Skip to main content
Top
Published in: BMC Nephrology 1/2016

Open Access 01-12-2016 | Research article

Netrin-1 attenuates the progression of renal dysfunction by blocking endothelial-to-mesenchymal transition in the 5/6 nephrectomy rat model

Authors: Jiuxu Bai, Junfeng Hao, Xiaoling Zhang, Hanmin Cui, Jingming Han, Ning Cao

Published in: BMC Nephrology | Issue 1/2016

Login to get access

Abstract

Background

Endothelial-to-mesenchymal transition (EndoMT) is a crucial event during kidney interstitial fibrosis and it is believed to be inhibited by netrin-1. Our aim was to determine the influence of netrin-1 on renal EndoMT in chronic kidney disease by studying its effect in 5/6 nephrectomized (Nx) rats.

Methods

Male Sprague–Dawley rats were divided into three groups (10 rats/group): sham-operated rats treated with control adenovirus; 5/6 Nx rats treated with control adenovirus; and 5/6 Nx rats treated with recombinant adenovirus expressing the netrin-1 gene (Ad-netrin-1). Rats were sacrificed 13 weeks after surgery. Blood urea nitrogen (BUN) and serum creatinine (Scr) levels were measured regularly after surgery. After the rats were sacrificed, pathological changes in renal tissues were analyzed histologically. Immunofluorescence was performed to evaluate the co-expression of CD31 and α-SMA. CD31, α-SMA and Snail mRNA were detected by RT-PCR. Protein expression was detected by western blot.

Results

Renal function and histopathological damage were significantly improved in Ad-netrin-1-treated 5/6 Nx rats. In the sham and control-treated 5/6 Nx rats, the percentage of CD31+/α-SMA+ cells increased, which indicated EndoMT. However, the percentage of CD31+/α-SMA+ cells were reduced in the netrin-1-treated 5/6 Nx rats, which indicates netrin-1-induced blocking of EndoMT.

Conclusion

From the results, it seems that netrin-1 attenuates the progression of renal dysfunction by inhibiting EndoMT in 5/6 Nx rats. Netrin-1 can therefore be considered as a potential therapeutic agent for the treatment of renal fibrosis.
Literature
1.
go back to reference Neilson EG. Mechanisms of disease: fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol. 2006;2(2):101–8.CrossRefPubMed Neilson EG. Mechanisms of disease: fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol. 2006;2(2):101–8.CrossRefPubMed
2.
go back to reference Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol. 2006;19(4):407–12.PubMed Rastaldi MP. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol. 2006;19(4):407–12.PubMed
3.
go back to reference Zeisberg M, Kalluri R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci. 2008;13:6991–8.CrossRefPubMed Zeisberg M, Kalluri R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci. 2008;13:6991–8.CrossRefPubMed
4.
go back to reference Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L1–8.CrossRefPubMed Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L1–8.CrossRefPubMed
5.
go back to reference Nguyen QD, Rodrigues S, Rodrigue CM, Rivat C, Grijelmo C, Bruyneel E, Emami S, Attoub S, Gespach C. Inhibition of vascular endothelial growth factor (VEGF)-165 and semaphorin 3A-mediated cellular invasion and tumor growth by the VEGF signaling inhibitor ZD4190 in human colon cancer cells and xenografts. Mol Cancer Ther. 2006;5(8):2070–7. Nguyen QD, Rodrigues S, Rodrigue CM, Rivat C, Grijelmo C, Bruyneel E, Emami S, Attoub S, Gespach C. Inhibition of vascular endothelial growth factor (VEGF)-165 and semaphorin 3A-mediated cellular invasion and tumor growth by the VEGF signaling inhibitor ZD4190 in human colon cancer cells and xenografts. Mol Cancer Ther. 2006;5(8):2070–7.
6.
go back to reference Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, Mcmullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, Mcmullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61.
7.
go back to reference Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18.
8.
go back to reference Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282–7.CrossRefPubMedPubMedCentral Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282–7.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Navankasattusas S, Whitehead KJ, Suli A, Sorensen LK, Lim AH, Zhao J, Park KW, Wythe JD, Thomas KR, Chien CB et al. The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development. 2008;135(4):659–67. Navankasattusas S, Whitehead KJ, Suli A, Sorensen LK, Lim AH, Zhao J, Park KW, Wythe JD, Thomas KR, Chien CB et al. The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development. 2008;135(4):659–67.
11.
12.
go back to reference Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, Bachelot T, Bernet A, Mehlen P. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA. 2008;105(12):4850–5. Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, Bachelot T, Bernet A, Mehlen P. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA. 2008;105(12):4850–5.
13.
go back to reference Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, Kinane TB. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA. 2005;102(41):14729–34. Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, Kinane TB. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA. 2005;102(41):14729–34.
14.
go back to reference Wang W, Reeves WB, Ramesh G. Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am J Physiol Ren Physiol. 2008;294(4):F739–47.CrossRef Wang W, Reeves WB, Ramesh G. Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am J Physiol Ren Physiol. 2008;294(4):F739–47.CrossRef
15.
go back to reference Grenz A, Dalton JH, Bauerle JD, Badulak A, Ridyard D, Gandjeva A, Aherne CM, Brodsky KS, Kim JH, Tuder RM et al. Partial netrin-1 deficiency aggravates acute kidney injury. PLoS One. 2011;6(5), e14812. Grenz A, Dalton JH, Bauerle JD, Badulak A, Ridyard D, Gandjeva A, Aherne CM, Brodsky KS, Kim JH, Tuder RM et al. Partial netrin-1 deficiency aggravates acute kidney injury. PLoS One. 2011;6(5), e14812.
16.
go back to reference Lu H, Lei X, Klaassen C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int. 2006;70(11):1920–8.CrossRefPubMed Lu H, Lei X, Klaassen C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int. 2006;70(11):1920–8.CrossRefPubMed
17.
go back to reference Cao N, Feng J, Bai J, Sun L, Li S, Ma J, Wang L. Netrin-1 attenuates the progression of renal dysfunction by inhibiting peritubular capillary loss and hypoxia in 5/6 nephrectomized rats. Kidney & Blood Pressure Research. 2012;36(1):209–19.CrossRef Cao N, Feng J, Bai J, Sun L, Li S, Ma J, Wang L. Netrin-1 attenuates the progression of renal dysfunction by inhibiting peritubular capillary loss and hypoxia in 5/6 nephrectomized rats. Kidney & Blood Pressure Research. 2012;36(1):209–19.CrossRef
18.
go back to reference Ghosh SS, Krieg RJ, Sica DA, Wang R, Fakhry I, Gehr T. Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol. 2009;24(2):367–77.CrossRefPubMed Ghosh SS, Krieg RJ, Sica DA, Wang R, Fakhry I, Gehr T. Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol. 2009;24(2):367–77.CrossRefPubMed
19.
go back to reference Wolf WC, Yoshida H, Agata J, Chao L, Chao J. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int. 2000;58(2):730–9.CrossRefPubMed Wolf WC, Yoshida H, Agata J, Chao L, Chao J. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int. 2000;58(2):730–9.CrossRefPubMed
20.
go back to reference Sun D, Feng J, Dai C, Sun L, Jin T, Ma J, Wang L. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy. Am J Nephrol. 2006;26(4):363–71. Sun D, Feng J, Dai C, Sun L, Jin T, Ma J, Wang L. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy. Am J Nephrol. 2006;26(4):363–71.
21.
go back to reference Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165(1):35–52. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165(1):35–52.
22.
go back to reference Zeisberg EM, Scott P, Liang X, Michael Z, Raghu K. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123–8.CrossRefPubMed Zeisberg EM, Scott P, Liang X, Michael Z, Raghu K. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123–8.CrossRefPubMed
23.
go back to reference Zheng-Jun Z, Zhi D, Shao-Lai Z, Zhi-Qiang H, Qing C, Yi-Ming Z, Ying-Hong S, Qiang G, Wei-Zhong W, Shuang-Jian Q. HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res. 2014;74(10):2750–62. Zheng-Jun Z, Zhi D, Shao-Lai Z, Zhi-Qiang H, Qing C, Yi-Ming Z, Ying-Hong S, Qiang G, Wei-Zhong W, Shuang-Jian Q. HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res. 2014;74(10):2750–62.
24.
go back to reference Jinhua L, Xinli Q, Jun Y, Georgina C, Ricardo SD, Yasuhiko Y, Hiroshi Y, Bertram JF. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59(10):2612–24. Jinhua L, Xinli Q, Jun Y, Georgina C, Ricardo SD, Yasuhiko Y, Hiroshi Y, Bertram JF. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59(10):2612–24.
25.
go back to reference Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498(7455):492–6. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498(7455):492–6.
26.
go back to reference Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.CrossRefPubMedPubMedCentral Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.CrossRefPubMedPubMedCentral
27.
go back to reference Damian M, Scott P, Raghu K. Transforming growth factor-β2 promotes snail-mediated endothelial-mesenchymal transition through convergence of smad-dependent and smad-independent signalling. Biochem J. 2011;437(3):515–20.CrossRef Damian M, Scott P, Raghu K. Transforming growth factor-β2 promotes snail-mediated endothelial-mesenchymal transition through convergence of smad-dependent and smad-independent signalling. Biochem J. 2011;437(3):515–20.CrossRef
28.
go back to reference Ranganathan PV, Jayakumar C, Ramesh G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Ren Physiol. 2013;304(7):F948–57.CrossRef Ranganathan PV, Jayakumar C, Ramesh G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Ren Physiol. 2013;304(7):F948–57.CrossRef
29.
go back to reference Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V, Ramesh G. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. Am J Pathol. 2012;181(6):1991–2002.CrossRefPubMedPubMedCentral Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V, Ramesh G. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. Am J Pathol. 2012;181(6):1991–2002.CrossRefPubMedPubMedCentral
30.
go back to reference Carney EF. Diabetic nephropathy: netrin-1 expression in proximal tubular epithelial cells protects against kidney inflammation and injury. Nat Rev Nephrol. 2012;8(12):681.CrossRefPubMed Carney EF. Diabetic nephropathy: netrin-1 expression in proximal tubular epithelial cells protects against kidney inflammation and injury. Nat Rev Nephrol. 2012;8(12):681.CrossRefPubMed
31.
go back to reference Ranganathan P, Jayakumar C, Ramesh G. Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am J Physiol Ren Physiol. 2013;304(8):F1054–65.CrossRef Ranganathan P, Jayakumar C, Ramesh G. Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am J Physiol Ren Physiol. 2013;304(8):F1054–65.CrossRef
Metadata
Title
Netrin-1 attenuates the progression of renal dysfunction by blocking endothelial-to-mesenchymal transition in the 5/6 nephrectomy rat model
Authors
Jiuxu Bai
Junfeng Hao
Xiaoling Zhang
Hanmin Cui
Jingming Han
Ning Cao
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2016
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-016-0260-4

Other articles of this Issue 1/2016

BMC Nephrology 1/2016 Go to the issue