Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2018

01-07-2018 | Epidemiology

Mammographic non-dense area and breast cancer risk in postmenopausal women: a causal inference approach in a case–control study

Authors: Héctor A. Velásquez García, Boris G. Sobolev, Carolyn C. Gotay, Christine M. Wilson, Caroline A. Lohrisch, Agnes S. Lai, Kristan J. Aronson, John J. Spinelli

Published in: Breast Cancer Research and Treatment | Issue 1/2018

Login to get access

Abstract

Purpose

The association between high mammographic density (MD) and elevated breast cancer risk is well established. However, the role of absolute non-dense area remains unclear. We estimated the effect of the mammographic non-dense area and other density parameters on the risk of breast cancer.

Methods

This study utilizes data from a population-based case–control study conducted in Greater Vancouver, British Columbia, with 477 female postmenopausal breast cancer cases and 588 female postmenopausal controls. MD measures were determined from digitized screening mammograms using computer-assisted software (Cumulus). Marginal odds ratios were estimated by inverse-probability weighting using a causal diagram for confounder selection. Akaike information criteria and receiver operating characteristic curves were used to assess the goodness of fit and predictive power of unconditional logistic models containing MD parameters.

Results

The risk of breast cancer is 60% lower for the highest quartile compared to the lowest quartile of mammographic non-dense area (marginal OR 0.40, 95% CI 0.26–0.61, p-trend < 0.001). The cancer risk almost doubles for the highest quartile compared to the lowest quartile of dense area (marginal OR 1.81, 95% CI 1.19–2.43, p-trend < 0.001). For the highest quartile of percent density, breast cancer risk was more than three times higher than for the lowest quartile (marginal OR 3.15, 95% CI 1.90–4.40, p-trend < 0.001). No difference was seen in predictive accuracy between models using percent density alone, dense area alone, or non-dense area plus dense area.

