Skip to main content
Log in

Celastrol protects TGF-β1-induced endothelial-mesenchymal transition

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The endothelial-to-mesenchymal transition (EndMT) in endothelial cells contributes to the development of cardiac fibrosis, ultimately leading to cardiac remodeling. In this study, the effects and molecular mechanisms of celastrol (CEL) on transforming growth factor-β1 (TGF-β1)-induced EndMT in human umbilical vein endothelial (HUVEC-12) cells were investigated. The presented data demonstrated that CEL significantly blocked the morphology change of HUVEC-12 cells induced by TGF-β1 without cell cytotoxicity. In accordance with these findings, CEL blocked TGF-β1-induced EndMT as evidenced by the inhibition of the mesenchymal markers, including collagen I, III, α-SMA, fibronectin mRNA expression, and the increase in the mRNA expression of endothelial cell marker CD31. These changes were also confirmed by double immunofluorescence staining of CD31 and vimentin. The in vitro scratch assay showed that CEL inhibited the migration capacity of the transitioned endothelial cells induced by TGF-β1. Further experiments showed that the beneficial effect of CEL on blocking the EndMT in HUVEC-12 cells was associated with the suppression of the TGF-β1/Smads signalling pathway, which was also confirmed by the inhibition of its downstream transcription factor snail1, twist1, twist2, ZEB1 and ZEB2. These results indicate that CEL blocks TGF-β1-induced EndMT through TGF-β1/Smads signalling pathway and suggest that it may be a feasible therapy for cardiac fibrosis diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 2007,116(19):2127–2138

    Article  CAS  PubMed  Google Scholar 

  2. van Amerongen MJ, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol, 2008,214(3):377–386

    Article  PubMed  Google Scholar 

  3. Kolditz DP, Wijffels MC, Blom NA, et al. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation, 2008,117(12):1508–1517

    Article  PubMed  Google Scholar 

  4. Diaz-Flores L, Gutierrez R, Madrid JF, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol, 2009,24(7):909–969

    CAS  Google Scholar 

  5. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med, 2007,13(8):952–961

    Article  CAS  PubMed  Google Scholar 

  6. Zeisberg M, Kalluri R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci, 2008, 13: 6991–6998

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Qu X, Yao J, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes, 2010,59(10):2612–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hashimoto N, Phan SH, Imaizumi K, et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol, 2010,43(2):161–172

    Article  CAS  PubMed  Google Scholar 

  9. Widyantoro B Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation, 2010,121(22):2407–2418

    Article  CAS  PubMed  Google Scholar 

  10. Murdoch CE, Chaubey S, Zeng L, et al. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol, 2014,63(24):2734–2741

    Article  CAS  PubMed  Google Scholar 

  11. Kovacic JC, Mercader N, Torres M, et al. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation, 2012,125(14):1795–1808

    Article  PubMed  PubMed Central  Google Scholar 

  12. Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med, 2016,5(4):E45

    Article  PubMed  Google Scholar 

  13. Calixto JB, Campos MM, Otuki MF, et al. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med, 2004,70(2):93–103

    CAS  PubMed  Google Scholar 

  14. Li PP, He W, Yuan PF, et al. Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma Bel-7402 cells. Am J Chin Med, 2015,43(1):137–148

    Article  PubMed  Google Scholar 

  15. Kannaiyan R, Shanmugam MK, Sethi G. Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett, 2011,303(1):9–20

    Article  CAS  PubMed  Google Scholar 

  16. Salminen A, Lehtonen M, Paimela T, et al. Celastrol: Molecular targets of Thunder God Vine. Biochem Biophys Res Commun, 2010,394(3):439–442

    Article  CAS  PubMed  Google Scholar 

  17. Yu X, Tao W, Jiang F, et al. Celastrol attenuates hypertension-induced inflammation and oxidative stress in vascular smooth muscle cells via induction of heme oxygenase-1. Am J Hypertens, 2010,23(8):895–903

    Article  CAS  PubMed  Google Scholar 

  18. Wang YL, Lam KK, Cheng PY, et al. Celastrol prevents circulatory failure via induction of heme oxygenase-1 and heat shock protein 70 in endotoxemic rats. J Ethnopharmacol, 2015, 162: 168–175

    Article  CAS  PubMed  Google Scholar 

  19. Porter Ke Turner Na. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther, 2009,123(2):255–278

    Article  PubMed  Google Scholar 

  20. Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens. Circ Res, 2016,118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hua JY, Zhang ZC, Jiang XH, et al. Relationship between endothelial-to-mesenchymal transition and cardiac fibrosis in acute viral myocarditis. Zhejiang Da Xue Xue Bao Yi Xue Ban (Chinese), 2012,41(3):298–304

    CAS  Google Scholar 

  22. Zhou H, Guo H, Zong J, et al. ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury. Int J Cardiol, 2014,174(3):838–839

    Article  PubMed  Google Scholar 

  23. Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J, 2004,18(3):469–479

    Article  CAS  PubMed  Google Scholar 

  24. Chan EC, Peshavariya HM, Liu GS, et al. Nox4 modulates collagen production stimulated by transforming growth factor beta1 in vivo and in vitro. Biochem Biophys Res Commun, 2013,430(3):918–925

    Article  CAS  PubMed  Google Scholar 

  25. Chen LX, Yang K, Sun M, et al. Fluorofenidone inhibits transforming growth factor-beta1-induced cardiac myofibroblast differentiation. Pharmazie, 2012,67(5):452–456

    CAS  PubMed  Google Scholar 

  26. Deng YL, Xiong XZ, Cheng NS. Organ fibrosis inhibited by blocking transforming growth factor-beta signaling via peroxisome proliferator-activated receptor gamma agonists. Hepatobiliary Pancreat Dis Int, 2012,11(5):467–478

    Article  CAS  PubMed  Google Scholar 

  27. Zhan CY, Tang JH, Zhou DX, et al. Effects of tanshinone IIA on the transforming growth factor beta1/Smad signaling pathway in rat cardiac fibroblasts. Indian J Pharmacol, 2014,46(6):633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-dong Gan  (干学东).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Zhao, F. & Gan, Xd. Celastrol protects TGF-β1-induced endothelial-mesenchymal transition. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 185–190 (2017). https://doi.org/10.1007/s11596-017-1713-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1713-0

Key words

Navigation