Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2008

01-06-2008 | NON-THEMATIC REVIEW

Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species

Authors: Wen-Sheng Wu, Jia-Ru Wu, Chi-Tan Hu

Published in: Cancer and Metastasis Reviews | Issue 2/2008

Login to get access

Abstract

Signal transduction exerted by the microenvironment around the primary tumor locus may trigger tumor metastasis especially at the migration stage. Sustained mitogen activated protein kinase (MAPK) signaling involved in uncontrolled tumor cell migration rely on the cross talks between integrin, receptor tyrosine kinase (RTK) and protein kinase C (PKC). The molecular mechanisms for cross talking between these migration-related signal cascades leading to sustained cell migration are reviewed, focusing on the focal adhesion scaffold protein paxillin as the platform for signal integration. We proposed reactive oxygen species (ROS) as the critical signal messenger sustaining these signal cascades. For the cross talk of integrin with RTK, ROS may suppress paxillin-associated protein tyrosine phosphatase (PTP–PEST) relieving its negative regulatory effects. For the cross talk of integrin with PKC, PKC itself may phosphorylate integrin or paxillin-associated focal adhesion proteins to induce generation of ROS which may reactivate PKC. In the future, ROS will be validated as the promising therapeutic targets for prevention of tumor metastasis.
Literature
1.
go back to reference Christofori, G. (2006). New signals from the invasive front (review). Nature, 441(7092), 444–450.PubMedCrossRef Christofori, G. (2006). New signals from the invasive front (review). Nature, 441(7092), 444–450.PubMedCrossRef
2.
go back to reference Cairns, R. A., Khokha, R., & Hill, R. P. (2003). Molecular mechanisms of tumor invasion and metastasis: An integrated view. Current Molecular Medicine, 3(7), 659–671.PubMedCrossRef Cairns, R. A., Khokha, R., & Hill, R. P. (2003). Molecular mechanisms of tumor invasion and metastasis: An integrated view. Current Molecular Medicine, 3(7), 659–671.PubMedCrossRef
3.
go back to reference Sung, S. Y., Hsieh, C. L., Wu, D., Chung, L. W., & Johnstone, P. A. (2007). Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Current Problems in Cancer, 31(2), 36–100.PubMedCrossRef Sung, S. Y., Hsieh, C. L., Wu, D., Chung, L. W., & Johnstone, P. A. (2007). Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Current Problems in Cancer, 31(2), 36–100.PubMedCrossRef
4.
go back to reference Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: Integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: Integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef
5.
go back to reference Gao, C. F., & Vande Woude, G. F. (2005). HGF/SF-Met signaling in tumor progression. Cell Research, 15(1), 49–51.PubMedCrossRef Gao, C. F., & Vande Woude, G. F. (2005). HGF/SF-Met signaling in tumor progression. Cell Research, 15(1), 49–51.PubMedCrossRef
6.
go back to reference Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nature Reviews Cancer, 6(7), 506–520.PubMedCrossRef Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nature Reviews Cancer, 6(7), 506–520.PubMedCrossRef
7.
go back to reference Kim, H., & Muller, W. J. (1999). The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Experimental Cell Research, 253(1), 78–87.PubMedCrossRef Kim, H., & Muller, W. J. (1999). The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Experimental Cell Research, 253(1), 78–87.PubMedCrossRef
8.
go back to reference Qiang, Y. W., Walsh, K., Yao, L., Kedei, N., Blumberg, P. M., Rubin, J. S., et al. (2005). Wnts induce migration and invasion of myeloma plasma cells. Blood, 106(5), 1786–1793.PubMedCrossRef Qiang, Y. W., Walsh, K., Yao, L., Kedei, N., Blumberg, P. M., Rubin, J. S., et al. (2005). Wnts induce migration and invasion of myeloma plasma cells. Blood, 106(5), 1786–1793.PubMedCrossRef
9.
go back to reference Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef
10.
go back to reference Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt 20), 4619–4628.PubMedCrossRef Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt 20), 4619–4628.PubMedCrossRef
11.
go back to reference Galabova-Kovacs, G., Kolbus, A., Matzen, D., Meissl, K., Piazzolla, D., Rubiolo, C., et al. (2006). ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle, 5(14), 1514–1518.PubMed Galabova-Kovacs, G., Kolbus, A., Matzen, D., Meissl, K., Piazzolla, D., Rubiolo, C., et al. (2006). ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle, 5(14), 1514–1518.PubMed
12.
go back to reference von Kriegsheim, A., Pitt, A., Grindlay, G. J., Kolch, W., & Dhillon, A. S. (2006). Regulation of the Raf–MEK–ERK pathway by protein phosphatase 5. Nature Cell Biology, 8(9), 1011–1016.CrossRef von Kriegsheim, A., Pitt, A., Grindlay, G. J., Kolch, W., & Dhillon, A. S. (2006). Regulation of the Raf–MEK–ERK pathway by protein phosphatase 5. Nature Cell Biology, 8(9), 1011–1016.CrossRef
13.
go back to reference Rajalingam, K., Wunder, C., Brinkmann, V., Churin, Y., Hekman, M., Sievers, C., et al. (2005). Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nature Cell Biology, 7(8), 837–843.PubMedCrossRef Rajalingam, K., Wunder, C., Brinkmann, V., Churin, Y., Hekman, M., Sievers, C., et al. (2005). Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nature Cell Biology, 7(8), 837–843.PubMedCrossRef
14.
go back to reference Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biological Chemistry, 386(3), 193–205.PubMedCrossRef Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biological Chemistry, 386(3), 193–205.PubMedCrossRef
15.
go back to reference Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280(15), 14675–14683.PubMedCrossRef Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280(15), 14675–14683.PubMedCrossRef
16.
go back to reference Veit, C., Genze, F., Menke, A., Hoeffert, S., Gress, T. M., Gierschik, P., et al. (2004). Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Research, 64(15), 5291–5300.PubMedCrossRef Veit, C., Genze, F., Menke, A., Hoeffert, S., Gress, T. M., Gierschik, P., et al. (2004). Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Research, 64(15), 5291–5300.PubMedCrossRef
17.