Conclusions

In this study, non-dense area is an independent risk factor after adjustment for dense area and other covariates, inversely related with the risk of breast cancer. However, non-dense area does not improve prediction over that offered by percent density or dense area alone.
Appendix
Available only for authorised users
Literature
2.
go back to reference Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA et al (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 87(21):1622–1629CrossRefPubMed Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA et al (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 87(21):1622–1629CrossRefPubMed
3.
go back to reference Maskarinec G, Meng L (2000) A case-control study of mammographic densities in Hawaii. Breast Cancer Res Treat 63(2):153–161CrossRefPubMed Maskarinec G, Meng L (2000) A case-control study of mammographic densities in Hawaii. Breast Cancer Res Treat 63(2):153–161CrossRefPubMed
4.
go back to reference Tice J, Cummings S, Smith-Bindman R, Ichikawa L, Barlow W, Kerlikowske K (2008) Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 148(5):337–347CrossRefPubMedPubMedCentral Tice J, Cummings S, Smith-Bindman R, Ichikawa L, Barlow W, Kerlikowske K (2008) Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 148(5):337–347CrossRefPubMedPubMedCentral
5.
go back to reference McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169CrossRef McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169CrossRef
6.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236CrossRefPubMed Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236CrossRefPubMed
7.
go back to reference Chiu SYH, Duffy S, Yen AMF, Tabár L, Smith RA, Chen HH (2010) Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomark Prev 19(5):1219–1228CrossRef Chiu SYH, Duffy S, Yen AMF, Tabár L, Smith RA, Chen HH (2010) Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomark Prev 19(5):1219–1228CrossRef
8.
go back to reference Heusinger K, Loehberg CR, Haeberle L, Jud SM, Klingsiek P, Hein A et al (2011) Mammographic density as a risk factor for breast cancer in a German case–control study. Eur J Cancer Prev 20(1):1–8CrossRefPubMed Heusinger K, Loehberg CR, Haeberle L, Jud SM, Klingsiek P, Hein A et al (2011) Mammographic density as a risk factor for breast cancer in a German case–control study. Eur J Cancer Prev 20(1):1–8CrossRefPubMed
9.
go back to reference Yaghjyan L, Colditz GA, Collins LC, Schnitt SJ, Rosner B, Vachon C et al (2011) Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. JNCI J Natl Cancer Inst 103(15):1179–1189CrossRefPubMed Yaghjyan L, Colditz GA, Collins LC, Schnitt SJ, Rosner B, Vachon C et al (2011) Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. JNCI J Natl Cancer Inst 103(15):1179–1189CrossRefPubMed
10.
go back to reference Baglietto L, Krishnan K, Stone J, Apicella C, Southey MC, English DR et al (2014) Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer. Am J Epidemiol 179(4):475–483CrossRefPubMed Baglietto L, Krishnan K, Stone J, Apicella C, Southey MC, English DR et al (2014) Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer. Am J Epidemiol 179(4):475–483CrossRefPubMed
11.
go back to reference Bertrand KA, Scott CG, Tamimi RM, Jensen MR, Pankratz VS, Norman AD et al (2015) Dense and nondense Mammographic area and risk of breast cancer by age and tumor characteristics. Cancer Epidemiol Biomark Prev 24(5):798–809CrossRef Bertrand KA, Scott CG, Tamimi RM, Jensen MR, Pankratz VS, Norman AD et al (2015) Dense and nondense Mammographic area and risk of breast cancer by age and tumor characteristics. Cancer Epidemiol Biomark Prev 24(5):798–809CrossRef
12.
go back to reference Torres-Mejia G, De Stavola B, Allen DS, Pérez-Gavilán JJ, Ferreira JM, Fentiman IS et al (2005) Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the guernsey prospective studies. Cancer Epidemiol Biomark Prev 14(5):1052–1059CrossRef Torres-Mejia G, De Stavola B, Allen DS, Pérez-Gavilán JJ, Ferreira JM, Fentiman IS et al (2005) Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the guernsey prospective studies. Cancer Epidemiol Biomark Prev 14(5):1052–1059CrossRef
13.
go back to reference Stone J, Ding J, Warren RM, Duffy SW, Hopper JL (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97CrossRefPubMedPubMedCentral Stone J, Ding J, Warren RM, Duffy SW, Hopper JL (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97CrossRefPubMedPubMedCentral
14.
go back to reference Lokate M, Peeters PHM, Peelen LM, Haars G, Veldhuis WB, van Gils CH (2011) Mammographic density and breast cancer risk: the role of the fat surrounding the fibroglandular tissue. Breast Cancer Res 13(5):R103CrossRefPubMedPubMedCentral Lokate M, Peeters PHM, Peelen LM, Haars G, Veldhuis WB, van Gils CH (2011) Mammographic density and breast cancer risk: the role of the fat surrounding the fibroglandular tissue. Breast Cancer Res 13(5):R103CrossRefPubMedPubMedCentral
15.
go back to reference Pettersson A, Hankinson SE, Willett WC, Lagiou P, Trichopoulos D, Tamimi RM (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100CrossRefPubMedPubMedCentral Pettersson A, Hankinson SE, Willett WC, Lagiou P, Trichopoulos D, Tamimi RM (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100CrossRefPubMedPubMedCentral
17.
go back to reference Heckman JJ (1979) Sample selection bias as a specification error. Econometrica 47:151–161CrossRef Heckman JJ (1979) Sample selection bias as a specification error. Econometrica 47:151–161CrossRef
18.
go back to reference Greenland S, Morgenstern H (2001) Confounding in health research. Ann Rev Public Health. 22:189–212CrossRef Greenland S, Morgenstern H (2001) Confounding in health research. Ann Rev Public Health. 22:189–212CrossRef
19.
go back to reference Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81(396):945CrossRef Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81(396):945CrossRef
20.
go back to reference Pearl J (2000) Causality. Springer, New York Pearl J (2000) Causality. Springer, New York
21.
go back to reference Grundy A, Richardson H, Burstyn I, Lohrisch C, SenGupta SK, Lai AS et al (2013) Increased risk of breast cancer associated with long-term shift work in Canada. Occup Environ Med 70:1–8CrossRef Grundy A, Richardson H, Burstyn I, Lohrisch C, SenGupta SK, Lai AS et al (2013) Increased risk of breast cancer associated with long-term shift work in Canada. Occup Environ Med 70:1–8CrossRef
22.
go back to reference Imaging Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada Imaging Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
23.
go back to reference Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1994) The quantitative analysis of mammographic densities. Phys Med Biol 39(10):1629–1638CrossRefPubMed Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1994) The quantitative analysis of mammographic densities. Phys Med Biol 39(10):1629–1638CrossRefPubMed
24.
go back to reference Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology. 10(1):37–48CrossRefPubMed Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology. 10(1):37–48CrossRefPubMed
25.
go back to reference Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge
26.
go back to reference Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 22(5):745CrossRefPubMed Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 22(5):745CrossRefPubMed
27.
go back to reference Didelez V, Kreiner S, Keiding N (2010) Graphical models for inference under outcome-dependent sampling. Stat Sci 25(3):368–387CrossRef Didelez V, Kreiner S, Keiding N (2010) Graphical models for inference under outcome-dependent sampling. Stat Sci 25(3):368–387CrossRef
28.
go back to reference van Buuren S, Groothuis-Oudshoorn K (2011) Mice: multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67CrossRef van Buuren S, Groothuis-Oudshoorn K (2011) Mice: multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67CrossRef
29.
go back to reference Maskarinec G, Dartois L, Delaloge S, Hopper J, Clavel-Chapelon F, Baglietto L (2017) Tumor characteristics and family history in relation to mammographic density and breast cancer: the French E3N cohort. Cancer Epidemiol 49:156–160CrossRefPubMed Maskarinec G, Dartois L, Delaloge S, Hopper J, Clavel-Chapelon F, Baglietto L (2017) Tumor characteristics and family history in relation to mammographic density and breast cancer: the French E3N cohort. Cancer Epidemiol 49:156–160CrossRefPubMed
30.
go back to reference Rice MS, Bertrand KA, VanderWeele TJ, Rosner BA, Liao X, Adami H-O et al (2016) Mammographic density and breast cancer risk: a mediation analysis. Breast Cancer Res 18(1):94CrossRefPubMedPubMedCentral Rice MS, Bertrand KA, VanderWeele TJ, Rosner BA, Liao X, Adami H-O et al (2016) Mammographic density and breast cancer risk: a mediation analysis. Breast Cancer Res 18(1):94CrossRefPubMedPubMedCentral
31.
go back to reference Boyd NF, Melnichouk O, Martin LJ, Hislop G, Chiarelli AM, Yaffe MJ et al (2011) Mammographic density, response to hormones, and breast cancer risk. J Clin Oncol 29(22):2985–2992CrossRefPubMed Boyd NF, Melnichouk O, Martin LJ, Hislop G, Chiarelli AM, Yaffe MJ et al (2011) Mammographic density, response to hormones, and breast cancer risk. J Clin Oncol 29(22):2985–2992CrossRefPubMed
32.
go back to reference Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2012) Chapter 9: strengthening causal inference. In: Vittinghoff E et al (eds) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models, 2nd edn. Springer, New York, pp 331–394CrossRef Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2012) Chapter 9: strengthening causal inference. In: Vittinghoff E et al (eds) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models, 2nd edn. Springer, New York, pp 331–394CrossRef
34.
go back to reference Busso M, DiNardo J, McCrary J (2014) New evidence on the finite sample properties of propensity score reweighting and matching estimators. Rev Econ Stat 96(5):885–897CrossRef Busso M, DiNardo J, McCrary J (2014) New evidence on the finite sample properties of propensity score reweighting and matching estimators. Rev Econ Stat 96(5):885–897CrossRef
36.
go back to reference Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2012) Chapter 9: Strengthening Causal Inference. In: Vittinghoff E (ed) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models, 2nd edn. Springer, New York, pp 359–360CrossRef Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2012) Chapter 9: Strengthening Causal Inference. In: Vittinghoff E (ed) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models, 2nd edn. Springer, New York, pp 359–360CrossRef
37.
go back to reference Oehlert GW (1992) A note on the delta method. Am Stat 46(1):27–29 Oehlert GW (1992) A note on the delta method. Am Stat 46(1):27–29
38.
go back to reference R Foundation for Statistical Computing, Vienna, Austria R Foundation for Statistical Computing, Vienna, Austria
39.
go back to reference Stata Corporation, College Station, Texas, USA Stata Corporation, College Station, Texas, USA
40.
go back to reference Ching S, Kashinkunti S, Niehaus MD, Zinser GM (2011) Mammary adipocytes bioactivate 25-hydroxyvitamin D3 and signal via vitamin D3 receptor, modulating mammary epithelial cell growth. J Cell Biochem 112(11):3393–3405CrossRefPubMedPubMedCentral Ching S, Kashinkunti S, Niehaus MD, Zinser GM (2011) Mammary adipocytes bioactivate 25-hydroxyvitamin D3 and signal via vitamin D3 receptor, modulating mammary epithelial cell growth. J Cell Biochem 112(11):3393–3405CrossRefPubMedPubMedCentral
41.
go back to reference Ghosh K, Hartmann LC, Reynolds C, Visscher DW, Brandt KR, Vierkant RA et al (2010) Association between mammographic density and age-related lobular involution of the breast. J Clin Oncol 28(13):2207–2212CrossRefPubMedPubMedCentral Ghosh K, Hartmann LC, Reynolds C, Visscher DW, Brandt KR, Vierkant RA et al (2010) Association between mammographic density and age-related lobular involution of the breast. J Clin Oncol 28(13):2207–2212CrossRefPubMedPubMedCentral
42.
go back to reference Sellers T, Vachon C, Pankratz V, Janney C, Fredericksen Z, Brandt K et al (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166(4):456–464CrossRefPubMed Sellers T, Vachon C, Pankratz V, Janney C, Fredericksen Z, Brandt K et al (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166(4):456–464CrossRefPubMed
43.
go back to reference Samimi G, Colditz GA, Baer HJ, Tamimi RM (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109(1):113–122CrossRefPubMed Samimi G, Colditz GA, Baer HJ, Tamimi RM (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109(1):113–122CrossRefPubMed
44.
go back to reference Fuemmeler BF, Pendzich MK, Tercyak KP (2009) Weight, dietary behavior, and physical activity in childhood and adolescence: implications for adult cancer risk. Obes Facts 2(3):179–186CrossRefPubMedPubMedCentral Fuemmeler BF, Pendzich MK, Tercyak KP (2009) Weight, dietary behavior, and physical activity in childhood and adolescence: implications for adult cancer risk. Obes Facts 2(3):179–186CrossRefPubMedPubMedCentral
45.
go back to reference Lope V, Pérez-Gómez B, Moreno MP, Vidal C, Salas-Trejo D, Ascunce N et al (2011) Childhood factors associated with mammographic density in adult women. Breast Cancer Res Treat 130(3):965–974CrossRefPubMed Lope V, Pérez-Gómez B, Moreno MP, Vidal C, Salas-Trejo D, Ascunce N et al (2011) Childhood factors associated with mammographic density in adult women. Breast Cancer Res Treat 130(3):965–974CrossRefPubMed
46.
go back to reference Fagherazzi G, Guillas G, Boutron-Ruault M-C, Clavel-Chapelon F, Mesrine S (2013) Body shape throughout life and the risk for breast cancer at adulthood in the French E3N cohort. Eur J Cancer Prev 22(1):29–37CrossRefPubMed Fagherazzi G, Guillas G, Boutron-Ruault M-C, Clavel-Chapelon F, Mesrine S (2013) Body shape throughout life and the risk for breast cancer at adulthood in the French E3N cohort. Eur J Cancer Prev 22(1):29–37CrossRefPubMed
47.
go back to reference Baglietto L, English DR, Hopper JL, Morris HA, Tilley WD, Giles GG (2007) Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomark Prev 16(4):763–768CrossRef Baglietto L, English DR, Hopper JL, Morris HA, Tilley WD, Giles GG (2007) Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomark Prev 16(4):763–768CrossRef
48.
go back to reference Poole EM, Tworoger SS, Hankinson SE, Schernhammer ES, Pollak MN, Baer HJ (2011) Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol 174(6):642–651CrossRefPubMedPubMedCentral Poole EM, Tworoger SS, Hankinson SE, Schernhammer ES, Pollak MN, Baer HJ (2011) Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol 174(6):642–651CrossRefPubMedPubMedCentral
49.
go back to reference Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K et al (2002) Aromatase—a brief overview. Annu Rev Physiol 64(1):93–127CrossRefPubMed Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K et al (2002) Aromatase—a brief overview. Annu Rev Physiol 64(1):93–127CrossRefPubMed
50.
go back to reference McInnes KJ, Brown KA, Knower KC, Chand AL, Clyne CD, Simpson ER (2008) Characterisation of aromatase expression in the human adipocyte cell line SGBS. Breast Cancer Res Treat 112(3):429–435CrossRefPubMed McInnes KJ, Brown KA, Knower KC, Chand AL, Clyne CD, Simpson ER (2008) Characterisation of aromatase expression in the human adipocyte cell line SGBS. Breast Cancer Res Treat 112(3):429–435CrossRefPubMed
52.
go back to reference Cattaneo MD (2010) Efficient semiparametric estimation of multi-valued treatment effects under ignorability. J Econ 155(2):138–154CrossRef Cattaneo MD (2010) Efficient semiparametric estimation of multi-valued treatment effects under ignorability. J Econ 155(2):138–154CrossRef
53.
go back to reference Austin PC (2014) The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 33(7):1242–1258CrossRefPubMed Austin PC (2014) The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 33(7):1242–1258CrossRefPubMed
54.
go back to reference Rubin DB (1979) Using multivariate matched sampling and regression adjustment to control bias in observational studies. J Am Stat Assoc 74(366a):318–328CrossRef Rubin DB (1979) Using multivariate matched sampling and regression adjustment to control bias in observational studies. J Am Stat Assoc 74(366a):318–328CrossRef
56.
go back to reference Lunceford JK, Davidian M (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 23(19):2937–2960CrossRefPubMed Lunceford JK, Davidian M (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 23(19):2937–2960CrossRefPubMed
Metadata
Title
Mammographic non-dense area and breast cancer risk in postmenopausal women: a causal inference approach in a case–control study
Authors
Héctor A. Velásquez García
Boris G. Sobolev
Carolyn C. Gotay
Christine M. Wilson
Caroline A. Lohrisch
Agnes S. Lai
Kristan J. Aronson
John J. Spinelli
Publication date
01-07-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-018-4737-7

Other articles of this Issue 1/2018

Breast Cancer Research and Treatment 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine