Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019

01-12-2019 | Research Article

Automatic correction of background phase offset in 4D-flow of great vessels and of the heart in MRI using a third-order surface model

Authors: Damian Craiem, Ariel F. Pascaner, Mariano E. Casciaro, Umit Gencer, Joaquin Alcibar, Gilles Soulat, Elie Mousseaux

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2019

Login to get access

Abstract

Objective

To evaluate an automatic correction method for velocity offset errors in cardiac 4D-flow acquisitions.

Materials and methods

Velocity offset correction was done in a plane-by-plane scheme and compared to a volumetric approach. Stationary regions were automatically detected. In vitro experiments were conducted in a phantom using two orientations and two encoding velocities (Venc). First- to third-order models were fit to the time-averaged images of the three velocity components. In vivo experiments included realistic ROIs in a volunteer superimposed to a phantom. In 15 volunteers, blood flow volume of the proximal and distal descending aorta, of the pulmonary artery (Qp) and the ascending aorta (Qs) was compared.

Results

Offset errors were reduced after correction with a third-order model, yielding residual phantom velocities below 0.6 cm/s and 0.4% of Venc. The plane-by-plane correction method was more effective than the volumetric approach. Mean velocities through superimposed ROIs of a volunteer vs phantom were highly correlated (r2 = 0.96). The significant difference between proximal and distal descending aortic flows was decreased after correction from 8.1 to − 1.4 ml (p < 0.001) and Qp/Qs reduced from 1.08 ± 0.09 to 1.01 ± 0.05.

Discussion

An automatic third-order model corrected velocity offset errors in 4D-flow acquisitions, achieving acceptable levels for clinical applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC (1999) Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging—preliminary experience. Radiology 212(3):896–902CrossRef Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC (1999) Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging—preliminary experience. Radiology 212(3):896–902CrossRef
2.
go back to reference Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E (2012) Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 5(5):637–643CrossRef Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E (2012) Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 5(5):637–643CrossRef
3.
go back to reference Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72CrossRef Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72CrossRef
4.
go back to reference Bollache E, Redheuil A, Clement-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, Lefort M, De Cesare A, Herment A, Diebold B, Mousseaux E, Kachenoura N (2010) Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson 12:63CrossRef Bollache E, Redheuil A, Clement-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, Lefort M, De Cesare A, Herment A, Diebold B, Mousseaux E, Kachenoura N (2010) Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson 12:63CrossRef
5.
go back to reference Defrance C, Bollache E, Kachenoura N, Perdrix L, Hrynchyshyn N, Bruguiere E, Redheuil A, Diebold B, Mousseaux E (2012) Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging 5(5):604–612CrossRef Defrance C, Bollache E, Kachenoura N, Perdrix L, Hrynchyshyn N, Bruguiere E, Redheuil A, Diebold B, Mousseaux E (2012) Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging 5(5):604–612CrossRef
6.
go back to reference Soulat G, Kachenoura N, Bollache E, Perdrix L, Diebold B, Zhygalina V, Latremouille C, Laurent S, Fabiani JN, Mousseaux E (2017) New estimate of valvuloarterial impedance in aortic valve stenosis: a cardiac magnetic resonance study. J Magn Reson Imaging 45(3):795–803CrossRef Soulat G, Kachenoura N, Bollache E, Perdrix L, Diebold B, Zhygalina V, Latremouille C, Laurent S, Fabiani JN, Mousseaux E (2017) New estimate of valvuloarterial impedance in aortic valve stenosis: a cardiac magnetic resonance study. J Magn Reson Imaging 45(3):795–803CrossRef
7.
go back to reference Chelu RG, van den Bosch AE, van Kranenburg M, Hsiao A, van den Hoven AT, Ouhlous M, Budde RP, Beniest KM, Swart LE, Coenen A, Lubbers MM, Wielopolski PA, Vasanawala SS, Roos-Hesselink JW, Nieman K (2016) Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography. Int J Cardiovasc Imaging 32(2):301–307CrossRef Chelu RG, van den Bosch AE, van Kranenburg M, Hsiao A, van den Hoven AT, Ouhlous M, Budde RP, Beniest KM, Swart LE, Coenen A, Lubbers MM, Wielopolski PA, Vasanawala SS, Roos-Hesselink JW, Nieman K (2016) Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography. Int J Cardiovasc Imaging 32(2):301–307CrossRef
8.
go back to reference Feneis JF, Kyubwa E, Atianzar K, Cheng JY, Alley MT, Vasanawala SS, Demaria AN, Hsiao A (2018) 4D flow MRI quantification of mitral and tricuspid regurgitation: reproducibility and consistency relative to conventional MRI. J Magn Reson Imaging 48(4):1147–1158CrossRef Feneis JF, Kyubwa E, Atianzar K, Cheng JY, Alley MT, Vasanawala SS, Demaria AN, Hsiao A (2018) 4D flow MRI quantification of mitral and tricuspid regurgitation: reproducibility and consistency relative to conventional MRI. J Magn Reson Imaging 48(4):1147–1158CrossRef
9.
go back to reference Hsiao A, Lustig M, Alley MT, Murphy M, Chan FP, Herfkens RJ, Vasanawala SS (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. Am J Roentgenol 198(3):W250–W259CrossRef Hsiao A, Lustig M, Alley MT, Murphy M, Chan FP, Herfkens RJ, Vasanawala SS (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. Am J Roentgenol 198(3):W250–W259CrossRef
10.
go back to reference Bollache E, Fedak PWM, van Ooij P, Rahman O, Malaisrie SC, McCarthy PM, Carr JC, Powell A, Collins JD, Markl M, Barker AJ (2017) Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. J Thorac Cardiovasc Surg 155(6):2277–2286CrossRef Bollache E, Fedak PWM, van Ooij P, Rahman O, Malaisrie SC, McCarthy PM, Carr JC, Powell A, Collins JD, Markl M, Barker AJ (2017) Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. J Thorac Cardiovasc Surg 155(6):2277–2286CrossRef
11.
go back to reference Wentland AL, Wieben O, Francois CJ, Boncyk C, Munoz Del Rio A, Johnson KM, Grist TM, Frydrychowicz A (2013) Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J Magn Reson Imaging 37(4):853–859CrossRef Wentland AL, Wieben O, Francois CJ, Boncyk C, Munoz Del Rio A, Johnson KM, Grist TM, Frydrychowicz A (2013) Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J Magn Reson Imaging 37(4):853–859CrossRef
12.
go back to reference Binter C, Gotschy A, Sundermann SH, Frank M, Tanner FC, Luscher TF, Manka R, Kozerke S (2017) Turbulent kinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity. Circ Cardiovasc Imaging 10:6CrossRef Binter C, Gotschy A, Sundermann SH, Frank M, Tanner FC, Luscher TF, Manka R, Kozerke S (2017) Turbulent kinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity. Circ Cardiovasc Imaging 10:6CrossRef
13.
go back to reference van Ooij P, Allen BD, Contaldi C, Garcia J, Collins J, Carr J, Choudhury L, Bonow RO, Barker AJ, Markl M (2016) 4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging 43(1):107–114CrossRef van Ooij P, Allen BD, Contaldi C, Garcia J, Collins J, Carr J, Choudhury L, Bonow RO, Barker AJ, Markl M (2016) 4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging 43(1):107–114CrossRef
14.
go back to reference Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC, Markl M, Barker AJ, Collins JD (2016) Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact Cardiovasc Thorac Surg 23(3):416–423CrossRef Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC, Markl M, Barker AJ, Collins JD (2016) Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact Cardiovasc Thorac Surg 23(3):416–423CrossRef
15.
go back to reference Busch J, Giese D, Kozerke S (2017) Image-based background phase error correction in 4D flow MRI revisited. J Magn Reson Imaging 46(5):1516–1525CrossRef Busch J, Giese D, Kozerke S (2017) Image-based background phase error correction in 4D flow MRI revisited. J Magn Reson Imaging 46(5):1516–1525CrossRef
16.
go back to reference Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22(1):73–79CrossRef Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22(1):73–79CrossRef
17.
go back to reference Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39(2):300–308CrossRef Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39(2):300–308CrossRef
18.
go back to reference Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, Moseley ME, Glover GH, Pelc NJ (2003) Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 50(4):791–801CrossRef Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, Moseley ME, Glover GH, Pelc NJ (2003) Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 50(4):791–801CrossRef
19.
go back to reference Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum A, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5CrossRef Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum A, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5CrossRef
20.
go back to reference Busch J, Vannesjo SJ, Barmet C, Pruessmann KP, Kozerke S (2014) Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:97CrossRef Busch J, Vannesjo SJ, Barmet C, Pruessmann KP, Kozerke S (2014) Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:97CrossRef
21.
go back to reference Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3(3):521–530CrossRef Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3(3):521–530CrossRef
22.
go back to reference Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes MJB, Wigström L (2008) Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast MRI. In: ISMRM Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes MJB, Wigström L (2008) Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast MRI. In: ISMRM
23.
go back to reference Lorenz R, Bock J, Snyder J, Korvink JG, Jung BA, Markl M (2014) Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. Magn Reson Med 72(1):33–40CrossRef Lorenz R, Bock J, Snyder J, Korvink JG, Jung BA, Markl M (2014) Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. Magn Reson Med 72(1):33–40CrossRef
24.
go back to reference Chernobelsky A, Shubayev O, Comeau CR, Wolff SD (2007) Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson 9(4):681–685CrossRef Chernobelsky A, Shubayev O, Comeau CR, Wolff SD (2007) Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson 9(4):681–685CrossRef
25.
go back to reference Lee AT, Pike GB, Pelc NJ (1995) Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 33(1):122–126CrossRef Lee AT, Pike GB, Pelc NJ (1995) Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 33(1):122–126CrossRef
26.
go back to reference MacDonald ME, Forkert ND, Pike GB, Frayne R (2016) Phase error correction in time-averaged 3D phase contrast magnetic resonance imaging of the cerebral vasculature. PLoS One 11(2):e0149930CrossRef MacDonald ME, Forkert ND, Pike GB, Frayne R (2016) Phase error correction in time-averaged 3D phase contrast magnetic resonance imaging of the cerebral vasculature. PLoS One 11(2):e0149930CrossRef
27.
go back to reference Rigsby CK, Hilpipre N, McNeal GR, Zhang G, Boylan EE, Popescu AR, Choi G, Greiser A, Deng J (2014) Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults. Pediatr Radiol 44(3):265–273CrossRef Rigsby CK, Hilpipre N, McNeal GR, Zhang G, Boylan EE, Popescu AR, Choi G, Greiser A, Deng J (2014) Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults. Pediatr Radiol 44(3):265–273CrossRef
Metadata
Title
Automatic correction of background phase offset in 4D-flow of great vessels and of the heart in MRI using a third-order surface model
Authors
Damian Craiem
Ariel F. Pascaner
Mariano E. Casciaro
Umit Gencer
Joaquin Alcibar
Gilles Soulat
Elie Mousseaux
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00765-z

Other articles of this Issue 6/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019 Go to the issue