go back to reference Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M., et al. (2001). Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Molecular and Cellular Biology, 21(9), 3192–3205.PubMedCrossRef Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M., et al. (2001). Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Molecular and Cellular Biology, 21(9), 3192–3205.PubMedCrossRef
18.
go back to reference Imamichi, Y., & Menke, A. (2007). Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial–mesenchymal transition. Cells Tissues Organs, 185(1–3), 180–190.PubMedCrossRef Imamichi, Y., & Menke, A. (2007). Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial–mesenchymal transition. Cells Tissues Organs, 185(1–3), 180–190.PubMedCrossRef
19.
go back to reference Yan, F., Hui, Y. N., Li, Y. J., Guo, C. M., & Meng, H. (2007). Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. Ophthalmologica, 221(4), 244–250.PubMedCrossRef Yan, F., Hui, Y. N., Li, Y. J., Guo, C. M., & Meng, H. (2007). Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. Ophthalmologica, 221(4), 244–250.PubMedCrossRef
20.
go back to reference Matsumoto, T., Yokote, K., Tamura, K., Takemoto, M., Ueno, H., Saito, Y., et al. (1999). Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. Journal of Biological Chemistry, 274(20), 13954–13960.PubMedCrossRef Matsumoto, T., Yokote, K., Tamura, K., Takemoto, M., Ueno, H., Saito, Y., et al. (1999). Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. Journal of Biological Chemistry, 274(20), 13954–13960.PubMedCrossRef
21.
go back to reference Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular cell biology, 5(10), 816–826.PubMedCrossRef Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular cell biology, 5(10), 816–826.PubMedCrossRef
22.
go back to reference Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., et al. (2006). Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Research, 66(21), 10439–10448.PubMedCrossRef Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., et al. (2006). Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Research, 66(21), 10439–10448.PubMedCrossRef
23.
go back to reference Abassi, Y. A., & Vuori, K. (2002). Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling. EMBO Journal, 21(17), 4571–4582.PubMedCrossRef Abassi, Y. A., & Vuori, K. (2002). Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling. EMBO Journal, 21(17), 4571–4582.PubMedCrossRef
24.
go back to reference Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., et al. (2003). Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 160(5), 753–767.PubMedCrossRef Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., et al. (2003). Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 160(5), 753–767.PubMedCrossRef
25.
go back to reference Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt 15), 3263–3275.PubMedCrossRef Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt 15), 3263–3275.PubMedCrossRef
26.
go back to reference Desban, N., Lissitzky, J. C., Rousselle, P., & Duband, J. L. (2006). alpha1beta1-integrin engagement to distinct laminin-1 domains orchestrates spreading, migration and survival of neural crest cells through independent signaling pathways. Journal of Cell Science, 119(Pt 15), 3206–3218.PubMedCrossRef Desban, N., Lissitzky, J. C., Rousselle, P., & Duband, J. L. (2006). alpha1beta1-integrin engagement to distinct laminin-1 domains orchestrates spreading, migration and survival of neural crest cells through independent signaling pathways. Journal of Cell Science, 119(Pt 15), 3206–3218.PubMedCrossRef
27.
go back to reference Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23(19), 3721–3734.PubMedCrossRef Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23(19), 3721–3734.PubMedCrossRef
28.
go back to reference Tian, Y. C., Chen, Y. C., Chang, C. T., Hung, C. C., Wu, M. S., Phillips, A., et al. (2007). Epidermal growth factor and transforming growth factor-beta1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Experimental Cell Research, 313(11), 2367–2377.PubMedCrossRef Tian, Y. C., Chen, Y. C., Chang, C. T., Hung, C. C., Wu, M. S., Phillips, A., et al. (2007). Epidermal growth factor and transforming growth factor-beta1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Experimental Cell Research, 313(11), 2367–2377.PubMedCrossRef
29.
go back to reference Mercer, K., Giblett, S., Oakden, A., Brown, J., Marais, R., & Pritchard, C. (2005). A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression. Oncogene, 24(33), 5207–5217.PubMedCrossRef Mercer, K., Giblett, S., Oakden, A., Brown, J., Marais, R., & Pritchard, C. (2005). A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression. Oncogene, 24(33), 5207–5217.PubMedCrossRef
30.
go back to reference Kim, S. J., Kim, S. Y., Kwon, C. H., & Kim, Y. K. (2007). Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors, 25(2), 77–86.PubMedCrossRef Kim, S. J., Kim, S. Y., Kwon, C. H., & Kim, Y. K. (2007). Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors, 25(2), 77–86.PubMedCrossRef
31.
go back to reference McCawley, L. J., Li, S., Wattenberg, E. V., & Hudson, L. G. (1999). Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. Journal of Biological Chemistry, 274(7), 4347–4353.PubMedCrossRef McCawley, L. J., Li, S., Wattenberg, E. V., & Hudson, L. G. (1999). Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. Journal of Biological Chemistry, 274(7), 4347–4353.PubMedCrossRef
32.
go back to reference Krueger, J. S., Keshamouni, V. G., Atanaskova, N., & Reddy, K. B. (2001). Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene, 20(31), 4209–4218.PubMedCrossRef Krueger, J. S., Keshamouni, V. G., Atanaskova, N., & Reddy, K. B. (2001). Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene, 20(31), 4209–4218.PubMedCrossRef
33.
go back to reference lin, E. J., Opresko, L. K., Wells, A., Wiley, H. S., & Lauffenburger, D. A. (2007). EGF-receptor- mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. Journal of Cell Science, 120(Pt 20), 3688–3699. lin, E. J., Opresko, L. K., Wells, A., Wiley, H. S., & Lauffenburger, D. A. (2007). EGF-receptor- mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. Journal of Cell Science, 120(Pt 20), 3688–3699.
34.
go back to reference Suyama, K., Shapiro, I., Guttman, M., & Hazan, R. B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2(4), 301–314.PubMedCrossRef Suyama, K., Shapiro, I., Guttman, M., & Hazan, R. B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2(4), 301–314.PubMedCrossRef
35.
go back to reference Pukac, L., Huangpu, J., & Karnovsky, M. J. (1998). Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Experimental Cell Research, 242(2), 548–560.PubMedCrossRef Pukac, L., Huangpu, J., & Karnovsky, M. J. (1998). Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Experimental Cell Research, 242(2), 548–560.PubMedCrossRef
36.
go back to reference Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Molecular Cancer Research, 4(10), 747–758.PubMedCrossRef Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Molecular Cancer Research, 4(10), 747–758.PubMedCrossRef
37.
go back to reference Levy, Y., Ronen, D., Bershadsky, A. D., & Zick, Y. (2003). Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. Journal of Biological Chemistry, 278(16), 14533–14542.PubMedCrossRef Levy, Y., Ronen, D., Bershadsky, A. D., & Zick, Y. (2003). Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. Journal of Biological Chemistry, 278(16), 14533–14542.PubMedCrossRef
38.
go back to reference Meier, F., Busch, S., Gast, D., Goppert, A., Altevogt, P., Maczey, E., et al. (2006). The adhesion molecule L1 (CD171) promotes melanoma progression. International Journal of Cancer, 119(3), 549–555.CrossRef Meier, F., Busch, S., Gast, D., Goppert, A., Altevogt, P., Maczey, E., et al. (2006). The adhesion molecule L1 (CD171) promotes melanoma progression. International Journal of Cancer, 119(3), 549–555.CrossRef
39.
go back to reference Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M., et al. (2001). Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Molecular and Cellular Biology, 21(9), 3192–3205.PubMedCrossRef Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M., et al. (2001). Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Molecular and Cellular Biology, 21(9), 3192–3205.PubMedCrossRef
40.
go back to reference Katz, M., Amit, I., & Yarden, Y. (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica Acta, 1773(8), 1161–1176.PubMed Katz, M., Amit, I., & Yarden, Y. (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica Acta, 1773(8), 1161–1176.PubMed
41.
go back to reference Silletti, S., Yebra, M., Perez, B., Cirulli, V., McMahon, M., & Montgomery, A. M. (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. Journal of Biological Chemistry, 279(28), 28880–28888.PubMedCrossRef Silletti, S., Yebra, M., Perez, B., Cirulli, V., McMahon, M., & Montgomery, A. M. (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. Journal of Biological Chemistry, 279(28), 28880–28888.PubMedCrossRef
42.
go back to reference Ishibe, S., Joly, D., Liu, Z. X., & Cantley, L. G. (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Molecular Cell, 16(2), 257–267.PubMedCrossRef Ishibe, S., Joly, D., Liu, Z. X., & Cantley, L. G. (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Molecular Cell, 16(2), 257–267.PubMedCrossRef
43.
44.
go back to reference Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18(5), 516–523.PubMedCrossRef Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18(5), 516–523.PubMedCrossRef
45.
go back to reference Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews. Cancer, 2(2), 91–100.PubMedCrossRef Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews. Cancer, 2(2), 91–100.PubMedCrossRef
46.
go back to reference Chiarugi, P., & Fiaschi, T. (2007). Redox signalling in anchorage-dependent cell growth. Cell Signal, 19(4), 672–682.PubMedCrossRef Chiarugi, P., & Fiaschi, T. (2007). Redox signalling in anchorage-dependent cell growth. Cell Signal, 19(4), 672–682.PubMedCrossRef
47.
go back to reference Friedman, A., & Perrimon, N. (2006). A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature, 444(7116), 230–234.PubMedCrossRef Friedman, A., & Perrimon, N. (2006). A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature, 444(7116), 230–234.PubMedCrossRef
48.
go back to reference Giancotti, F. G., & Tarone, G. (2003). Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annual Review of Cell and Developmental Biology, 19, 173–206.PubMedCrossRef Giancotti, F. G., & Tarone, G. (2003). Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annual Review of Cell and Developmental Biology, 19, 173–206.PubMedCrossRef
49.
go back to reference Borges, E., Jan, Y., & Ruoslahti, E. (2000). Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. Journal of Biological Chemistry, 275(51), 39867–39873.PubMedCrossRef Borges, E., Jan, Y., & Ruoslahti, E. (2000). Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. Journal of Biological Chemistry, 275(51), 39867–39873.PubMedCrossRef
50.
go back to reference Short, S. M., Boyer, J. L., & Juliano, R. L. (2000). Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. Journal of Biological Chemistry, 275(17), 12970–12977.PubMedCrossRef Short, S. M., Boyer, J. L., & Juliano, R. L. (2000). Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. Journal of Biological Chemistry, 275(17), 12970–12977.PubMedCrossRef
51.
go back to reference Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 126(3), 489–502.PubMedCrossRef Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 126(3), 489–502.PubMedCrossRef
52.
go back to reference Clemmons, D. R., & Maile, L. A. (2005). Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Molecular Endocrinology, 19(1), 1–11.PubMedCrossRef Clemmons, D. R., & Maile, L. A. (2005). Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Molecular Endocrinology, 19(1), 1–11.PubMedCrossRef
53.
go back to reference Miyamoto, S., Teramoto, H., Gutkind, J. S., & Yamada, K. M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. Journal of Cell Biology, 135(6 Pt 1), 1633–1642.PubMedCrossRef Miyamoto, S., Teramoto, H., Gutkind, J. S., & Yamada, K. M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. Journal of Cell Biology, 135(6 Pt 1), 1633–1642.PubMedCrossRef
54.
go back to reference Turner, C. E. (2000). Paxillin interactions. Journal of Cell Science, 113(Pt 23), 4139–4140.PubMed Turner, C. E. (2000). Paxillin interactions. Journal of Cell Science, 113(Pt 23), 4139–4140.PubMed
55.
56.
go back to reference Li, F., Zhang, Y., & Wu, C. (1999). Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. Journal of Cell Science, 112(Pt 24), 4589–4599.PubMed Li, F., Zhang, Y., & Wu, C. (1999). Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. Journal of Cell Science, 112(Pt 24), 4589–4599.PubMed
57.
go back to reference Tu, Y., Li, F., & Wu, C. (1998). Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Molecular Biology of the Cell, 9(12), 3367–3382.PubMed Tu, Y., Li, F., & Wu, C. (1998). Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Molecular Biology of the Cell, 9(12), 3367–3382.PubMed
58.
go back to reference ffrench-Constant, C., & Colognato, H. (2004). Integrins: Versatile integrators of extracellular signals. Trends in Cell Biology, 14(12), 678–686.PubMedCrossRef ffrench-Constant, C., & Colognato, H. (2004). Integrins: Versatile integrators of extracellular signals. Trends in Cell Biology, 14(12), 678–686.PubMedCrossRef
59.
go back to reference Chan, P. C., Chen, S. Y., Chen, C. H., & Chen, H. C. (2006). Crosstalk between hepatocyte growth factor and integrin signaling pathways. Journal of Biomedical Science, 13(2), 215–223.PubMedCrossRef Chan, P. C., Chen, S. Y., Chen, C. H., & Chen, H. C. (2006). Crosstalk between hepatocyte growth factor and integrin signaling pathways. Journal of Biomedical Science, 13(2), 215–223.PubMedCrossRef
60.
go back to reference Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.PubMedCrossRef Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.PubMedCrossRef
61.
go back to reference Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18(5), 516–523.PubMedCrossRef Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18(5), 516–523.PubMedCrossRef
62.
go back to reference Zaidel-Bar, R., Milo, R., Kam, Z., & Geiger, B. (2007). A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. Journal of Cell Science, 120(Pt 1), 137–148.PubMed Zaidel-Bar, R., Milo, R., Kam, Z., & Geiger, B. (2007). A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. Journal of Cell Science, 120(Pt 1), 137–148.PubMed
63.
go back to reference Brown, M. C., & Turner, C. E. (2004). Paxillin: adapting to change. Physiological Reviews, 84(4), 1315–1339.PubMedCrossRef Brown, M. C., & Turner, C. E. (2004). Paxillin: adapting to change. Physiological Reviews, 84(4), 1315–1339.PubMedCrossRef
64.
go back to reference Waters, C. M., Connell, M. C., Pyne, S., & Pyne, N. J. (2005). c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cell Signal, 17(2), 263–277.PubMedCrossRef Waters, C. M., Connell, M. C., Pyne, S., & Pyne, N. J. (2005). c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cell Signal, 17(2), 263–277.PubMedCrossRef
65.
go back to reference Mon, N. N., Ito, S., Senga, T., & Hamaguchi, M. (2006). FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Annals of the New York Academy of Sciences, 1086, 199–212.PubMedCrossRef Mon, N. N., Ito, S., Senga, T., & Hamaguchi, M. (2006). FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Annals of the New York Academy of Sciences, 1086, 199–212.PubMedCrossRef
66.
go back to reference Park, S. Y., Li, H., & Avraham, S. (2007). RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell Signal, 19(2), 289–300.PubMedCrossRef Park, S. Y., Li, H., & Avraham, S. (2007). RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell Signal, 19(2), 289–300.PubMedCrossRef
67.
go back to reference Monami, G., Gonzalez, E. M., Hellman, M., Gomella, L. G., Baffa, R., Iozzo, R. V., et al. (2006). Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Research, 66(14), 7103–7110.PubMedCrossRef Monami, G., Gonzalez, E. M., Hellman, M., Gomella, L. G., Baffa, R., Iozzo, R. V., et al. (2006). Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Research, 66(14), 7103–7110.PubMedCrossRef
68.
go back to reference Lesslie, D. P., Summy, J. M., Parikh, N. U., Fan, F., Trevino, J. G., Sawyer, T. K., et al. (2006). Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. British Journal of Cancer, 94(11), 1710–1717.PubMed Lesslie, D. P., Summy, J. M., Parikh, N. U., Fan, F., Trevino, J. G., Sawyer, T. K., et al. (2006). Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. British Journal of Cancer, 94(11), 1710–1717.PubMed
69.
go back to reference Ishibe, S., Joly, D., Zhu, X., & Cantley, L. G. (2003). Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Molecular Cell, 12(5), 1275–1285.PubMedCrossRef Ishibe, S., Joly, D., Zhu, X., & Cantley, L. G. (2003). Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Molecular Cell, 12(5), 1275–1285.PubMedCrossRef
70.
go back to reference Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., et al. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Molecular Cell, 1(2), 183–192.PubMedCrossRef Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., et al. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Molecular Cell, 1(2), 183–192.PubMedCrossRef
71.
go back to reference West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154(1), 161–176.PubMedCrossRef West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154(1), 161–176.PubMedCrossRef
72.
go back to reference Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef
73.
go back to reference Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF–GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145(4), 851–863.PubMedCrossRef Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF–GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145(4), 851–863.PubMedCrossRef
74.
go back to reference Lamorte, L., Rodrigues, S., Sangwan, V., Turner, C. E., & Park, M. (2003). Crk associates with a multimolecular paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of paxillin to focal contacts. Molecular Biology of the Cell, 14(7), 2818–2831.PubMedCrossRef Lamorte, L., Rodrigues, S., Sangwan, V., Turner, C. E., & Park, M. (2003). Crk associates with a multimolecular paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of paxillin to focal contacts. Molecular Biology of the Cell, 14(7), 2818–2831.PubMedCrossRef
75.
go back to reference Shen, Y., Lyons, P., Cooley, M., Davidson, D., Veillette, A., Salgia, R., et al. (2000). The noncatalytic domain of protein–tyrosine phosphatase–PEST targets paxillin for dephosphorylation in vivo. Journal of Biological Chemistry, 275(2), 1405–1413.PubMedCrossRef Shen, Y., Lyons, P., Cooley, M., Davidson, D., Veillette, A., Salgia, R., et al. (2000). The noncatalytic domain of protein–tyrosine phosphatase–PEST targets paxillin for dephosphorylation in vivo. Journal of Biological Chemistry, 275(2), 1405–1413.PubMedCrossRef
76.
go back to reference Sastry, S. K., Lyons, P. D., Schaller, M. D., & Burridge, K. (2002). PTP–PEST controls motility through regulation of Rac1. Journal of Cell Science, 115(Pt 22), 4305–4316.PubMedCrossRef Sastry, S. K., Lyons, P. D., Schaller, M. D., & Burridge, K. (2002). PTP–PEST controls motility through regulation of Rac1. Journal of Cell Science, 115(Pt 22), 4305–4316.PubMedCrossRef
77.
go back to reference Jamieson, J. S., Tumbarello, D. A., Hallé, M., Brown, M. C., Tremblay, M. L., & Turner, C. E. (2005). Paxillin is essential for PTP–PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. Journal of Cell Science, 118(Pt 24), 5835–5847.PubMedCrossRef Jamieson, J. S., Tumbarello, D. A., Hallé, M., Brown, M. C., Tremblay, M. L., & Turner, C. E. (2005). Paxillin is essential for PTP–PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. Journal of Cell Science, 118(Pt 24), 5835–5847.PubMedCrossRef
78.
go back to reference Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 7(4), 281–294.PubMedCrossRef Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 7(4), 281–294.PubMedCrossRef
79.
go back to reference Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. Cancer and Metastasis Reviews, 25(4), 695–705.PubMedCrossRef Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. Cancer and Metastasis Reviews, 25(4), 695–705.PubMedCrossRef
80.
go back to reference Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer and Metastasis Reviews, 24(3), 413–423.PubMedCrossRef Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer and Metastasis Reviews, 24(3), 413–423.PubMedCrossRef
81.
go back to reference Oka, M., & Kikkawa, U. (2005). Protein kinase C in melanoma. Cancer and Metastasis Reviews, 24(2), 287–300.PubMedCrossRef Oka, M., & Kikkawa, U. (2005). Protein kinase C in melanoma. Cancer and Metastasis Reviews, 24(2), 287–300.PubMedCrossRef
82.
go back to reference Kiley, S. C., Clark, K. J., Goodnough, M., Welch, D. R., & Jaken, S. (1999). Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Research, 59(13), 3230–3238.PubMed Kiley, S. C., Clark, K. J., Goodnough, M., Welch, D. R., & Jaken, S. (1999). Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Research, 59(13), 3230–3238.PubMed
83.
go back to reference Pan, Q., Bao, L. W., Kleer, C. G., Sabel, M. S., Griffith, K. A., Teknos, T. N., et al. (2005). Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Research, 65(18), 8366–8371.PubMedCrossRef Pan, Q., Bao, L. W., Kleer, C. G., Sabel, M. S., Griffith, K. A., Teknos, T. N., et al. (2005). Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Research, 65(18), 8366–8371.PubMedCrossRef
84.
go back to reference Gopalakrishna, R., & Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radical Biology & Medicine, 28(9), 1349–1361.CrossRef Gopalakrishna, R., & Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radical Biology & Medicine, 28(9), 1349–1361.CrossRef
85.
go back to reference Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (review). Oncology Reports, 6(6), 1363–1370.PubMed Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (review). Oncology Reports, 6(6), 1363–1370.PubMed
86.
go back to reference Guan, C. X., Cui, Y. R., Zhang, M., Bai, H. B., Khunkhun, R., & Fang, X. (2007). Intracellular signaling molecules involved in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Peptides, 28(9), 1667–1673.PubMedCrossRef Guan, C. X., Cui, Y. R., Zhang, M., Bai, H. B., Khunkhun, R., & Fang, X. (2007). Intracellular signaling molecules involved in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Peptides, 28(9), 1667–1673.PubMedCrossRef
87.
go back to reference Keshamouni, V. G., Mattingly, R. R., & Reddy, K. B. (2002). Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. Journal of Biological Chemistry, 277(25), 22558–22565.PubMedCrossRef Keshamouni, V. G., Mattingly, R. R., & Reddy, K. B. (2002). Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. Journal of Biological Chemistry, 277(25), 22558–22565.PubMedCrossRef
88.
go back to reference Besson, A., Davy, A., Robbins, S. M., & Yong, V. W. (2001). Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene, 20(50), 7398–7407.PubMedCrossRef Besson, A., Davy, A., Robbins, S. M., & Yong, V. W. (2001). Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene, 20(50), 7398–7407.PubMedCrossRef
89.
go back to reference Pukac, L., Huangpu, J., & Karnovsky, M. J. (1998). Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Experimental Cell Research, 242(2), 548–560.PubMedCrossRef Pukac, L., Huangpu, J., & Karnovsky, M. J. (1998). Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Experimental Cell Research, 242(2), 548–560.PubMedCrossRef
90.
go back to reference Rigot, V., Lehmann, M., Andre, F., Daemi, N., Marvaldi, J., & Luis, J. (1998). Integrin ligation and PKC activation are required for migration of colon carcinoma cells. Journal of Cell Science, 111(Pt 20), 3119–3127.PubMed Rigot, V., Lehmann, M., Andre, F., Daemi, N., Marvaldi, J., & Luis, J. (1998). Integrin ligation and PKC activation are required for migration of colon carcinoma cells. Journal of Cell Science, 111(Pt 20), 3119–3127.PubMed
91.
go back to reference Larsson, C. (2006). Protein kinase C and the regulation of the actin cytoskeleton. Cellular Signalling, 18(3), 276–284.PubMedCrossRef Larsson, C. (2006). Protein kinase C and the regulation of the actin cytoskeleton. Cellular Signalling, 18(3), 276–284.PubMedCrossRef
92.
go back to reference Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase C in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274(45), 32486–32492.PubMedCrossRef Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase C in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274(45), 32486–32492.PubMedCrossRef
93.
go back to reference Rabinovitz, I., Tsomo, L., & Mercurio, A. M. (2004). Protein kinase C-alpha phosphorylation of specific serines in the connecting segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. Molecular and Cellular Biology, 24(10), 4351–4360.PubMedCrossRef Rabinovitz, I., Tsomo, L., & Mercurio, A. M. (2004). Protein kinase C-alpha phosphorylation of specific serines in the connecting segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. Molecular and Cellular Biology, 24(10), 4351–4360.PubMedCrossRef
94.
go back to reference Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C- integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22(16), 5897–5911.PubMedCrossRef Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C- integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22(16), 5897–5911.PubMedCrossRef
95.
go back to reference Nomura, N., Nomura, M., Sugiyama, K., & Hamada, J. (2007). Src regulates phorbol 12-myristate 13-acetate-activated PKC-induced migration via Cas/Crk/Rac1 signaling pathway in glioblastoma cells. International Journal of Molecular Medicine, 20(4), 511–519.PubMed Nomura, N., Nomura, M., Sugiyama, K., & Hamada, J. (2007). Src regulates phorbol 12-myristate 13-acetate-activated PKC-induced migration via Cas/Crk/Rac1 signaling pathway in glioblastoma cells. International Journal of Molecular Medicine, 20(4), 511–519.PubMed
96.
go back to reference Lee, M. S., Kim, Y. B., Lee, S. Y., Kim, J. G., Kim, S. H., Ye, S. K., et al. (2006). Integrin signaling and cell spreading mediated by phorbol 12-myristate 13-acetate treatment. Journal of Cellular Biochemistry, 99(1), 88–95.PubMedCrossRef Lee, M. S., Kim, Y. B., Lee, S. Y., Kim, J. G., Kim, S. H., Ye, S. K., et al. (2006). Integrin signaling and cell spreading mediated by phorbol 12-myristate 13-acetate treatment. Journal of Cellular Biochemistry, 99(1), 88–95.PubMedCrossRef
97.
go back to reference De Nichilo, M. O., & Yamada, K. M. (1996). Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. Journal of Biological Chemistry, 271(18), 11016–11022.PubMedCrossRef De Nichilo, M. O., & Yamada, K. M. (1996). Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. Journal of Biological Chemistry, 271(18), 11016–11022.PubMedCrossRef
98.
go back to reference Doan, A. T., & Huttenlocher, A. (2007). RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Experimental Cell Research, 313(12), 2667–2679.PubMedCrossRef Doan, A. T., & Huttenlocher, A. (2007). RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Experimental Cell Research, 313(12), 2667–2679.PubMedCrossRef
99.
go back to reference Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11(9), 1163–1182.PubMed Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11(9), 1163–1182.PubMed
100.
go back to reference Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5(6), 781–788.CrossRef Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5(6), 781–788.CrossRef
101.
go back to reference Chiarugi, P. (2005). PTPs versus PTKs: the redox side of the coin. Free Radical Research, 39(4), 353–364.PubMedCrossRef Chiarugi, P. (2005). PTPs versus PTKs: the redox side of the coin. Free Radical Research, 39(4), 353–364.PubMedCrossRef
102.
go back to reference Giles, G. I. (2006). The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design, 12(34), 4427–4443.PubMedCrossRef Giles, G. I. (2006). The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design, 12(34), 4427–4443.PubMedCrossRef
103.
go back to reference Chandel, N. S., & Budinger, G. R. (2007). The cellular basis for diverse responses to oxygen. Free Radical Biology & Medicine, 42(2), 165–174.CrossRef Chandel, N. S., & Budinger, G. R. (2007). The cellular basis for diverse responses to oxygen. Free Radical Biology & Medicine, 42(2), 165–174.CrossRef
104.
go back to reference Pervaiz, S. (2006). Pro-oxidant milieu blunts scissors: insight into tumor progression, drug resistance, and novel druggable targets. Current Pharmaceutical Design, 12(34), 4469–4477.PubMedCrossRef Pervaiz, S. (2006). Pro-oxidant milieu blunts scissors: insight into tumor progression, drug resistance, and novel druggable targets. Current Pharmaceutical Design, 12(34), 4469–4477.PubMedCrossRef
105.
go back to reference Cheng, G. C., Schulze, P. C., Lee, R. T., Sylvan, J., Zetter, B. R., & Huang, H. (2004). Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Experimental Cell Research, 300(2), 297–307.PubMedCrossRef Cheng, G. C., Schulze, P. C., Lee, R. T., Sylvan, J., Zetter, B. R., & Huang, H. (2004). Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Experimental Cell Research, 300(2), 297–307.PubMedCrossRef
106.
go back to reference Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.PubMedCrossRef Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.PubMedCrossRef
107.
go back to reference Park, I. J., Hwang, J. T., Kim, Y. M., Ha, J., & Park, O. J. (2006). Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Annals of the New York Academy of Sciences, 1091, 102–109.PubMedCrossRef Park, I. J., Hwang, J. T., Kim, Y. M., Ha, J., & Park, O. J. (2006). Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Annals of the New York Academy of Sciences, 1091, 102–109.PubMedCrossRef
108.
go back to reference Jagadeeswaran, R., Jagadeeswaran, S., Bindokas, V. P., & Salgia, R. (2007). Activation of HGF/c-Met pathway contributes to the reactive oxygen species generation and motility of small cell lung cancer cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 292(6), L1488–1494.PubMedCrossRef Jagadeeswaran, R., Jagadeeswaran, S., Bindokas, V. P., & Salgia, R. (2007). Activation of HGF/c-Met pathway contributes to the reactive oxygen species generation and motility of small cell lung cancer cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 292(6), L1488–1494.PubMedCrossRef
109.
go back to reference Nishigori, C., Hattori, Y., & Toyokuni, S. (2004). Role of reactive oxygen species in skin carcinogenesis. Antioxidants & Redox Signalling, 6(3), 561–570.CrossRef Nishigori, C., Hattori, Y., & Toyokuni, S. (2004). Role of reactive oxygen species in skin carcinogenesis. Antioxidants & Redox Signalling, 6(3), 561–570.CrossRef
110.
go back to reference Miura, D., Miura, Y., & Yagasaki, K. (2004). Resveratrol inhibits hepatoma cell invasion by suppressing gene expression of hepatocyte growth factor via its reactive oxygen species-scavenging property. Clinical & Experimental Metastasis, 21(5), 445–451.CrossRef Miura, D., Miura, Y., & Yagasaki, K. (2004). Resveratrol inhibits hepatoma cell invasion by suppressing gene expression of hepatocyte growth factor via its reactive oxygen species-scavenging property. Clinical & Experimental Metastasis, 21(5), 445–451.CrossRef
111.
go back to reference Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5(3), 236–241.PubMedCrossRef Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5(3), 236–241.PubMedCrossRef
112.
go back to reference Voncken, J. W., van Schaick, H., Kaartinen, V., Deemer, K., Coates, T., Landing, B., et al. (1995). Increased neutrophil respiratory burst in bcr-null mutants. Cell, 80(5), 719–728.PubMedCrossRef Voncken, J. W., van Schaick, H., Kaartinen, V., Deemer, K., Coates, T., Landing, B., et al. (1995). Increased neutrophil respiratory burst in bcr-null mutants. Cell, 80(5), 719–728.PubMedCrossRef
113.
go back to reference Bokoch, G. M., & Knaus, U. G. (2003). NADPH oxidases: not just for leukocytes anymore!. Trends in Biochemical Sciences, 28(9), 502–508.PubMedCrossRef Bokoch, G. M., & Knaus, U. G. (2003). NADPH oxidases: not just for leukocytes anymore!. Trends in Biochemical Sciences, 28(9), 502–508.PubMedCrossRef
114.
go back to reference Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435(7040), 347–353.PubMedCrossRef Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435(7040), 347–353.PubMedCrossRef
115.
go back to reference Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274(19), 13541–13546.PubMedCrossRef Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274(19), 13541–13546.PubMedCrossRef
116.
go back to reference Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277(5), 3101–3108.PubMedCrossRef Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277(5), 3101–3108.PubMedCrossRef
117.
go back to reference Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Biological Chemistry, 158(2), 357–368. Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Biological Chemistry, 158(2), 357–368.
118.
go back to reference Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., & Karin, M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 120(5), 649–661.PubMedCrossRef Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., & Karin, M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 120(5), 649–661.PubMedCrossRef
119.
go back to reference Chen, C. C., Young, J. L., Monzon, R. I., Chen, N., Todorovic, V., & Lau, L. F. (2007). Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO Journal, 26(5), 1257–1267.PubMedCrossRef Chen, C. C., Young, J. L., Monzon, R. I., Chen, N., Todorovic, V., & Lau, L. F. (2007). Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO Journal, 26(5), 1257–1267.PubMedCrossRef
120.
go back to reference Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 52(1), 28–32.PubMed Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 52(1), 28–32.PubMed
121.
go back to reference Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., et al. (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. Journal of Cell Biology, 161(5), 933–944.PubMedCrossRef Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., et al. (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. Journal of Cell Biology, 161(5), 933–944.PubMedCrossRef
122.
go back to reference Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435(7040), 347–353.PubMedCrossRef Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435(7040), 347–353.PubMedCrossRef
123.
go back to reference Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9(2), 387–399.PubMedCrossRef Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9(2), 387–399.PubMedCrossRef
124.
go back to reference Lee, J. K., Edderkaoui, M., Truong, P., Ohno, I., Jang, K. T., Berti, A., et al. (2007). NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology, 133(5), 1637–1648.PubMedCrossRef Lee, J. K., Edderkaoui, M., Truong, P., Ohno, I., Jang, K. T., Berti, A., et al. (2007). NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology, 133(5), 1637–1648.PubMedCrossRef
125.
go back to reference Gozin, A., Franzini, E., Andrieu, V., Da Costa, L., Rollet-Labelle, E., & Pasquier, C. (1998). Reactive oxygen species activate focal adhesion kinase, paxillin and p130cas tyrosine phosphorylation in endothelial cells. Free Radical Biology & Medicine, 25(9), 1021–1032.CrossRef Gozin, A., Franzini, E., Andrieu, V., Da Costa, L., Rollet-Labelle, E., & Pasquier, C. (1998). Reactive oxygen species activate focal adhesion kinase, paxillin and p130cas tyrosine phosphorylation in endothelial cells. Free Radical Biology & Medicine, 25(9), 1021–1032.CrossRef
126.
go back to reference Ushio-Fukai, M., Tang, Y., Fukai, T., Dikalov, S. I., Ma, Y., Fujimoto, M., et al. (2002). Novel role of gp91(phox) containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circulation Research, 91(12), 1160–1167.PubMedCrossRef Ushio-Fukai, M., Tang, Y., Fukai, T., Dikalov, S. I., Ma, Y., Fujimoto, M., et al. (2002). Novel role of gp91(phox) containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circulation Research, 91(12), 1160–1167.PubMedCrossRef
127.
go back to reference Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi Jr, G. A., & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171(5), 893–904.PubMedCrossRef Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi Jr, G. A., & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171(5), 893–904.PubMedCrossRef
128.
go back to reference Xu, Y. C., Wu, R. F., Gu, Y., Yang, Y. S., Yang, M. C., Nwariaku, F. E., et al. (2002). Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. Journal of Biological Chemistry, 277(31), 28051–28057.PubMedCrossRef Xu, Y. C., Wu, R. F., Gu, Y., Yang, Y. S., Yang, M. C., Nwariaku, F. E., et al. (2002). Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. Journal of Biological Chemistry, 277(31), 28051–28057.PubMedCrossRef
129.
go back to reference Zhang, J., Zhang, L. X., Meltzer, P. S., Barrett, J. C., & Trent, J. M. (2000). Molecular cloning of human Hic-5, a potential regulator involved in signal transduction and cellular senescence. Molecular Carcinogenesis, 27(3), 177–183.PubMedCrossRef Zhang, J., Zhang, L. X., Meltzer, P. S., Barrett, J. C., & Trent, J. M. (2000). Molecular cloning of human Hic-5, a potential regulator involved in signal transduction and cellular senescence. Molecular Carcinogenesis, 27(3), 177–183.PubMedCrossRef
130.
go back to reference Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145(4), 851–863.PubMedCrossRef Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145(4), 851–863.PubMedCrossRef
131.
go back to reference Matsuya, M., Sasaki, H., Aoto, H., Mitaka, T., Nagura, K., Ohba, T., et al. (1998). Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. Journal of Biological Chemistry, 273(2), 1003–1014.PubMedCrossRef Matsuya, M., Sasaki, H., Aoto, H., Mitaka, T., Nagura, K., Ohba, T., et al. (1998). Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. Journal of Biological Chemistry, 273(2), 1003–1014.PubMedCrossRef
132.
go back to reference Nishiya, N., Iwabuchi, Y., Shibanuma, M., Côté, J. F., Tremblay, M. L., & Nose, K. (1999). Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP–PEST) through its LIM 3 domain. Journal of Biological Chemistry, 274(14), 9847–9853.PubMedCrossRef Nishiya, N., Iwabuchi, Y., Shibanuma, M., Côté, J. F., Tremblay, M. L., & Nose, K. (1999). Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP–PEST) through its LIM 3 domain. Journal of Biological Chemistry, 274(14), 9847–9853.PubMedCrossRef
133.
go back to reference Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33(8), 1121–1132.CrossRef Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33(8), 1121–1132.CrossRef
134.
go back to reference Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37(2), 308–312.PubMed Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37(2), 308–312.PubMed
135.
go back to reference Gopalakrishna, R., & Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radical Biology & Medicine, 28(9), 1349–1361.CrossRef Gopalakrishna, R., & Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radical Biology & Medicine, 28(9), 1349–1361.CrossRef
136.
go back to reference Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28(9), 1387–1404.CrossRef Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28(9), 1387–1404.CrossRef
137.
go back to reference Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280(14), 13682–13693.PubMedCrossRef Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280(14), 13682–13693.PubMedCrossRef
138.
go back to reference Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14(8 Suppl 3), S227–232.PubMedCrossRef Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14(8 Suppl 3), S227–232.PubMedCrossRef
139.
go back to reference Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of The American Society of Nephrology, 14(8 Suppl 3), S241–245.PubMedCrossRef Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of The American Society of Nephrology, 14(8 Suppl 3), S241–245.PubMedCrossRef
140.
go back to reference Frey, R. S., Gao, X., Javaid, K., Siddiqui, S. S., Rahman, A., & Malik, A. B. (2006). Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. Journal of Biological Chemistry, 281(23), 16128–16138.PubMedCrossRef Frey, R. S., Gao, X., Javaid, K., Siddiqui, S. S., Rahman, A., & Malik, A. B. (2006). Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. Journal of Biological Chemistry, 281(23), 16128–16138.PubMedCrossRef
141.
go back to reference Kwan, J., Wang, H., Munk, S., Xia, L., Goldberg, H. J., & Whiteside, C. I. (2005). In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney International, 68(6), 2526–2541.PubMedCrossRef Kwan, J., Wang, H., Munk, S., Xia, L., Goldberg, H. J., & Whiteside, C. I. (2005). In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney International, 68(6), 2526–2541.PubMedCrossRef
142.
go back to reference Xia, L., Wang, H., Goldberg, H. J., Munk, S., Fantus, I. G., & Whiteside, C. I. (2006). Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. American Journal of Physiology, Renal Physiology, 290(2), F345–356.CrossRef Xia, L., Wang, H., Goldberg, H. J., Munk, S., Fantus, I. G., & Whiteside, C. I. (2006). Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. American Journal of Physiology, Renal Physiology, 290(2), F345–356.CrossRef
143.
go back to reference Talior, I., Tennenbaum, T., Kuroki, T., & Eldar-Finkelman, H. (2005). PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. American Journal of Physiology: Endocrinology and Metabolism, 288(2), E405–411.PubMedCrossRef Talior, I., Tennenbaum, T., Kuroki, T., & Eldar-Finkelman, H. (2005). PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. American Journal of Physiology: Endocrinology and Metabolism, 288(2), E405–411.PubMedCrossRef
144.
go back to reference Lee, H. B., Yu, M. R., Song, J. S., & Ha, H. (2004). Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney International, 65(4), 1170–1179.PubMedCrossRef Lee, H. B., Yu, M. R., Song, J. S., & Ha, H. (2004). Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney International, 65(4), 1170–1179.PubMedCrossRef
145.
go back to reference Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., et al. (2006). Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nature Cell Biology, 8(11), 1291–1297.PubMedCrossRef Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., et al. (2006). Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nature Cell Biology, 8(11), 1291–1297.PubMedCrossRef
146.
go back to reference Chen, C. C. (1999). Protein kinase C alpha, delta, epsilon and zeta in C6 glioma cells. TPA induces translocation and down-regulation of conventional and new PKC isoforms but not atypical PKC zeta. FEBS Letters, 332(1–2), 169–173. Chen, C. C. (1999). Protein kinase C alpha, delta, epsilon and zeta in C6 glioma cells. TPA induces translocation and down-regulation of conventional and new PKC isoforms but not atypical PKC zeta. FEBS Letters, 332(1–2), 169–173.
Metadata
Title
Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species
Authors
Wen-Sheng Wu
Jia-Ru Wu
Chi-Tan Hu
Publication date
01-06-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9112-4

Other articles of this Issue 2/2008

Cancer and Metastasis Reviews 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine