Skip to main content
Top
Published in: Angiogenesis 1/2019

Open Access 01-02-2019 | Review Paper

The therapeutic potential of targeting the endothelial-to-mesenchymal transition

Authors: Shirley Man, Gonzalo Sanchez Duffhues, Peter ten Dijke, David Baker

Published in: Angiogenesis | Issue 1/2019

Login to get access

Abstract

Endothelial cells (ECs) have been found to be capable of acquiring a mesenchymal phenotype through a process known as endothelial-to-mesenchymal transition (EndMT). First seen in the developing embryo, EndMT can be triggered postnatally under certain pathological conditions. During this process, ECs dedifferentiate into mesenchymal stem-like cells (MSCs) and subsequently give rise to cell types belonging to the mesoderm lineage. As EndMT contributes to a multitude of diseases, pharmacological modulation of the signaling pathways underlying EndMT may prove to be effective as a therapeutic treatment. Additionally, EndMT in ECs could also be exploited to acquire multipotent MSCs, which can be readily re-differentiated into various distinct cell types. In this review, we will consider current models of EndMT, how manipulation of this process might improve treatment of clinically important pathologies and how it could be harnessed to advance regenerative medicine and tissue engineering.
Literature
27.
go back to reference Piera-Velazquez S, Jimenez S (2012) Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair. 5 (Suppl 1 Proceedings of Fibroproliferative disorders: from biochemical analysis to targeted therapiesPetro E Petrides and David Brenner):S7. https://doi.org/10.1186/1755-1536-5-S1-S7 Piera-Velazquez S, Jimenez S (2012) Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair. 5 (Suppl 1 Proceedings of Fibroproliferative disorders: from biochemical analysis to targeted therapiesPetro E Petrides and David Brenner):S7. https://​doi.​org/​10.​1186/​1755-1536-5-S1-S7
41.
go back to reference Del Galdo F, Lisanti MP, Jimenez SA (2008) Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20(6):713–719CrossRefPubMedPubMedCentral Del Galdo F, Lisanti MP, Jimenez SA (2008) Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20(6):713–719CrossRefPubMedPubMedCentral
45.
go back to reference Cipriani P, Di Benedetto P, Ruscitti P et al (2015) The endothelial–mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by Macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 42(10):1808–1816. https://doi.org/10.3899/jrheum.150088 CrossRefPubMed Cipriani P, Di Benedetto P, Ruscitti P et al (2015) The endothelial–mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by Macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 42(10):1808–1816. https://​doi.​org/​10.​3899/​jrheum.​150088 CrossRefPubMed
57.
59.
go back to reference Wang Z, Han Z, Tao J et al. (2017) Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 21(10): 2359–2369 Wang Z, Han Z, Tao J et al. (2017) Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 21(10): 2359–2369
109.
go back to reference Gao H, Zhang J, Liu T, Shi W (2011) Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and -9: an in vitro study. Mol Vis 17(12):3406–3414.PubMedPubMedCentral Gao H, Zhang J, Liu T, Shi W (2011) Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and -9: an in vitro study. Mol Vis 17(12):3406–3414.PubMedPubMedCentral
115.
go back to reference Qi Q, Mao Y, Tian Y et al (2017) Geniposide inhibited endothelial–mesenchymal transition via the mTOR signaling pathway in a bleomycin-induced scleroderma mouse model. Am J Transl Res 9(3):1025–1036PubMedPubMedCentral Qi Q, Mao Y, Tian Y et al (2017) Geniposide inhibited endothelial–mesenchymal transition via the mTOR signaling pathway in a bleomycin-induced scleroderma mouse model. Am J Transl Res 9(3):1025–1036PubMedPubMedCentral
Metadata
Title
The therapeutic potential of targeting the endothelial-to-mesenchymal transition
Authors
Shirley Man
Gonzalo Sanchez Duffhues
Peter ten Dijke
David Baker
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2019
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-018-9639-0

Other articles of this Issue 1/2019

Angiogenesis 1/2019 Go to the issue