review of Genomics and Human Genetics, 6, 45–68.PubMedCrossRef
8.
go back to reference Tartaglia, M., Niemeyer, C. M., Shannon, K. M., & Loh, M. L. (2004). SHP-2 and myeloid malignancies. Current Opinion in Hematology, 11(1), 44–50.PubMedCrossRef Tartaglia, M., Niemeyer, C. M., Shannon, K. M., & Loh, M. L. (2004). SHP-2 and myeloid malignancies. Current Opinion in Hematology, 11(1), 44–50.PubMedCrossRef
9.
go back to reference Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34(2), 148–150.PubMedCrossRef Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34(2), 148–150.PubMedCrossRef
10.
go back to reference Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., et al. (2004). Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103(6), 2325–2331.PubMedCrossRef Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., et al. (2004). Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103(6), 2325–2331.PubMedCrossRef
11.
go back to reference Neel, B., Gu, H., & Pao, L. (2003). SH2 domain-containing protein tyrosine phosphatases. In R. A. Bradshaw, & E. A. Dennis (Eds.) Handbook cell signaling pp. 707–730. Amsterdam: Elsevier.CrossRef Neel, B., Gu, H., & Pao, L. (2003). SH2 domain-containing protein tyrosine phosphatases. In R. A. Bradshaw, & E. A. Dennis (Eds.) Handbook cell signaling pp. 707–730. Amsterdam: Elsevier.CrossRef
12.
go back to reference Gelb, B. D., & Tartaglia, M. (2006). Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Human Molecular Genetics, 15(Spec No 2), R220–226.PubMedCrossRef Gelb, B. D., & Tartaglia, M. (2006). Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Human Molecular Genetics, 15(Spec No 2), R220–226.PubMedCrossRef
13.
go back to reference Tonks, N. K., & Neel, B. G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology, 13(2), 182–195.PubMedCrossRef Tonks, N. K., & Neel, B. G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology, 13(2), 182–195.PubMedCrossRef
14.
go back to reference Van Vactor, D., O’Reilly, A. M., & Neel, B. G. (1998). Genetic analysis of protein tyrosine phosphatases. Current Opinion in Genetics & Development, 8(1), 112–126.CrossRef Van Vactor, D., O’Reilly, A. M., & Neel, B. G. (1998). Genetic analysis of protein tyrosine phosphatases. Current Opinion in Genetics & Development, 8(1), 112–126.CrossRef
15.
go back to reference Araki, T., Nawa, H., & Neel, B. G. (2003). Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. Journal of Biological Chemistry, 278(43), 41677–41684.PubMedCrossRef Araki, T., Nawa, H., & Neel, B. G. (2003). Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. Journal of Biological Chemistry, 278(43), 41677–41684.PubMedCrossRef
16.
go back to reference Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441–450.PubMedCrossRef Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441–450.PubMedCrossRef
17.
go back to reference Barford, D., & Neel, B. G. (1998). Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 6(3), 249–254.PubMedCrossRef Barford, D., & Neel, B. G. (1998). Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 6(3), 249–254.PubMedCrossRef
18.
go back to reference O’Reilly, A. M., Pluskey, S., Shoelson, S. E., & Neel, B. G. (2000). Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Molecular and Cellular Biology, 20(1), 299–311.PubMed O’Reilly, A. M., Pluskey, S., Shoelson, S. E., & Neel, B. G. (2000). Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Molecular and Cellular Biology, 20(1), 299–311.PubMed
19.
go back to reference Zhang, S. Q., Yang, W., Kontaridis, M. I., Bivona, T. G., Wen, G., Araki, T., et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Molecular Cell, 13(3), 341–355.PubMedCrossRef Zhang, S. Q., Yang, W., Kontaridis, M. I., Bivona, T. G., Wen, G., Araki, T., et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Molecular Cell, 13(3), 341–355.PubMedCrossRef
20.
go back to reference Ren, Y., Meng, S., Mei, L., Zhao, Z. J., Jove, R., & Wu, J. (2004). Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. Journal of Biological Chemistry, 279(9), 8497–8505.PubMedCrossRef Ren, Y., Meng, S., Mei, L., Zhao, Z. J., Jove, R., & Wu, J. (2004). Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. Journal of Biological Chemistry, 279(9), 8497–8505.PubMedCrossRef
21.
go back to reference Bertotti, A., Comoglio, P. M., & Trusolino, L. (2006). Beta4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. Journal of Cell Biology, 175(6), 993–1003.PubMedCrossRef Bertotti, A., Comoglio, P. M., & Trusolino, L. (2006). Beta4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. Journal of Cell Biology, 175(6), 993–1003.PubMedCrossRef
22.
go back to reference Klinghoffer, R. A., & Kazlauskas, A. (1995). Identification of a putative Syp substrate, the PDGF beta receptor. Journal of Biological Chemistry, 270(38), 22208–22217.PubMedCrossRef Klinghoffer, R. A., & Kazlauskas, A. (1995). Identification of a putative Syp substrate, the PDGF beta receptor. Journal of Biological Chemistry, 270(38), 22208–22217.PubMedCrossRef
23.
go back to reference Agazie, Y. M., & Hayman, M. J. (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Molecular and Cellular Biology, 23(21), 7875–7886.PubMedCrossRef Agazie, Y. M., & Hayman, M. J. (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Molecular and Cellular Biology, 23(21), 7875–7886.PubMedCrossRef
24.
go back to reference Cleghon, V., Feldmann, P., Ghiglione, C., Copeland, T. D., Perrimon, N., Hughes, D. A., et al. (1998). Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Molecular Cell, 2(6), 719–727.PubMedCrossRef Cleghon, V., Feldmann, P., Ghiglione, C., Copeland, T. D., Perrimon, N., Hughes, D. A., et al. (1998). Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Molecular Cell, 2(6), 719–727.PubMedCrossRef
25.
go back to reference Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K., & Nishida, E. (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. Journal of Biological Chemistry, 279(22), 22992–22995.PubMedCrossRef Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K., & Nishida, E. (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. Journal of Biological Chemistry, 279(22), 22992–22995.PubMedCrossRef
26.
go back to reference Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., & Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development, 133(6), 1133–1142.PubMedCrossRef Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., & Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development, 133(6), 1133–1142.PubMedCrossRef
27.
go back to reference Zhang, S. Q., Tsiaras, W. G., Araki, T., Wen, G., Minichiello, L., Klein, R., et al. (2002). Receptor-specific regulation of phosphatidylinositol 3’′-kinase activation by the protein tyrosine phosphatase Shp2. Molecular and Cellular Biology, 22(12), 4062–4072.PubMedCrossRef Zhang, S. Q., Tsiaras, W. G., Araki, T., Wen, G., Minichiello, L., Klein, R., et al. (2002). Receptor-specific regulation of phosphatidylinositol 3’′-kinase activation by the protein tyrosine phosphatase Shp2. Molecular and Cellular Biology, 22(12), 4062–4072.PubMedCrossRef
28.
go back to reference Mattoon, D. R., Lamothe, B., Lax, I., & Schlessinger, J. (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol, 2, 24.PubMedCrossRef Mattoon, D. R., Lamothe, B., Lax, I., & Schlessinger, J. (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol, 2, 24.PubMedCrossRef
29.
go back to reference Shi, Z. Q., Lu, W., & Feng, G. S. (1998). The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. Journal of Biological Chemistry, 273(9), 4904–4908.PubMedCrossRef Shi, Z. Q., Lu, W., & Feng, G. S. (1998). The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. Journal of Biological Chemistry, 273(9), 4904–4908.PubMedCrossRef
30.
go back to reference You, M., Flick, L. M., Yu, D., & Feng, G. S. (2001). Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. Journal of Experimental Medicine, 193(1), 101–110.PubMedCrossRef You, M., Flick, L. M., Yu, D., & Feng, G. S. (2001). Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. Journal of Experimental Medicine, 193(1), 101–110.PubMedCrossRef
31.
go back to reference Schoenwaelder, S. M., Petch, L. A., Williamson, D., Shen, R., Feng, G. S., & Burridge, K. (2000). The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Current Biology, 10(23), 1523–1526.PubMedCrossRef Schoenwaelder, S. M., Petch, L. A., Williamson, D., Shen, R., Feng, G. S., & Burridge, K. (2000). The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Current Biology, 10(23), 1523–1526.PubMedCrossRef
32.
go back to reference Kontaridis, M. I., Eminaga, S., Fornaro, M., Zito, C. I., Sordella, R., Settleman, J., et al. (2004). SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Molecular and Cellular Biology, 24(12), 5340–5352.PubMedCrossRef Kontaridis, M. I., Eminaga, S., Fornaro, M., Zito, C. I., Sordella, R., Settleman, J., et al. (2004). SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Molecular and Cellular Biology, 24(12), 5340–5352.PubMedCrossRef
33.
go back to reference Uhlen, P., Burch, P. M., Zito, C. I., Estrada, M., Ehrlich, B. E., & Bennett, A. M. (2006). Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2160–2165.PubMedCrossRef Uhlen, P., Burch, P. M., Zito, C. I., Estrada, M., Ehrlich, B. E., & Bennett, A. M. (2006). Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2160–2165.PubMedCrossRef
34.
go back to reference Walter, A. O., Peng, Z. Y., & Cartwright, C. A. (1999). The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene, 18(11), 1911–1920.PubMedCrossRef Walter, A. O., Peng, Z. Y., & Cartwright, C. A. (1999). The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene, 18(11), 1911–1920.PubMedCrossRef
35.
go back to reference Yu, W. M., Hawley, T. S., Hawley, R. G., & Qu, C. K. (2003). Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene, 22(38), 5995–6004.PubMedCrossRef Yu, W. M., Hawley, T. S., Hawley, R. G., & Qu, C. K. (2003). Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene, 22(38), 5995–6004.PubMedCrossRef
36.
go back to reference Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38(3), 331–336.PubMedCrossRef Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38(3), 331–336.PubMedCrossRef
37.
go back to reference Carta, C., Pantaleoni, F., Bocchinfuso, G., Stella, L., Vasta, I., Sarkozy, A., et al. (2006). Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. American Journal of Human Genetics, 79(1), 129–135.PubMedCrossRef Carta, C., Pantaleoni, F., Bocchinfuso, G., Stella, L., Vasta, I., Sarkozy, A., et al. (2006). Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. American Journal of Human Genetics, 79(1), 129–135.PubMedCrossRef
38.
go back to reference Roberts, A. E., Araki, T., Swanson, K. D., Montgomery, K. T., Schiripo, T. A., Joshi, V. A., et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genetics, 39(1), 70–74.PubMedCrossRef Roberts, A. E., Araki, T., Swanson, K. D., Montgomery, K. T., Schiripo, T. A., Joshi, V. A., et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genetics, 39(1), 70–74.PubMedCrossRef
39.
go back to reference Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39(1), 75–79.PubMedCrossRef Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39(1), 75–79.PubMedCrossRef
40.
go back to reference Razzaque, M. A., Nishizawa, T., Komoike, Y., Yagi, H., Furutani, M., Amo, R., et al. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genetics, 39, 1013–1017.PubMedCrossRef Razzaque, M. A., Nishizawa, T., Komoike, Y., Yagi, H., Furutani, M., Amo, R., et al. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genetics, 39, 1013–1017.PubMedCrossRef
41.
go back to reference Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.PubMedCrossRef Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.PubMedCrossRef
42.
go back to reference Tartaglia, M., Martinelli, S., Iavarone, I., Cazzaniga, G., Spinelli, M., Giarin, E., et al. (2005). Somatic PTPN11 mutations in childhood acute myeloid leukaemia. British Journal of Haematology, 129(3), 333–339.PubMedCrossRef Tartaglia, M., Martinelli, S., Iavarone, I., Cazzaniga, G., Spinelli, M., Giarin, E., et al. (2005). Somatic PTPN11 mutations in childhood acute myeloid leukaemia. British Journal of Haematology, 129(3), 333–339.PubMedCrossRef
43.
go back to reference Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64(24), 8816–8820.PubMedCrossRef Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64(24), 8816–8820.PubMedCrossRef
44.
go back to reference Loh, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., et al. (2004). PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia, 18(11), 1831–1834.PubMedCrossRef Loh, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., et al. (2004). PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia, 18(11), 1831–1834.PubMedCrossRef
45.
go back to reference Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood, 104(2), 307–313.PubMedCrossRef Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood, 104(2), 307–313.PubMedCrossRef
46.
go back to reference Yamamoto, T., Isomura, M., Xu, Y., Liang, J., Yagasaki, H., Kamachi, Y., et al. (2006). PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leukemia Research, 30(9), 1085–1089.PubMedCrossRef Yamamoto, T., Isomura, M., Xu, Y., Liang, J., Yagasaki, H., Kamachi, Y., et al. (2006). PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leukemia Research, 30(9), 1085–1089.PubMedCrossRef
47.
go back to reference Martinelli, S., Carta, C., Flex, E., Binni, F., Cordisco, E. L., Moretti, S., et al. (2006). Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genetics and Cytogenetics, 166(2), 124–129.PubMedCrossRef Martinelli, S., Carta, C., Flex, E., Binni, F., Cordisco, E. L., Moretti, S., et al. (2006). Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genetics and Cytogenetics, 166(2), 124–129.PubMedCrossRef
48.
go back to reference Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef
49.
go back to reference Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., et al. (2002). PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype–phenotype correlation, and phenotypic heterogeneity. American Journal of Human Genetics, 70(6), 1555–1563.PubMedCrossRef Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., et al. (2002). PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype–phenotype correlation, and phenotypic heterogeneity. American Journal of Human Genetics, 70(6), 1555–1563.PubMedCrossRef
50.
go back to reference Kosaki, K., Suzuki, T., Muroya, K., Hasegawa, T., Sato, S., Matsuo, N., et al. (2002). PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. Journal of Clinical Endocrinology and Metabolism, 87(8), 3529–3533.PubMedCrossRef Kosaki, K., Suzuki, T., Muroya, K., Hasegawa, T., Sato, S., Matsuo, N., et al. (2002). PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. Journal of Clinical Endocrinology and Metabolism, 87(8), 3529–3533.PubMedCrossRef
51.
go back to reference Keilhack, H., David, F. S., McGregor, M., Cantley, L. C., & Neel, B. G. (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. Journal of Biological Chemistry, 280(35), 30984–30993.PubMedCrossRef Keilhack, H., David, F. S., McGregor, M., Cantley, L. C., & Neel, B. G. (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. Journal of Biological Chemistry, 280(35), 30984–30993.PubMedCrossRef
52.
go back to reference Niihori, T., Aoki, Y., Ohashi, H., Kurosawa, K., Kondoh, T., Ishikiriyama, S., et al. (2005). Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. Journal of Human Genetics, 50(4), 192–202.PubMedCrossRef Niihori, T., Aoki, Y., Ohashi, H., Kurosawa, K., Kondoh, T., Ishikiriyama, S., et al. (2005). Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. Journal of Human Genetics, 50(4), 192–202.PubMedCrossRef
53.
go back to reference Tartaglia, M., Martinelli, S., Stella, L., Bocchinfuso, G., Flex, E., Cordeddu, V., et al. (2006). Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. American Journal of Human Genetics, 78(2), 279–290.PubMedCrossRef Tartaglia, M., Martinelli, S., Stella, L., Bocchinfuso, G., Flex, E., Cordeddu, V., et al. (2006). Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. American Journal of Human Genetics, 78(2), 279–290.PubMedCrossRef
54.
go back to reference Araki, T., Mohi, M. G., Ismat, F. A., Bronson, R. T., Williams, I. R., Kutok, J. L., et al. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Medicine, 10(8), 849–857.PubMedCrossRef Araki, T., Mohi, M. G., Ismat, F. A., Bronson, R. T., Williams, I. R., Kutok, J. L., et al. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Medicine, 10(8), 849–857.PubMedCrossRef
55.
go back to reference Kontaridis, M. I., Swanson, K. D., David, F. S., Barford, D., & Neel, B. G. (2006). PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. Journal of Biological Chemistry, 281(10), 6785–6792.PubMedCrossRef Kontaridis, M. I., Swanson, K. D., David, F. S., Barford, D., & Neel, B. G. (2006). PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. Journal of Biological Chemistry, 281(10), 6785–6792.PubMedCrossRef
56.
go back to reference Hanna, N., Montagner, A., Lee, W. H., Miteva, M., Vidal, M., Vidaud, M., et al. (2006). Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Letters, 580(10), 2477–2482.PubMedCrossRef Hanna, N., Montagner, A., Lee, W. H., Miteva, M., Vidal, M., Vidaud, M., et al. (2006). Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Letters, 580(10), 2477–2482.PubMedCrossRef
57.
go back to reference Conti, E., Dottorini, T., Sarkozy, A., Tiller, G. E., Esposito, G., Pizzuti, A., et al. (2003). A novel PTPN11 mutation in LEOPARD syndrome. Human Mutation, 21(6), 654.PubMedCrossRef Conti, E., Dottorini, T., Sarkozy, A., Tiller, G. E., Esposito, G., Pizzuti, A., et al. (2003). A novel PTPN11 mutation in LEOPARD syndrome. Human Mutation, 21(6), 654.PubMedCrossRef
58.
go back to reference Brems, H., Chmara, M., Sahbatou, M., Denayer, E., Taniguchi, K., Kato, R., et al. (2007). Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nature Genetics, 39(9), 1120–1126.PubMedCrossRef Brems, H., Chmara, M., Sahbatou, M., Denayer, E., Taniguchi, K., Kato, R., et al. (2007). Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nature Genetics, 39(9), 1120–1126.PubMedCrossRef
59.
go back to reference Sarkozy, A., Conti, E., Digilio, M. C., Marino, B., Morini, E., Pacileo, G., et al. (2004). Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome. Journal of Medical Genetics, 41(5), e68.PubMedCrossRef Sarkozy, A., Conti, E., Digilio, M. C., Marino, B., Morini, E., Pacileo, G., et al. (2004). Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome. Journal of Medical Genetics, 41(5), e68.PubMedCrossRef
60.
go back to reference Ucar, C., Calyskan, U., Martini, S., & Heinritz, W. (2006). Acute myelomonocytic leukemia in a boy with LEOPARD syndrome (PTPN11 gene mutation positive). Journal of Pediatric Hematology Oncology, 28(3), 123–125.CrossRef Ucar, C., Calyskan, U., Martini, S., & Heinritz, W. (2006). Acute myelomonocytic leukemia in a boy with LEOPARD syndrome (PTPN11 gene mutation positive). Journal of Pediatric Hematology Oncology, 28(3), 123–125.CrossRef
61.
go back to reference Keren, B., Hadchouel, A., Saba, S., Sznajer, Y., Bonneau, D., Leheup, B., et al. (2004). PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience. Journal of Medical Genetics, 41(11), e117.PubMedCrossRef Keren, B., Hadchouel, A., Saba, S., Sznajer, Y., Bonneau, D., Leheup, B., et al. (2004). PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience. Journal of Medical Genetics, 41(11), e117.PubMedCrossRef
62.
go back to reference Merks, J. H., Caron, H. N., & Hennekam, R. C. (2005). High incidence of malformation syndromes in a series of 1,073 children with cancer. American Journal of Medical Genetics, 134(2), 132–143.PubMed Merks, J. H., Caron, H. N., & Hennekam, R. C. (2005). High incidence of malformation syndromes in a series of 1,073 children with cancer. American Journal of Medical Genetics, 134(2), 132–143.PubMed
63.
go back to reference Xu, R., Yu, Y., Zheng, S., Zhao, X., Dong, Q., He, Z., et al. (2005). Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, 106(9), 3142–3149.PubMedCrossRef Xu, R., Yu, Y., Zheng, S., Zhao, X., Dong, Q., He, Z., et al. (2005). Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, 106(9), 3142–3149.PubMedCrossRef
64.
go back to reference Chan, R. J., Leedy, M. B., Munugalavadla, V., Voorhorst, C. S., Li, Y., Yu, M., et al. (2005). Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood, 105(9), 3737–3742.PubMedCrossRef Chan, R. J., Leedy, M. B., Munugalavadla, V., Voorhorst, C. S., Li, Y., Yu, M., et al. (2005). Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood, 105(9), 3737–3742.PubMedCrossRef
65.
go back to reference Mohi, M. G., Williams, I. R., Dearolf, C. R., Chan, G., Kutok, J. L., Cohen, S., et al. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 7(2), 179–191.PubMedCrossRef Mohi, M. G., Williams, I. R., Dearolf, C. R., Chan, G., Kutok, J. L., Cohen, S., et al. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 7(2), 179–191.PubMedCrossRef
66.
go back to reference Yu, W. M., Daino, H., Chen, J., Bunting, K. D., & Qu, C. K. (2006). Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. Journal of Biological Chemistry, 281(9), 5426–5434.PubMedCrossRef Yu, W. M., Daino, H., Chen, J., Bunting, K. D., & Qu, C. K. (2006). Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. Journal of Biological Chemistry, 281(9), 5426–5434.PubMedCrossRef
67.
go back to reference Emanuel, P. D., Shannon, K. M., & Castleberry, R. P. (1996). Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Molecular Medicine Today, 2(11), 468–475.PubMedCrossRef Emanuel, P. D., Shannon, K. M., & Castleberry, R. P. (1996). Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Molecular Medicine Today, 2(11), 468–475.PubMedCrossRef
68.
go back to reference Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews. Cancer, 7(4), 295–308.PubMedCrossRef Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews. Cancer, 7(4), 295–308.PubMedCrossRef
69.
go back to reference Kratz, C. P., Niemeyer, C. M., Thomas, C., Bauhuber, S., Matejas, V., Bergstrasser, E., et al. (2007). Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia, 21(5), 1108–1109.PubMed Kratz, C. P., Niemeyer, C. M., Thomas, C., Bauhuber, S., Matejas, V., Bergstrasser, E., et al. (2007). Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia, 21(5), 1108–1109.PubMed
70.
go back to reference Schubbert, S., Lieuw, K., Rowe, S. L., Lee, C. M., Li, X., Loh, M. L., et al. (2005). Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood, 106(1), 311–317.PubMedCrossRef Schubbert, S., Lieuw, K., Rowe, S. L., Lee, C. M., Li, X., Loh, M. L., et al. (2005). Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood, 106(1), 311–317.PubMedCrossRef
71.
go back to reference Zhang, Y. Y., Vik, T. A., Ryder, J. W., Srour, E. F., Jacks, T., Shannon, K., et al. (1998). Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. Journal of Experimental Medicine, 187(11), 1893–1902.PubMedCrossRef Zhang, Y. Y., Vik, T. A., Ryder, J. W., Srour, E. F., Jacks, T., Shannon, K., et al. (1998). Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. Journal of Experimental Medicine, 187(11), 1893–1902.PubMedCrossRef
72.
go back to reference Le, D. T., Kong, N., Zhu, Y., Lauchle, J. O., Aiyigari, A., Braun, B. S., et al. (2004). Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood, 103(11), 4243–4250.PubMedCrossRef Le, D. T., Kong, N., Zhu, Y., Lauchle, J. O., Aiyigari, A., Braun, B. S., et al. (2004). Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood, 103(11), 4243–4250.PubMedCrossRef
73.
go back to reference Donovan, S., See, W., Bonifas, J., Stokoe, D., & Shannon, K. M. (2002). Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2(6), 507–514.PubMedCrossRef Donovan, S., See, W., Bonifas, J., Stokoe, D., & Shannon, K. M. (2002). Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2(6), 507–514.PubMedCrossRef
74.
go back to reference Largaespada, D. A., Brannan, C. I., Jenkins, N. A., & Copeland, N. G. (1996). Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nature Genetics, 12(2), 137–143.PubMedCrossRef Largaespada, D. A., Brannan, C. I., Jenkins, N. A., & Copeland, N. G. (1996). Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nature Genetics, 12(2), 137–143.PubMedCrossRef
75.
go back to reference Bollag, G., Clapp, D. W., Shih, S., Adler, F., Zhang, Y. Y., Thompson, P., et al. (1996). Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 12(2), 144–148.PubMedCrossRef Bollag, G., Clapp, D. W., Shih, S., Adler, F., Zhang, Y. Y., Thompson, P., et al. (1996). Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 12(2), 144–148.PubMedCrossRef
76.
go back to reference Braun, B. S., Tuveson, D. A., Kong, N., Le, D. T., Kogan, S. C., Rozmus, J., et al. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 597–602.PubMedCrossRef Braun, B. S., Tuveson, D. A., Kong, N., Le, D. T., Kogan, S. C., Rozmus, J., et al. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 597–602.PubMedCrossRef
77.
go back to reference Chan, I. T., Kutok, J. L., Williams, I. R., Cohen, S., Kelly, L., Shigematsu, H., et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. Journal of Clinical Investigation, 113(4), 528–538.PubMed Chan, I. T., Kutok, J. L., Williams, I. R., Cohen, S., Kelly, L., Shigematsu, H., et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. Journal of Clinical Investigation, 113(4), 528–538.PubMed
78.
go back to reference Li, S., Gillessen, S., Tomasson, M. H., Dranoff, G., Gilliland, D. G., & Van Etten, R. A. (2001). Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood, 97(5), 1442–1450.PubMedCrossRef Li, S., Gillessen, S., Tomasson, M. H., Dranoff, G., Gilliland, D. G., & Van Etten, R. A. (2001). Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood, 97(5), 1442–1450.PubMedCrossRef
79.
go back to reference Zhang, Y., Taylor, B. R., Shannon, K., & Clapp, D. W. (2001). Quantitative effects of Nf1 inactivation on in vivo hematopoiesis. Journal of Clinical Investigation, 108(5), 709–715.PubMed Zhang, Y., Taylor, B. R., Shannon, K., & Clapp, D. W. (2001). Quantitative effects of Nf1 inactivation on in vivo hematopoiesis. Journal of Clinical Investigation, 108(5), 709–715.PubMed
80.
go back to reference Chen, Y., Wen, R., Yang, S., Schuman, J., Zhang, E. E., Yi, T., et al. (2003). Identification of Shp-2 as a Stat5A phosphatase. Journal of Biological Chemistry, 278(19), 16520–16527.PubMedCrossRef Chen, Y., Wen, R., Yang, S., Schuman, J., Zhang, E. E., Yi, T., et al. (2003). Identification of Shp-2 as a Stat5A phosphatase. Journal of Biological Chemistry, 278(19), 16520–16527.PubMedCrossRef
81.
go back to reference Huang, W., Saberwal, G., Horvath, E., Zhu, C., Lindsey, S., & Eklund, E. A. (2006). Leukemia-associated, constitutively active mutants of SHP2 protein tyrosine phosphatase inhibit NF1 transcriptional activation by the interferon consensus sequence binding protein. Molecular and Cellular Biology, 26(17), 6311–6332.PubMedCrossRef Huang, W., Saberwal, G., Horvath, E., Zhu, C., Lindsey, S., & Eklund, E. A. (2006). Leukemia-associated, constitutively active mutants of SHP2 protein tyrosine phosphatase inhibit NF1 transcriptional activation by the interferon consensus sequence binding protein. Molecular and Cellular Biology, 26(17), 6311–6332.PubMedCrossRef
82.
go back to reference Holtschke, T., Lohler, J., Kanno, Y., Fehr, T., Giese, N., Rosenbauer, F., et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell, 87(2), 307–317.PubMedCrossRef Holtschke, T., Lohler, J., Kanno, Y., Fehr, T., Giese, N., Rosenbauer, F., et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell, 87(2), 307–317.PubMedCrossRef
83.
go back to reference Kautz, B., Kakar, R., David, E., & Eklund, E. A. (2001). SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding protein with homologous Cis elements in the CYBB and NCF2 genes. Journal of Biological Chemistry, 276(41), 37868–37878.PubMed Kautz, B., Kakar, R., David, E., & Eklund, E. A. (2001). SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding protein with homologous Cis elements in the CYBB and NCF2 genes. Journal of Biological Chemistry, 276(41), 37868–37878.PubMed
84.
go back to reference Lindsey, S., Huang, W., Wang, H., Horvath, E., Zhu, C., & Eklund, E. A. (2007). Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). Journal of Biological Chemistry, 282(4), 2237–2249.PubMedCrossRef Lindsey, S., Huang, W., Wang, H., Horvath, E., Zhu, C., & Eklund, E. A. (2007). Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). Journal of Biological Chemistry, 282(4), 2237–2249.PubMedCrossRef
85.
go back to reference Mason, J. M., Morrison, D. J., Basson, M. A., & Licht, J. D. (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends in Cell Biology, 16(1), 45–54.PubMedCrossRef Mason, J. M., Morrison, D. J., Basson, M. A., & Licht, J. D. (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends in Cell Biology, 16(1), 45–54.PubMedCrossRef
86.
go back to reference Basson, M. A., Akbulut, S., Watson-Johnson, J., Simon, R., Carroll, T. J., Shakya, R., et al. (2005). Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Developmental Cell, 8(2), 229–239.PubMedCrossRef Basson, M. A., Akbulut, S., Watson-Johnson, J., Simon, R., Carroll, T. J., Shakya, R., et al. (2005). Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Developmental Cell, 8(2), 229–239.PubMedCrossRef
87.
go back to reference Taketomi, T., Yoshiga, D., Taniguchi, K., Kobayashi, T., Nonami, A., Kato, R., et al. (2005). Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nature Neuroscience, 8(7), 855–857.PubMed Taketomi, T., Yoshiga, D., Taniguchi, K., Kobayashi, T., Nonami, A., Kato, R., et al. (2005). Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nature Neuroscience, 8(7), 855–857.PubMed
88.
go back to reference Shim, K., Minowada, G., Coling, D. E., & Martin, G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Developmental Cell, 8(4), 553–564.PubMedCrossRef Shim, K., Minowada, G., Coling, D. E., & Martin, G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Developmental Cell, 8(4), 553–564.PubMedCrossRef
89.
go back to reference Klein, O. D., Minowada, G., Peterkova, R., Kangas, A., Yu, B. D., Lesot, H., et al. (2006). Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell, 11(2), 181–190.PubMedCrossRef Klein, O. D., Minowada, G., Peterkova, R., Kangas, A., Yu, B. D., Lesot, H., et al. (2006). Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell, 11(2), 181–190.PubMedCrossRef
90.
go back to reference Taniguchi, K., Ayada, T., Ichiyama, K., Kohno, R., Yonemitsu, Y., Minami, Y., et al. (2007). Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochemical and Biophysical Research Communications, 352(4), 896–902.PubMedCrossRef Taniguchi, K., Ayada, T., Ichiyama, K., Kohno, R., Yonemitsu, Y., Minami, Y., et al. (2007). Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochemical and Biophysical Research Communications, 352(4), 896–902.PubMedCrossRef
91.
go back to reference Wakioka, T., Sasaki, A., Kato, R., Shouda, T., Matsumoto, A., Miyoshi, K., et al. (2001). Spred is a Sprouty-related suppressor of Ras signalling. Nature, 412(6847), 647–651.PubMedCrossRef Wakioka, T., Sasaki, A., Kato, R., Shouda, T., Matsumoto, A., Miyoshi, K., et al. (2001). Spred is a Sprouty-related suppressor of Ras signalling. Nature, 412(6847), 647–651.PubMedCrossRef
92.
go back to reference Kato, R., Nonami, A., Taketomi, T., Wakioka, T., Kuroiwa, A., Matsuda, Y., et al. (2003). Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochemical and Biophysical Research Communications, 302(4), 767–772.PubMedCrossRef Kato, R., Nonami, A., Taketomi, T., Wakioka, T., Kuroiwa, A., Matsuda, Y., et al. (2003). Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochemical and Biophysical Research Communications, 302(4), 767–772.PubMedCrossRef
93.
go back to reference Nonami, A., Kato, R., Taniguchi, K., Yoshiga, D., Taketomi, T., Fukuyama, S., et al. (2004). Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. Journal of Biological Chemistry, 279(50), 52543–52551.PubMedCrossRef Nonami, A., Kato, R., Taniguchi, K., Yoshiga, D., Taketomi, T., Fukuyama, S., et al. (2004). Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. Journal of Biological Chemistry, 279(50), 52543–52551.PubMedCrossRef
94.
go back to reference Taniguchi, K., Kohno, R., Ayada, T., Kato, R., Ichiyama, K., Morisada, T., et al. (2007). Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Molecular and Cellular Biology, 27(12), 4541–4550.PubMedCrossRef Taniguchi, K., Kohno, R., Ayada, T., Kato, R., Ichiyama, K., Morisada, T., et al. (2007). Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Molecular and Cellular Biology, 27(12), 4541–4550.PubMedCrossRef
95.
go back to reference Inoue, H., Kato, R., Fukuyama, S., Nonami, A., Taniguchi, K., Matsumoto, K., et al. (2005). Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. Journal of Experimental Medicine, 201(1), 73–82.PubMedCrossRef Inoue, H., Kato, R., Fukuyama, S., Nonami, A., Taniguchi, K., Matsumoto, K., et al. (2005). Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. Journal of Experimental Medicine, 201(1), 73–82.PubMedCrossRef
96.
go back to reference Bundschu, K., Knobeloch, K. P., Ullrich, M., Schinke, T., Amling, M., Engelhardt, C. M., et al. (2005). Gene disruption of Spred-2 causes dwarfism. Journal of Biological Chemistry, 280(31), 28572–28580.PubMedCrossRef Bundschu, K., Knobeloch, K. P., Ullrich, M., Schinke, T., Amling, M., Engelhardt, C. M., et al. (2005). Gene disruption of Spred-2 causes dwarfism. Journal of Biological Chemistry, 280(31), 28572–28580.PubMedCrossRef
97.
go back to reference Nobuhisa, I., Kato, R., Inoue, H., Takizawa, M., Okita, K., Yoshimura, A., et al. (2004). Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. Journal of Experimental Medicine, 199(5), 737–742.PubMedCrossRef Nobuhisa, I., Kato, R., Inoue, H., Takizawa, M., Okita, K., Yoshimura, A., et al. (2004). Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. Journal of Experimental Medicine, 199(5), 737–742.PubMedCrossRef
98.
go back to reference Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., et al. (2004). Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 118(2), 217–228.PubMedCrossRef Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., et al. (2004). Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 118(2), 217–228.PubMedCrossRef
99.
go back to reference Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D., & Dick, J. (2006). Multiple cellular antigen detection by ICP-MS. Journal of Immunological Methods, 308(1–2), 68–76.PubMedCrossRef Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D., & Dick, J. (2006). Multiple cellular antigen detection by ICP-MS. Journal of Immunological Methods, 308(1–2), 68–76.PubMedCrossRef
100.
go back to reference Loh, M. L., Martinelli, S., Cordeddu, V., Reynolds, M. G., Vattikuti, S., Lee, C. M., et al. (2005). Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leukemia Research, 29(4), 459–462.PubMedCrossRef Loh, M. L., Martinelli, S., Cordeddu, V., Reynolds, M. G., Vattikuti, S., Lee, C. M., et al. (2005). Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leukemia Research, 29(4), 459–462.PubMedCrossRef
101.
go back to reference Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Reviews. Cancer, 5(3), 172–183.PubMedCrossRef Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Reviews. Cancer, 5(3), 172–183.PubMedCrossRef
102.
go back to reference O’Hare, T., Corbin, A. S., & Druker, B. J. (2006). Targeted CML therapy: controlling drug resistance, seeking cure. Current Opinion in Genetics & Development, 16(1), 92–99.CrossRef O’Hare, T., Corbin, A. S., & Druker, B. J. (2006). Targeted CML therapy: controlling drug resistance, seeking cure. Current Opinion in Genetics & Development, 16(1), 92–99.CrossRef
103.
go back to reference Million, R. P., & Van Etten, R. A. (2000). The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 96(2), 664–670.PubMed Million, R. P., & Van Etten, R. A. (2000). The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 96(2), 664–670.PubMed
104.
go back to reference Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W., & Ren, R. (2001). The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Molecular and Cellular Biology, 21(3), 840–853.PubMedCrossRef Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W., & Ren, R. (2001). The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Molecular and Cellular Biology, 21(3), 840–853.PubMedCrossRef
105.
go back to reference He, Y., Wertheim, J. A., Xu, L., Miller, J. P., Karnell, F. G., Choi, J. K., et al. (2002). The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood, 99(8), 2957–2968.PubMedCrossRef He, Y., Wertheim, J. A., Xu, L., Miller, J. P., Karnell, F. G., Choi, J. K., et al. (2002). The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood, 99(8), 2957–2968.PubMedCrossRef
106.
go back to reference Sattler, M., & Griffin, J. D. (2001). Mechanisms of transformation by the BCR/ABL oncogene. International Journal of Hematology, 73(3), 278–291.PubMedCrossRef Sattler, M., & Griffin, J. D. (2001). Mechanisms of transformation by the BCR/ABL oncogene. International Journal of Hematology, 73(3), 278–291.PubMedCrossRef
107.
go back to reference Sattler, M., Mohi, M. G., Pride, Y. B., Quinnan, L. R., Malouf, N. A., Podar, K., et al. (2002). Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 1(5), 479–492.PubMedCrossRef Sattler, M., Mohi, M. G., Pride, Y. B., Quinnan, L. R., Malouf, N. A., Podar, K., et al. (2002). Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 1(5), 479–492.PubMedCrossRef
108.
go back to reference Scherr, M., Chaturvedi, A., Battmer, K., Dallmann, I., Schultheis, B., Ganser, A., et al. (2006). Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood, 107(8), 3279–3287.PubMedCrossRef Scherr, M., Chaturvedi, A., Battmer, K., Dallmann, I., Schultheis, B., Ganser, A., et al. (2006). Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood, 107(8), 3279–3287.PubMedCrossRef
109.
go back to reference Chen, J., Yu, W. M., Daino, H., Broxmeyer, H. E., Druker, B. J., & Qu, C. K. (2007). SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood, 109(2), 778–785.PubMedCrossRef Chen, J., Yu, W. M., Daino, H., Broxmeyer, H. E., Druker, B. J., & Qu, C. K. (2007). SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood, 109(2), 778–785.PubMedCrossRef
110.
go back to reference Teal, H. E., Ni, S., Xu, J., Finkelstein, L. D., Cheng, A. M., Paulson, R. F., et al. (2006). GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene, 25(17), 2433–2443.PubMedCrossRef Teal, H. E., Ni, S., Xu, J., Finkelstein, L. D., Cheng, A. M., Paulson, R. F., et al. (2006). GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene, 25(17), 2433–2443.PubMedCrossRef
111.
go back to reference Ischenko, I., Petrenko, O., Gu, H., & Hayman, M. J. (2003). Scaffolding protein Gab2 mediates fibroblast transformation by the SEA tyrosine kinase. Oncogene, 22(41), 6311–6318.PubMedCrossRef Ischenko, I., Petrenko, O., Gu, H., & Hayman, M. J. (2003). Scaffolding protein Gab2 mediates fibroblast transformation by the SEA tyrosine kinase. Oncogene, 22(41), 6311–6318.PubMedCrossRef
112.
go back to reference Niimi, H., Harada, H., Harada, Y., Ding, Y., Imagawa, J., Inaba, T., et al. (2006). Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia, 20(4), 635–644.PubMedCrossRef Niimi, H., Harada, H., Harada, Y., Ding, Y., Imagawa, J., Inaba, T., et al. (2006). Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia, 20(4), 635–644.PubMedCrossRef
113.
go back to reference Hou, H. A., Chou, W. C., Lin, L. I., Chen, C. Y., Tang, J. L., Tseng, M. H., et al. (2007). Characterization of acute myeloid leukemia with PTPN11 mutation: the mutation is closely associated with NPM1 mutation but inversely related to FLT3/ITD. Leukemia, in press. Nov 1. Hou, H. A., Chou, W. C., Lin, L. I., Chen, C. Y., Tang, J. L., Tseng, M. H., et al. (2007). Characterization of acute myeloid leukemia with PTPN11 mutation: the mutation is closely associated with NPM1 mutation but inversely related to FLT3/ITD. Leukemia, in press. Nov 1.
114.
go back to reference Yamada, K., Nishida, K., Hibi, M., Hirano, T., & Matsuda, Y. (2001). Comparative FISH mapping of Gab1 and Gab2 genes in human, mouse and rat. Cytogenetics and Cell Genetics, 94(1–2), 39–42.PubMed Yamada, K., Nishida, K., Hibi, M., Hirano, T., & Matsuda, Y. (2001). Comparative FISH mapping of Gab1 and Gab2 genes in human, mouse and rat. Cytogenetics and Cell Genetics, 94(1–2), 39–42.PubMed
115.
go back to reference Bekri, S., Adelaide, J., Merscher, S., Grosgeorge, J., Caroli-Bosc, F., Perucca-Lostanlen, D., et al. (1997). Detailed map of a region commonly amplified at 11q13–>q14 in human breast carcinoma. Cytogenetics and Cell Genetics, 79(1–2), 125–131.PubMed Bekri, S., Adelaide, J., Merscher, S., Grosgeorge, J., Caroli-Bosc, F., Perucca-Lostanlen, D., et al. (1997). Detailed map of a region commonly amplified at 11q13–>q14 in human breast carcinoma. Cytogenetics and Cell Genetics, 79(1–2), 125–131.PubMed
116.
go back to reference Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.PubMedCrossRef Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.PubMedCrossRef
117.
go back to reference Brummer, T., Schramek, D., Hayes, V. M., Bennett, H. L., Caldon, C. E., Musgrove, E. A., et al. (2006). Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. Journal of Biological Chemistry, 281(1), 626–637.PubMedCrossRef Brummer, T., Schramek, D., Hayes, V. M., Bennett, H. L., Caldon, C. E., Musgrove, E. A., et al. (2006). Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. Journal of Biological Chemistry, 281(1), 626–637.PubMedCrossRef
118.
go back to reference Bentires-Alj, M., Gil, S. G., Chan, R., Wang, Z. C., Wang, Y., Imanaka, N., et al. (2006). A role for the scaffolding adapter GAB2 in breast cancer. Nature Medicine, 12(1), 114–121.PubMedCrossRef Bentires-Alj, M., Gil, S. G., Chan, R., Wang, Z. C., Wang, Y., Imanaka, N., et al. (2006). A role for the scaffolding adapter GAB2 in breast cancer. Nature Medicine, 12(1), 114–121.PubMedCrossRef
119.
go back to reference Ke, Y., Wu, D., Princen, F., Nguyen, T., Pang, Y., Lesperance, J., et al. (2007). Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene, 26(34), 4951–4960.PubMedCrossRef Ke, Y., Wu, D., Princen, F., Nguyen, T., Pang, Y., Lesperance, J., et al. (2007). Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene, 26(34), 4951–4960.PubMedCrossRef
120.
go back to reference Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews. Cancer, 4(9), 688–694.PubMedCrossRef Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews. Cancer, 4(9), 688–694.PubMedCrossRef
121.
go back to reference Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683–686.PubMedCrossRef Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683–686.PubMedCrossRef
122.
go back to reference Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., & Hatakeyama, M. (2003). Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. Journal of Biological Chemistry, 278(6), 3664–3670.PubMedCrossRef Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., & Hatakeyama, M. (2003). Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. Journal of Biological Chemistry, 278(6), 3664–3670.PubMedCrossRef
123.
go back to reference Higuchi, M., Tsutsumi, R., Higashi, H., & Hatakeyama, M. (2004). Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Science, 95(5), 442–447.PubMedCrossRef Higuchi, M., Tsutsumi, R., Higashi, H., & Hatakeyama, M. (2004). Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Science, 95(5), 442–447.PubMedCrossRef
124.
go back to reference Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., & Hatakeyama, M. (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Molecular and Cellular Biology, 26(1), 261–276.PubMedCrossRef Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., & Hatakeyama, M. (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Molecular and Cellular Biology, 26(1), 261–276.PubMedCrossRef
125.
go back to reference Manes, S., Mira, E., Gomez-Mouton, C., Zhao, Z. J., Lacalle, R. A., & Martinez, A. C. (1999). Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Molecular and Cellular Biology, 19(4), 3125–3135.PubMed Manes, S., Mira, E., Gomez-Mouton, C., Zhao, Z. J., Lacalle, R. A., & Martinez, A. C. (1999). Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Molecular and Cellular Biology, 19(4), 3125–3135.PubMed
126.
go back to reference Vadlamudi, R. K., Adam, L., Nguyen, D., Santos, M., & Kumar, R. (2002). Differential regulation of components of the focal adhesion complex by heregulin: role of phosphatase SHP-2. Journal of Cellular Physiology, 190(2), 189–199.PubMedCrossRef Vadlamudi, R. K., Adam, L., Nguyen, D., Santos, M., & Kumar, R. (2002). Differential regulation of components of the focal adhesion complex by heregulin: role of phosphatase SHP-2. Journal of Cellular Physiology, 190(2), 189–199.PubMedCrossRef
127.
go back to reference Oh, E. S., Gu, H., Saxton, T. M., Timms, J. F., Hausdorff, S., Frevert, E. U., et al. (1999). Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Molecular and Cellular Biology, 19(4), 3205–3215.PubMed Oh, E. S., Gu, H., Saxton, T. M., Timms, J. F., Hausdorff, S., Frevert, E. U., et al. (1999). Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Molecular and Cellular Biology, 19(4), 3205–3215.PubMed
128.
go back to reference Yu, D. H., Qu, C. K., Henegariu, O., Lu, X., & Feng, G. S. (1998). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. Journal of Biological Chemistry, 273(33), 21125–21131.PubMedCrossRef Yu, D. H., Qu, C. K., Henegariu, O., Lu, X., & Feng, G. S. (1998). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. Journal of Biological Chemistry, 273(33), 21125–21131.PubMedCrossRef
129.
go back to reference Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, 279(17), 17205–17216.PubMedCrossRef Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, 279(17), 17205–17216.PubMedCrossRef
130.
go back to reference Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 447(7142), 330–333.PubMedCrossRef Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 447(7142), 330–333.PubMedCrossRef
131.
go back to reference Raabe, T., Riesgo-Escovar, J., Liu, X., Bausenwein, B. S., Deak, P., Maroy, P., et al. (1996). DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell, 85(6), 911–920.PubMedCrossRef Raabe, T., Riesgo-Escovar, J., Liu, X., Bausenwein, B. S., Deak, P., Maroy, P., et al. (1996). DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell, 85(6), 911–920.PubMedCrossRef
132.
go back to reference Chauhan, D., Hideshima, T., Pandey, P., Treon, S., Teoh, G., Raje, N., et al. (1999). RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene, 18(48), 6733–6740.PubMedCrossRef Chauhan, D., Hideshima, T., Pandey, P., Treon, S., Teoh, G., Raje, N., et al. (1999). RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene, 18(48), 6733–6740.PubMedCrossRef
133.
go back to reference Agazie, Y. M., Movilla, N., Ischenko, I., & Hayman, M. J. (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22(44), 6909–6918.PubMedCrossRef Agazie, Y. M., Movilla, N., Ischenko, I., & Hayman, M. J. (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22(44), 6909–6918.PubMedCrossRef
134.
go back to reference Bergsagel, P. L., & Kuehl, W. M. (2005). Molecular pathogenesis and a consequent classification of multiple myeloma. Journal of Clinical Oncology, 23(26), 6333–6338.PubMedCrossRef Bergsagel, P. L., & Kuehl, W. M. (2005). Molecular pathogenesis and a consequent classification of multiple myeloma. Journal of Clinical Oncology, 23(26), 6333–6338.PubMedCrossRef
135.
go back to reference Burks, J., & Agazie, Y. M. (2006). Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3. Oncogene, 25(54), 7166–7179.PubMedCrossRef Burks, J., & Agazie, Y. M. (2006). Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3. Oncogene, 25(54), 7166–7179.PubMedCrossRef
136.
go back to reference Voena, C., Conte, C., Ambrogio, C., Boeri Erba, E., Boccalatte, F., Mohammed, S., et al. (2007). The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Research, 67(9), 4278–4286.PubMedCrossRef Voena, C., Conte, C., Ambrogio, C., Boeri Erba, E., Boccalatte, F., Mohammed, S., et al. (2007). The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Research, 67(9), 4278–4286.PubMedCrossRef
137.
go back to reference Charest, A., Wilker, E. W., McLaughlin, M. E., Lane, K., Gowda, R., Coven, S., et al. (2006). ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research, 66(15), 7473–7481.PubMedCrossRef Charest, A., Wilker, E. W., McLaughlin, M. E., Lane, K., Gowda, R., Coven, S., et al. (2006). ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research, 66(15), 7473–7481.PubMedCrossRef
Metadata
Title
The tyrosine phosphatase Shp2 (PTPN11) in cancer
Authors
Gordon Chan
Demetrios Kalaitzidis
Benjamin G. Neel
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9126-y

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue

PREFACE

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine