Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2018

01-07-2018 | Brief Report

Characterization of a novel breast cancer cell line derived from a metastatic bone lesion of a breast cancer patient

Authors: Julie Johnson, Darrell C. Bessette, Jodi M. Saunus, Chanel E. Smart, Sarah Song, Rebecca L. Johnston, Sibylle Cocciardi, Esdy N. Rozali, Cameron N. Johnstone, Ana Christina Vargas, Stephen H. Kazakoff, Victorian Cancer BioBank, Kum Kum Khanna, Sunil R. Lakhani, Georgia Chenevix-Trench, Peter T. Simpson, Katia Nones, Nicola Waddell, Fares Al-Ejeh

Published in: Breast Cancer Research and Treatment | Issue 1/2018

Login to get access

Abstract

Purpose

We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease.

Methods

The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor.

Results

P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions.

Conclusion

This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352CrossRefPubMed Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352CrossRefPubMed
3.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988CrossRefPubMedPubMedCentral
4.
go back to reference Lu XaK Y (2005) Discovery of bone metastasis genes by functional genomics. Pharm Discov 5(9):32–35 Lu XaK Y (2005) Discovery of bone metastasis genes by functional genomics. Pharm Discov 5(9):32–35
5.
go back to reference Bendre M, Gaddy D, Nicholas RW, Suva LJ (2003) Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res 415:S39–S45CrossRef Bendre M, Gaddy D, Nicholas RW, Suva LJ (2003) Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res 415:S39–S45CrossRef
6.
go back to reference Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593CrossRefPubMed Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593CrossRefPubMed
7.
go back to reference Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114CrossRefPubMed Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114CrossRefPubMed
8.
go back to reference Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249sCrossRefPubMed Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249sCrossRefPubMed
9.
go back to reference Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, McCart Reed AE, Kutasovic JR, Morey AL, Marquart L, O’Rourke P, Lakhani SR (2013) Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol 232(2014):23–31PubMedCentral Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, McCart Reed AE, Kutasovic JR, Morey AL, Marquart L, O’Rourke P, Lakhani SR (2013) Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol 232(2014):23–31PubMedCentral
11.
go back to reference Manders K, van de Poll-Franse LV, Creemers GJ, Vreugdenhil G, van der Sangen MJ, Nieuwenhuijzen GA, Roumen RM, Voogd AC (2006) Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer 6:179CrossRefPubMedPubMedCentral Manders K, van de Poll-Franse LV, Creemers GJ, Vreugdenhil G, van der Sangen MJ, Nieuwenhuijzen GA, Roumen RM, Voogd AC (2006) Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer 6:179CrossRefPubMedPubMedCentral
12.
go back to reference Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176CrossRefPubMed Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176CrossRefPubMed
13.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527CrossRefPubMedPubMedCentral
14.
go back to reference Thompson EW, Sung V, Lavigne M, Baumann K, Azumi N, Aaron AD, Clarke R (1999) LCC15-MB: a vimentin-positive human breast cancer cell line from a femoral bone metastasis. Clin Exp Metastasis 17(3):193–204CrossRefPubMed Thompson EW, Sung V, Lavigne M, Baumann K, Azumi N, Aaron AD, Clarke R (1999) LCC15-MB: a vimentin-positive human breast cancer cell line from a femoral bone metastasis. Clin Exp Metastasis 17(3):193–204CrossRefPubMed
15.
go back to reference Thompson EW, Waltham M, Ramus SJ, Hutchins AM, Armes JE, Campbell IG, Williams ED, Thompson PR, Rae JM, Johnson MD, Clarke R (2004) LCC15-MB cells are MDA-MB-435: a review of misidentified breast and prostate cell lines. Clin Exp Metastasis 21(6):535–541CrossRefPubMed Thompson EW, Waltham M, Ramus SJ, Hutchins AM, Armes JE, Campbell IG, Williams ED, Thompson PR, Rae JM, Johnson MD, Clarke R (2004) LCC15-MB cells are MDA-MB-435: a review of misidentified breast and prostate cell lines. Clin Exp Metastasis 21(6):535–541CrossRefPubMed
16.
go back to reference Noguera NI, Tallano CE, Bragos IM, Milani AC (2000) Modified salting-out method for DNA isolation from newborn cord blood nucleated cells. J Clin Lab Anal 14(6):280–283CrossRefPubMed Noguera NI, Tallano CE, Bragos IM, Milani AC (2000) Modified salting-out method for DNA isolation from newborn cord blood nucleated cells. J Clin Lab Anal 14(6):280–283CrossRefPubMed
17.
go back to reference Smart CE, Morrison BJ, Saunus JM, Vargas AC, Keith P, Reid L, Wockner L, Amiri MA, Sarkar D, Simpson PT, Clarke C, Schmidt CW, Reynolds BA, Lakhani SR, Lopez JA (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS ONE 8(6):e64388CrossRefPubMedPubMedCentral Smart CE, Morrison BJ, Saunus JM, Vargas AC, Keith P, Reid L, Wockner L, Amiri MA, Sarkar D, Simpson PT, Clarke C, Schmidt CW, Reynolds BA, Lakhani SR, Lopez JA (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS ONE 8(6):e64388CrossRefPubMedPubMedCentral
18.
go back to reference Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefPubMedPubMedCentral Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefPubMedPubMedCentral
19.
go back to reference Kassahn KS, Holmes O, Nones K, Patch AM, Miller DK, Christ AN, Harliwong I, Bruxner TJ, Xu Q, Anderson M, Wood S, Leonard C, Taylor D, Newell F, Song S, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Steptoe A, Pajic M, Cowley MJ, Pinese M, Chang DK, Gill AJ, Johns AL, Wu J, Wilson PJ, Fink L, Biankin AV, Waddell N, Grimmond SM, Pearson JV (2013) Somatic point mutation calling in low cellularity tumors. PLoS ONE 8(11):e74380CrossRefPubMedPubMedCentral Kassahn KS, Holmes O, Nones K, Patch AM, Miller DK, Christ AN, Harliwong I, Bruxner TJ, Xu Q, Anderson M, Wood S, Leonard C, Taylor D, Newell F, Song S, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Steptoe A, Pajic M, Cowley MJ, Pinese M, Chang DK, Gill AJ, Johns AL, Wu J, Wilson PJ, Fink L, Biankin AV, Waddell N, Grimmond SM, Pearson JV (2013) Somatic point mutation calling in low cellularity tumors. PLoS ONE 8(11):e74380CrossRefPubMedPubMedCentral
20.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefPubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefPubMedPubMedCentral
21.
go back to reference Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92CrossRefPubMedPubMedCentral Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92CrossRefPubMedPubMedCentral
22.
go back to reference Sun W, Wright FA, Tang Z, Nordgard SH, Van Loo P, Yu T, Kristensen VN, Perou CM (2009) Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Res 37(16):5365–5377CrossRefPubMedPubMedCentral Sun W, Wright FA, Tang Z, Nordgard SH, Van Loo P, Yu T, Kristensen VN, Perou CM (2009) Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Res 37(16):5365–5377CrossRefPubMedPubMedCentral
23.
go back to reference Song S, Nones K, Miller D, Harliwong I, Kassahn KS, Pinese M, Pajic M, Gill AJ, Johns AL, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Newell F, Cowley MJ, Wu J, Wilson P, Fink L, Biankin AV, Waddell N, Grimmond SM, Pearson JV (2012) qpure: a tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS ONE 7(9):e45835CrossRefPubMedPubMedCentral Song S, Nones K, Miller D, Harliwong I, Kassahn KS, Pinese M, Pajic M, Gill AJ, Johns AL, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Newell F, Cowley MJ, Wu J, Wilson P, Fink L, Biankin AV, Waddell N, Grimmond SM, Pearson JV (2012) qpure: a tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS ONE 7(9):e45835CrossRefPubMedPubMedCentral
24.
go back to reference Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, Ng SS, French PJ, Peeters JK, Rozendaal MJ, Riaz M, Koopman DG, Ten Hagen TL, de Leeuw BH, Zwarthoff EC, Teunisse A, van der Spek PJ, Klijn JG, Dinjens WN, Ethier SP, Clevers H, Jochemsen AG, den Bakker MA, Foekens JA, Martens JW, Schutte M (2010) Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121(1):53–64CrossRefPubMed Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, Ng SS, French PJ, Peeters JK, Rozendaal MJ, Riaz M, Koopman DG, Ten Hagen TL, de Leeuw BH, Zwarthoff EC, Teunisse A, van der Spek PJ, Klijn JG, Dinjens WN, Ethier SP, Clevers H, Jochemsen AG, den Bakker MA, Foekens JA, Martens JW, Schutte M (2010) Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121(1):53–64CrossRefPubMed
25.
go back to reference Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55(16):3551–3557PubMed Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55(16):3551–3557PubMed
26.
27.
go back to reference Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138CrossRefPubMed Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138CrossRefPubMed
28.
go back to reference Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF, Zha XM, Du Q, Ni XJ, Wang J, Miao SY, Wang S (2012) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 132(2):471–486CrossRefPubMed Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF, Zha XM, Du Q, Ni XJ, Wang J, Miao SY, Wang S (2012) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 132(2):471–486CrossRefPubMed
29.
go back to reference Christopher SA, Diegelman P, Porter CW, Kruger WD (2002) Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res 62(22):6639–6644PubMed Christopher SA, Diegelman P, Porter CW, Kruger WD (2002) Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res 62(22):6639–6644PubMed
30.
go back to reference Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y, Ewing CM, Dalrymple S, Turner AR, Isaacs JT, Chang BL, Zheng SL, Isaacs WB, Xu J (2008) Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10(8):897–907CrossRefPubMedPubMedCentral Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y, Ewing CM, Dalrymple S, Turner AR, Isaacs JT, Chang BL, Zheng SL, Isaacs WB, Xu J (2008) Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10(8):897–907CrossRefPubMedPubMedCentral
31.
go back to reference Legoffic A, Calvo EL, Barthet M, Delpero JR, Dagorn JC, Iovanna JL (2009) Identification of genomic alterations associated with the aggressiveness of pancreatic cancer using an ultra-high-resolution CGH array. Pancreatology 9(3):267–272CrossRefPubMed Legoffic A, Calvo EL, Barthet M, Delpero JR, Dagorn JC, Iovanna JL (2009) Identification of genomic alterations associated with the aggressiveness of pancreatic cancer using an ultra-high-resolution CGH array. Pancreatology 9(3):267–272CrossRefPubMed
32.
go back to reference Jardin F, Jais JP, Molina TJ, Parmentier F, Picquenot JM, Ruminy P, Tilly H, Bastard C, Salles GA, Feugier P, Thieblemont C, Gisselbrecht C, de Reynies A, Coiffier B, Haioun C, Leroy K (2010) Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood 116(7):1092–1104CrossRefPubMed Jardin F, Jais JP, Molina TJ, Parmentier F, Picquenot JM, Ruminy P, Tilly H, Bastard C, Salles GA, Feugier P, Thieblemont C, Gisselbrecht C, de Reynies A, Coiffier B, Haioun C, Leroy K (2010) Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood 116(7):1092–1104CrossRefPubMed
33.
go back to reference Gronwald J, Jauch A, Cybulski C, Schoell B, Bohm-Steuer B, Lener M, Grabowska E, Gorski B, Jakubowska A, Domagala W, Chosia M, Scott RJ, Lubinski J (2005) Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization. Int J Cancer 114(2):230–236CrossRefPubMed Gronwald J, Jauch A, Cybulski C, Schoell B, Bohm-Steuer B, Lener M, Grabowska E, Gorski B, Jakubowska A, Domagala W, Chosia M, Scott RJ, Lubinski J (2005) Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization. Int J Cancer 114(2):230–236CrossRefPubMed
34.
go back to reference Kai K, Zhang Z, Yamashita H, Yamamoto Y, Miura Y, Iwase H (2008) Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer. BMC Cancer 8:262CrossRefPubMedPubMedCentral Kai K, Zhang Z, Yamashita H, Yamamoto Y, Miura Y, Iwase H (2008) Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer. BMC Cancer 8:262CrossRefPubMedPubMedCentral
35.
go back to reference Sun X, Zhou Y, Otto KB, Wang M, Chen C, Zhou W, Subramanian K, Vertino PM, Dong JT (2007) Infrequent mutation of ATBF1 in human breast cancer. J Cancer Res Clin Oncol 133(2):103–105CrossRefPubMed Sun X, Zhou Y, Otto KB, Wang M, Chen C, Zhou W, Subramanian K, Vertino PM, Dong JT (2007) Infrequent mutation of ATBF1 in human breast cancer. J Cancer Res Clin Oncol 133(2):103–105CrossRefPubMed
36.
go back to reference Sun X, Frierson HF, Chen C, Li C, Ran Q, Otto KB, Cantarel BL, Vessella RL, Gao AC, Petros J, Miura Y, Simons JW, Dong JT (2005) Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet 37(4):407–412CrossRefPubMed Sun X, Frierson HF, Chen C, Li C, Ran Q, Otto KB, Cantarel BL, Vessella RL, Gao AC, Petros J, Miura Y, Simons JW, Dong JT (2005) Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet 37(4):407–412CrossRefPubMed
37.
go back to reference Cho YG, Song JH, Kim CJ, Lee YS, Kim SY, Nam SW, Lee JY, Park WS (2007) Genetic alterations of the ATBF1 gene in gastric cancer. Clin Cancer Res 13(15 Pt 1):4355–4359CrossRefPubMed Cho YG, Song JH, Kim CJ, Lee YS, Kim SY, Nam SW, Lee JY, Park WS (2007) Genetic alterations of the ATBF1 gene in gastric cancer. Clin Cancer Res 13(15 Pt 1):4355–4359CrossRefPubMed
38.
go back to reference Zhang YG, Guo X, Xu P, Kang LL, Li J (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226CrossRef Zhang YG, Guo X, Xu P, Kang LL, Li J (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226CrossRef
39.
go back to reference Dong XY, Sun X, Guo P, Li Q, Sasahara M, Ishii Y, Dong JT (2010) ATBF1 inhibits estrogen receptor (ER) function by selectively competing with AIB1 for binding to the ER in ER-positive breast cancer cells. J Biol Chem 285(43):32801–32809CrossRefPubMedPubMedCentral Dong XY, Sun X, Guo P, Li Q, Sasahara M, Ishii Y, Dong JT (2010) ATBF1 inhibits estrogen receptor (ER) function by selectively competing with AIB1 for binding to the ER in ER-positive breast cancer cells. J Biol Chem 285(43):32801–32809CrossRefPubMedPubMedCentral
40.
go back to reference Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, Schoenmakers E, Viens P, Jacquemier J, Birnbaum D, Bertucci F, Chaffanet M (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67(24):11565–11575CrossRefPubMed Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, Schoenmakers E, Viens P, Jacquemier J, Birnbaum D, Bertucci F, Chaffanet M (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67(24):11565–11575CrossRefPubMed
41.
go back to reference Dong Y, Cai Y, Liu B, Jiao X, Li ZT, Guo DY, Li XW, Wang YJ, Yang DK (2017) HOXA13 is associated with unfavorable survival and acts as a novel oncogene in prostate carcinoma. Future Oncol 13(17):1505–1516CrossRefPubMed Dong Y, Cai Y, Liu B, Jiao X, Li ZT, Guo DY, Li XW, Wang YJ, Yang DK (2017) HOXA13 is associated with unfavorable survival and acts as a novel oncogene in prostate carcinoma. Future Oncol 13(17):1505–1516CrossRefPubMed
42.
go back to reference Lin C, Wang Y, Wang Y, Zhang S, Yu L, Guo C, Xu H (2017) Transcriptional and posttranscriptional regulation of HOXA13 by lncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene 36:5392CrossRefPubMed Lin C, Wang Y, Wang Y, Zhang S, Yu L, Guo C, Xu H (2017) Transcriptional and posttranscriptional regulation of HOXA13 by lncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene 36:5392CrossRefPubMed
43.
go back to reference Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti F, Makowska Z, Boldanova T, Andersen JB, Hammerle M, Tornillo L, Heim MH, Diederichs S, Cillo C, Terracciano LM (2014) Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59(3):911–923CrossRefPubMedPubMedCentral Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti F, Makowska Z, Boldanova T, Andersen JB, Hammerle M, Tornillo L, Heim MH, Diederichs S, Cillo C, Terracciano LM (2014) Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59(3):911–923CrossRefPubMedPubMedCentral
44.
go back to reference Duan R, Han L, Wang Q, Wei J, Chen L, Zhang J, Kang C, Wang L (2015) HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-beta pathways. Oncotarget 6(29):27778–27793PubMedPubMedCentral Duan R, Han L, Wang Q, Wei J, Chen L, Zhang J, Kang C, Wang L (2015) HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-beta pathways. Oncotarget 6(29):27778–27793PubMedPubMedCentral
45.
go back to reference DeInnocentes P, Perry AL, Graff EC, Lutful Kabir FM, Curtis Bird R (2015) Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours. Vet Comp Oncol 13(3):322–336CrossRefPubMed DeInnocentes P, Perry AL, Graff EC, Lutful Kabir FM, Curtis Bird R (2015) Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours. Vet Comp Oncol 13(3):322–336CrossRefPubMed
46.
go back to reference Dong H, Claffey KP, Brocke S, Epstein PM (2015) Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat 152(1):17–28CrossRefPubMed Dong H, Claffey KP, Brocke S, Epstein PM (2015) Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat 152(1):17–28CrossRefPubMed
47.
go back to reference Rowther FB, Wei W, Dawson TP, Ashton K, Singh A, Madiesse-Timchou MP, Thomas DG, Darling JL, Warr T (2016) Cyclic nucleotide phosphodiesterase-1C (PDE1C) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro. Mol Carcinog 55(3):268–279CrossRefPubMed Rowther FB, Wei W, Dawson TP, Ashton K, Singh A, Madiesse-Timchou MP, Thomas DG, Darling JL, Warr T (2016) Cyclic nucleotide phosphodiesterase-1C (PDE1C) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro. Mol Carcinog 55(3):268–279CrossRefPubMed
48.
go back to reference Zhang Y, Tian Y, Chen Q, Chen D, Zhai Z, Shu HB (2007) TTDN1 is a Plk1-interacting protein involved in maintenance of cell cycle integrity. Cell Mol Life Sci 64(5):632–640CrossRefPubMed Zhang Y, Tian Y, Chen Q, Chen D, Zhai Z, Shu HB (2007) TTDN1 is a Plk1-interacting protein involved in maintenance of cell cycle integrity. Cell Mol Life Sci 64(5):632–640CrossRefPubMed
49.
go back to reference Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, Zhang Z, Hu J, Yin Z, Heng BC, Chen X, Ouyang HW (2015) Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFbeta signaling pathway. Stem Cells 33(2):443–455CrossRefPubMed Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, Zhang Z, Hu J, Yin Z, Heng BC, Chen X, Ouyang HW (2015) Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFbeta signaling pathway. Stem Cells 33(2):443–455CrossRefPubMed
50.
go back to reference Srinivasainagendra V, Sandel MW, Singh B, Sundaresan A, Mooga VP, Bajpai P, Tiwari HK, Singh KK (2017) Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med 9(1):31CrossRefPubMedPubMedCentral Srinivasainagendra V, Sandel MW, Singh B, Sundaresan A, Mooga VP, Bajpai P, Tiwari HK, Singh KK (2017) Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med 9(1):31CrossRefPubMedPubMedCentral
51.
go back to reference Saunus JM, Smart CE, Kutasovic JR, Johnston RL, Kalita-de Croft P, Miranda M, Rozali EN, Vargas AC, Reid LE, Lorsy E, Cocciardi S, Seidens T, McCart Reed AE, Dalley AJ, Wockner LF, Johnson J, Sarkar D, Askarian-Amiri ME, Simpson PT, Khanna KK, Chenevix-Trench G, Al-Ejeh F, Lakhani SR (2017) Multidimensional phenotyping of breast cancer cell lines to guide preclinical research. Breast Cancer Res Treat 167(1):289–301CrossRefPubMed Saunus JM, Smart CE, Kutasovic JR, Johnston RL, Kalita-de Croft P, Miranda M, Rozali EN, Vargas AC, Reid LE, Lorsy E, Cocciardi S, Seidens T, McCart Reed AE, Dalley AJ, Wockner LF, Johnson J, Sarkar D, Askarian-Amiri ME, Simpson PT, Khanna KK, Chenevix-Trench G, Al-Ejeh F, Lakhani SR (2017) Multidimensional phenotyping of breast cancer cell lines to guide preclinical research. Breast Cancer Res Treat 167(1):289–301CrossRefPubMed
Metadata
Title
Characterization of a novel breast cancer cell line derived from a metastatic bone lesion of a breast cancer patient
Authors
Julie Johnson
Darrell C. Bessette
Jodi M. Saunus
Chanel E. Smart
Sarah Song
Rebecca L. Johnston
Sibylle Cocciardi
Esdy N. Rozali
Cameron N. Johnstone
Ana Christina Vargas
Stephen H. Kazakoff
Victorian Cancer BioBank
Kum Kum Khanna
Sunil R. Lakhani
Georgia Chenevix-Trench
Peter T. Simpson
Katia Nones
Nicola Waddell
Fares Al-Ejeh
Publication date
01-07-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-018-4719-9

Other articles of this Issue 1/2018

Breast Cancer Research and Treatment 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine