Skip to main content
Top
Published in: European Journal of Clinical Microbiology & Infectious Diseases 8/2020

01-08-2020 | Tuberculosis | Review

Tuberculosis vaccine development: from classic to clinical candidates

Authors: Junli Li, Aihua Zhao, Jun Tang, Guozhi Wang, Yanan Shi, Lingjun Zhan, Chuan Qin

Published in: European Journal of Clinical Microbiology & Infectious Diseases | Issue 8/2020

Login to get access

Abstract

Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.
Literature
1.
go back to reference Correa-Macedo W et al (2019) The interplay of human and Mycobacterium tuberculosis Genomic Variability. Front Genet 18(10):865 Correa-Macedo W et al (2019) The interplay of human and Mycobacterium tuberculosis Genomic Variability. Front Genet 18(10):865
2.
go back to reference Mustafa AS (2005) Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Med Princ Pract 14(Suppl 1):27–34PubMed Mustafa AS (2005) Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Med Princ Pract 14(Suppl 1):27–34PubMed
3.
go back to reference Hershkovitz I et al (2015) Tuberculosis origin: the Neolithic scenario. Tuberculosis (Edinb) 95(Suppl 1):S122–S126 Hershkovitz I et al (2015) Tuberculosis origin: the Neolithic scenario. Tuberculosis (Edinb) 95(Suppl 1):S122–S126
4.
go back to reference World Health Organization (2019) Global tuberculosis report 2019. WHO, Geneva World Health Organization (2019) Global tuberculosis report 2019. WHO, Geneva
5.
go back to reference World Health Organization (1994) TB: a global emergency, WHO report on the TB epidemic (WHO/TB/94.177). WHO, Geneva World Health Organization (1994) TB: a global emergency, WHO report on the TB epidemic (WHO/TB/94.177). WHO, Geneva
6.
go back to reference Styblo K, Meijer J, Sutherland I (1969) The transmission of tubercle bacilli: its trend in a human population. Bull World Health Organ 41(1):137–178PubMedPubMedCentral Styblo K, Meijer J, Sutherland I (1969) The transmission of tubercle bacilli: its trend in a human population. Bull World Health Organ 41(1):137–178PubMedPubMedCentral
7.
go back to reference D'Arcy Hart P (2001) Historical declines in tuberculosis: nature, nurture and the biosocial model. Int J Tuberc Lung Dis 5(9):879PubMed D'Arcy Hart P (2001) Historical declines in tuberculosis: nature, nurture and the biosocial model. Int J Tuberc Lung Dis 5(9):879PubMed
8.
10.
go back to reference DeWeerdt S (2013) Vaccines: an age-old problem. Nature 502(7470):S8–S9PubMed DeWeerdt S (2013) Vaccines: an age-old problem. Nature 502(7470):S8–S9PubMed
12.
go back to reference Brosch R et al (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104(13):5596–5601PubMedPubMedCentral Brosch R et al (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104(13):5596–5601PubMedPubMedCentral
13.
go back to reference Favorov M et al (2012) Comparative tuberculosis (TB) prevention effectiveness in children of Bacillus Calmette-Guerin (BCG) vaccines from different sources Kazakhstan. PLoS One 7(3):e32567PubMedPubMedCentral Favorov M et al (2012) Comparative tuberculosis (TB) prevention effectiveness in children of Bacillus Calmette-Guerin (BCG) vaccines from different sources Kazakhstan. PLoS One 7(3):e32567PubMedPubMedCentral
14.
go back to reference Mostowy S et al (2003) The in vitro evolution of BCG vaccines. Vaccine 21(27–30):4270–4274PubMed Mostowy S et al (2003) The in vitro evolution of BCG vaccines. Vaccine 21(27–30):4270–4274PubMed
15.
go back to reference Trunz BB, Fine P, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367(9517):1173–1180 Trunz BB, Fine P, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367(9517):1173–1180
16.
go back to reference Blok BA et al (2015) Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 98(3):347–356PubMed Blok BA et al (2015) Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 98(3):347–356PubMed
17.
go back to reference Roth A et al (2006) Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines 5(2):277–293PubMed Roth A et al (2006) Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines 5(2):277–293PubMed
19.
go back to reference Rodrigues LC, Mangtani P, Abubakar I (2011) How does the level of BCG vaccine protection against tuberculosis fall over time? BMJ 343:d5974PubMed Rodrigues LC, Mangtani P, Abubakar I (2011) How does the level of BCG vaccine protection against tuberculosis fall over time? BMJ 343:d5974PubMed
20.
go back to reference Mangtani P et al (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58(4):470–480PubMed Mangtani P et al (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58(4):470–480PubMed
21.
go back to reference Abubakar I et al (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess 17(37):1–372 v-vi PubMedPubMedCentral Abubakar I et al (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess 17(37):1–372 v-vi PubMedPubMedCentral
22.
go back to reference Andersen P, Doherty TM (2005) The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662PubMed Andersen P, Doherty TM (2005) The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662PubMed
23.
go back to reference Colditz GA et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271(9):698–702PubMed Colditz GA et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271(9):698–702PubMed
24.
go back to reference Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346(8986):1339–1345PubMed Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346(8986):1339–1345PubMed
25.
go back to reference Colditz GA et al (1995) The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 96(1 Pt 1):29–35PubMed Colditz GA et al (1995) The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 96(1 Pt 1):29–35PubMed
26.
go back to reference Gallant CJ et al (2010) Impact of age and sex on mycobacterial immunity in an area of high tuberculosis incidence. Int J Tuberc Lung Dis 14(8):952–959PubMed Gallant CJ et al (2010) Impact of age and sex on mycobacterial immunity in an area of high tuberculosis incidence. Int J Tuberc Lung Dis 14(8):952–959PubMed
27.
go back to reference Trial of BCG vaccines in south India for tuberculosis prevention (1979) first report--Tuberculosis Prevention Trial. Bull World Health Organ 57(5):819–827 Trial of BCG vaccines in south India for tuberculosis prevention (1979) first report--Tuberculosis Prevention Trial. Bull World Health Organ 57(5):819–827
28.
go back to reference Bulletin of the World Health Organization (1979) Trial of BCG vaccines in south India for tuberculosis prevention: first report. WHO, Geneva Bulletin of the World Health Organization (1979) Trial of BCG vaccines in south India for tuberculosis prevention: first report. WHO, Geneva
29.
go back to reference Harris DP et al (2005) Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781–6790PubMed Harris DP et al (2005) Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781–6790PubMed
30.
go back to reference Wagner M et al (2004) IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol 172(2):954–963PubMed Wagner M et al (2004) IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol 172(2):954–963PubMed
31.
go back to reference Wang J et al (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 173(10):6357–6365PubMed Wang J et al (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 173(10):6357–6365PubMed
32.
go back to reference Vordermeier HM et al (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77(8):3364–3373PubMedPubMedCentral Vordermeier HM et al (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77(8):3364–3373PubMedPubMedCentral
33.
go back to reference Dean G et al (2014) Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine 32(11):1304–1310PubMed Dean G et al (2014) Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine 32(11):1304–1310PubMed
34.
go back to reference Metcalfe HJ et al (2018) Ag85A-specific CD4+ T cell lines derived after boosting BCG-vaccinated cattle with Ad5-85A possess both mycobacterial growth inhibition and anti-inflammatory properties. Vaccine 36(20):2850–2854PubMedPubMedCentral Metcalfe HJ et al (2018) Ag85A-specific CD4+ T cell lines derived after boosting BCG-vaccinated cattle with Ad5-85A possess both mycobacterial growth inhibition and anti-inflammatory properties. Vaccine 36(20):2850–2854PubMedPubMedCentral
35.
go back to reference Santosuosso M et al (2006) Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 74(8):4634–4643PubMedPubMedCentral Santosuosso M et al (2006) Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 74(8):4634–4643PubMedPubMedCentral
36.
go back to reference Smaill F, Xing Z (2014) Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 13(8):927–930PubMed Smaill F, Xing Z (2014) Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 13(8):927–930PubMed
37.
go back to reference Smaill F et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5(205):205ra134PubMed Smaill F et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5(205):205ra134PubMed
38.
go back to reference Jeyanathan M et al (2016) Induction of an immune-protective T-cell repertoire with diverse genetic coverage by a novel viral-vectored tuberculosis vaccine in humans. J Infect Dis 214(12):1996–2005PubMedPubMedCentral Jeyanathan M et al (2016) Induction of an immune-protective T-cell repertoire with diverse genetic coverage by a novel viral-vectored tuberculosis vaccine in humans. J Infect Dis 214(12):1996–2005PubMedPubMedCentral
39.
go back to reference Stylianou E et al (2015) Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 33(48):6800–6808PubMedPubMedCentral Stylianou E et al (2015) Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 33(48):6800–6808PubMedPubMedCentral
40.
go back to reference Hawkridge T et al (2008) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis 198(4):544–552PubMedPubMedCentral Hawkridge T et al (2008) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis 198(4):544–552PubMedPubMedCentral
41.
go back to reference Dockrell HM (2016) Towards new TB vaccines: what are the challenges? Pathog Dis 74(4):ftw016PubMed Dockrell HM (2016) Towards new TB vaccines: what are the challenges? Pathog Dis 74(4):ftw016PubMed
42.
go back to reference Lu JB et al (2016) Analysis of Koch phenomenon of Mycobacterium tuberculosis-infected guinea pigs vaccinated with recombinant tuberculosis vaccine AEC/BC02. Zhonghua Jie He He Hu Xi Za Zhi 39(7):524–528PubMed Lu JB et al (2016) Analysis of Koch phenomenon of Mycobacterium tuberculosis-infected guinea pigs vaccinated with recombinant tuberculosis vaccine AEC/BC02. Zhonghua Jie He He Hu Xi Za Zhi 39(7):524–528PubMed
43.
go back to reference Perez-Martinez AP et al (2017) Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa. Infect Genet Evol 55:244–250PubMed Perez-Martinez AP et al (2017) Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa. Infect Genet Evol 55:244–250PubMed
44.
go back to reference Lin PL et al (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122(1):303–314PubMed Lin PL et al (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122(1):303–314PubMed
45.
go back to reference Suliman S et al (2019) Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199(2):220–231PubMed Suliman S et al (2019) Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199(2):220–231PubMed
46.
go back to reference Luabeya AK et al (2015) First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 33(33):4130–4140PubMed Luabeya AK et al (2015) First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 33(33):4130–4140PubMed
47.
go back to reference Orr MT et al (2014) A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS One 9(1):e83884PubMedPubMedCentral Orr MT et al (2014) A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS One 9(1):e83884PubMedPubMedCentral
48.
go back to reference Duthie MS et al (2014) Protection against Mycobacterium leprae infection by the ID83/GLA-SE and ID93/GLA-SE vaccines developed for tuberculosis. Infect Immun 82(9):3979–3985PubMedPubMedCentral Duthie MS et al (2014) Protection against Mycobacterium leprae infection by the ID83/GLA-SE and ID93/GLA-SE vaccines developed for tuberculosis. Infect Immun 82(9):3979–3985PubMedPubMedCentral
49.
go back to reference Bertholet S et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2(53):53ra74PubMedPubMedCentral Bertholet S et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2(53):53ra74PubMedPubMedCentral
50.
go back to reference Baldwin SL et al (2012) The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol 188(5):2189–2197PubMedPubMedCentral Baldwin SL et al (2012) The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol 188(5):2189–2197PubMedPubMedCentral
51.
go back to reference Baldwin SL et al (2016) Protection and long-lived immunity induced by the ID93/GLA-SE vaccine candidate against a clinical Mycobacterium tuberculosis isolate. Clin Vaccine Immunol 23(2):137–147PubMedPubMedCentral Baldwin SL et al (2016) Protection and long-lived immunity induced by the ID93/GLA-SE vaccine candidate against a clinical Mycobacterium tuberculosis isolate. Clin Vaccine Immunol 23(2):137–147PubMedPubMedCentral
52.
go back to reference Cha SB et al (2016) Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine 34(19):2179–2187PubMed Cha SB et al (2016) Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine 34(19):2179–2187PubMed
53.
go back to reference Coler RN et al (2013) Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 207(8):1242–1252PubMed Coler RN et al (2013) Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 207(8):1242–1252PubMed
54.
go back to reference Baldwin SL et al (2014) The ID93 tuberculosis vaccine candidate does not induce sensitivity to purified protein derivative. Clin Vaccine Immunol 21(9):1309–1313PubMedPubMedCentral Baldwin SL et al (2014) The ID93 tuberculosis vaccine candidate does not induce sensitivity to purified protein derivative. Clin Vaccine Immunol 21(9):1309–1313PubMedPubMedCentral
55.
go back to reference Coler RN et al (2018) The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines 3:34PubMedPubMedCentral Coler RN et al (2018) The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines 3:34PubMedPubMedCentral
56.
go back to reference Penn-Nicholson A et al (2018) Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6(4):287–298PubMed Penn-Nicholson A et al (2018) Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6(4):287–298PubMed
57.
go back to reference Homolka S, Ubben T, Niemann S (2016) High sequence variability of the ppE18 gene of clinical Mycobacterium tuberculosis complex strains potentially impacts effectivity of vaccine candidate M72/AS01E. PLoS One 11(3):e0152200PubMedPubMedCentral Homolka S, Ubben T, Niemann S (2016) High sequence variability of the ppE18 gene of clinical Mycobacterium tuberculosis complex strains potentially impacts effectivity of vaccine candidate M72/AS01E. PLoS One 11(3):e0152200PubMedPubMedCentral
58.
go back to reference Montoya J et al (2013) A randomized, controlled dose-finding phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 33(8):1360–1375PubMedPubMedCentral Montoya J et al (2013) A randomized, controlled dose-finding phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 33(8):1360–1375PubMedPubMedCentral
59.
go back to reference Skeiky YA et al (1999) Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 67(8):3998–4007PubMedPubMedCentral Skeiky YA et al (1999) Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 67(8):3998–4007PubMedPubMedCentral
60.
go back to reference Dillon DC et al (1999) Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67(6):2941–2950PubMedPubMedCentral Dillon DC et al (1999) Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67(6):2941–2950PubMedPubMedCentral
61.
go back to reference Al-Attiyah R et al (2004) In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clin Exp Immunol 138(1):139–144PubMedPubMedCentral Al-Attiyah R et al (2004) In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clin Exp Immunol 138(1):139–144PubMedPubMedCentral
63.
go back to reference Nabavinia MS et al (2012) Construction of an expression vector containing Mtb72F of Mycobacterium tuberculosis. Cell J 14(1):61–66PubMedPubMedCentral Nabavinia MS et al (2012) Construction of an expression vector containing Mtb72F of Mycobacterium tuberculosis. Cell J 14(1):61–66PubMedPubMedCentral
64.
go back to reference Skeiky YA et al (2004) Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172(12):7618–7628PubMed Skeiky YA et al (2004) Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172(12):7618–7628PubMed
65.
go back to reference Day CL et al (2013) Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in south African adults. Am J Respir Crit Care Med 188(4):492–502PubMedPubMedCentral Day CL et al (2013) Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in south African adults. Am J Respir Crit Care Med 188(4):492–502PubMedPubMedCentral
66.
go back to reference Gillard P et al (2016) Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: a phase II randomised study. Tuberculosis (Edinb) 100:118–127 Gillard P et al (2016) Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: a phase II randomised study. Tuberculosis (Edinb) 100:118–127
67.
go back to reference Idoko OT et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis (Edinb) 94(6):564–578 Idoko OT et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis (Edinb) 94(6):564–578
68.
go back to reference Kumarasamy N et al (2016) A randomized, controlled safety, and immunogenicity trial of the M72/AS01 candidate tuberculosis vaccine in HIV-positive Indian adults. Medicine (Baltimore) 95(3):e2459 Kumarasamy N et al (2016) A randomized, controlled safety, and immunogenicity trial of the M72/AS01 candidate tuberculosis vaccine in HIV-positive Indian adults. Medicine (Baltimore) 95(3):e2459
69.
go back to reference Leroux-Roels I et al (2013) Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31(17):2196–2206PubMed Leroux-Roels I et al (2013) Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31(17):2196–2206PubMed
70.
go back to reference Penn-Nicholson A et al (2015) Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 33(32):4025–4034PubMedPubMedCentral Penn-Nicholson A et al (2015) Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 33(32):4025–4034PubMedPubMedCentral
71.
go back to reference Thacher EG et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial. AIDS 28(12):1769–1781PubMed Thacher EG et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial. AIDS 28(12):1769–1781PubMed
72.
go back to reference Kumarasamy N et al (2018) Long-term safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in HIV-positive and -negative Indian adults: results from a phase II randomized controlled trial. Medicine (Baltimore) 97(45):S Kumarasamy N et al (2018) Long-term safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in HIV-positive and -negative Indian adults: results from a phase II randomized controlled trial. Medicine (Baltimore) 97(45):S
73.
go back to reference Van Der Meeren O et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634 Van Der Meeren O et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634
74.
go back to reference Cardona PJ (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb) 86(3–4):273–289 Cardona PJ (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb) 86(3–4):273–289
75.
go back to reference Vilaplana C et al (2010) Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine 28(4):1106–1116PubMed Vilaplana C et al (2010) Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine 28(4):1106–1116PubMed
76.
go back to reference Nell AS et al (2014) Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One 9(2):e89612PubMedPubMedCentral Nell AS et al (2014) Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One 9(2):e89612PubMedPubMedCentral
77.
go back to reference von Reyn CF et al (2010) Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS 24(5):675–685 von Reyn CF et al (2010) Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS 24(5):675–685
78.
go back to reference Lahey T et al (2016) Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One 11(12):e0168521PubMedPubMedCentral Lahey T et al (2016) Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One 11(12):e0168521PubMedPubMedCentral
79.
go back to reference von Reyn CF et al (2017) Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901. PLoS One 12(5):e0175215 von Reyn CF et al (2017) Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901. PLoS One 12(5):e0175215
80.
go back to reference Masonou T et al (2019) CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: a randomized, placebo-controlled trial. PLoS One 14(5):e0217091PubMedPubMedCentral Masonou T et al (2019) CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: a randomized, placebo-controlled trial. PLoS One 14(5):e0217091PubMedPubMedCentral
81.
go back to reference Craig SR et al (2018) Altruism, scepticism, and collective decision-making in foreign-born U.S. residents in a tuberculosis vaccine trial. BMC Public Health 18(1):535PubMedPubMedCentral Craig SR et al (2018) Altruism, scepticism, and collective decision-making in foreign-born U.S. residents in a tuberculosis vaccine trial. BMC Public Health 18(1):535PubMedPubMedCentral
82.
go back to reference Sharma P et al (1999) Disabilities in multibacillary leprosy following multidrug therapy with and without immunotherapy with Mycobacterium w antileprosy vaccine. Int J Lepr Other Mycobact Dis 67(3):250–258PubMed Sharma P et al (1999) Disabilities in multibacillary leprosy following multidrug therapy with and without immunotherapy with Mycobacterium w antileprosy vaccine. Int J Lepr Other Mycobact Dis 67(3):250–258PubMed
83.
go back to reference Sharma P et al (2005) Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8-10 years. Lepr Rev 76(2):127–143PubMed Sharma P et al (2005) Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8-10 years. Lepr Rev 76(2):127–143PubMed
84.
go back to reference Sharma P et al (2000) Mycobacterium w vaccine, a useful adjuvant to multidrug therapy in multibacillary leprosy: a report on hospital based immunotherapeutic clinical trials with a follow-up of 1-7 years after treatment. Lepr Rev 71(2):179–192PubMed Sharma P et al (2000) Mycobacterium w vaccine, a useful adjuvant to multidrug therapy in multibacillary leprosy: a report on hospital based immunotherapeutic clinical trials with a follow-up of 1-7 years after treatment. Lepr Rev 71(2):179–192PubMed
85.
go back to reference Guleria I, Mukherjee R, Kaufmann SH (1993) In vivo depletion of CD4 and CD8 T lymphocytes impairs Mycobacterium w vaccine-induced protection against M. tuberculosis in mice. Med Microbiol Immunol 182(3):129–135PubMed Guleria I, Mukherjee R, Kaufmann SH (1993) In vivo depletion of CD4 and CD8 T lymphocytes impairs Mycobacterium w vaccine-induced protection against M. tuberculosis in mice. Med Microbiol Immunol 182(3):129–135PubMed
86.
go back to reference Gupta A et al (2012) Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine 30(43):6198–6209PubMed Gupta A et al (2012) Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine 30(43):6198–6209PubMed
87.
go back to reference Patel N, Deshpande MM, Shah M (2002) Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J Indian Med Assoc 100(3):191–193PubMed Patel N, Deshpande MM, Shah M (2002) Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J Indian Med Assoc 100(3):191–193PubMed
88.
go back to reference Patel N, Trapathi SB (2003) Improved cure rates in pulmonary tuberculosis category II (retreatment) with mycobacterium w. J Indian Med Assoc 101(11):680 682 PubMed Patel N, Trapathi SB (2003) Improved cure rates in pulmonary tuberculosis category II (retreatment) with mycobacterium w. J Indian Med Assoc 101(11):680 682 PubMed
89.
go back to reference Groschel MI et al (2014) Therapeutic vaccines for tuberculosis--a systematic review. Vaccine 32(26):3162–3168PubMed Groschel MI et al (2014) Therapeutic vaccines for tuberculosis--a systematic review. Vaccine 32(26):3162–3168PubMed
90.
go back to reference Gonzalo-Asensio J et al (2017) MTBVAC: attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol 8:1803PubMedPubMedCentral Gonzalo-Asensio J et al (2017) MTBVAC: attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol 8:1803PubMedPubMedCentral
91.
go back to reference Aguilo N et al (2016) MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb) 96:71–74 Aguilo N et al (2016) MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb) 96:71–74
92.
go back to reference Marinova D et al (2017) MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 16(6):565–576PubMed Marinova D et al (2017) MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 16(6):565–576PubMed
93.
go back to reference Spertini F et al (2015) Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 3(12):953–962PubMed Spertini F et al (2015) Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 3(12):953–962PubMed
94.
go back to reference World Health Organization (1995) Global tuberculosis program and global program on vaccine: statement on BCG revaccination for the prevention of tuberculosis. WHO, Geneva World Health Organization (1995) Global tuberculosis program and global program on vaccine: statement on BCG revaccination for the prevention of tuberculosis. WHO, Geneva
95.
go back to reference World Health Organization (2004) BCG vaccine. WHO position paper. WHO, Geneva World Health Organization (2004) BCG vaccine. WHO position paper. WHO, Geneva
96.
go back to reference World Health Organization (2018) BCG vaccines: WHO position paper-February 2018. WHO, Geneva World Health Organization (2018) BCG vaccines: WHO position paper-February 2018. WHO, Geneva
97.
go back to reference World Health Organization (2007) Revised BCG vaccination guidelines for infants at risk for HIV infection. WHO, Geneva World Health Organization (2007) Revised BCG vaccination guidelines for infants at risk for HIV infection. WHO, Geneva
98.
go back to reference Husain AA et al (2011) Effect of repeat dose of BCG vaccination on humoral response in mice model. Indian J Exp Biol 49(1):7–10PubMed Husain AA et al (2011) Effect of repeat dose of BCG vaccination on humoral response in mice model. Indian J Exp Biol 49(1):7–10PubMed
99.
go back to reference Husain AA et al (2015) Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: a pilot study. Clin Exp Vaccine Res 4(1):83–87PubMedPubMedCentral Husain AA et al (2015) Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: a pilot study. Clin Exp Vaccine Res 4(1):83–87PubMedPubMedCentral
100.
go back to reference Parlane NA et al (2014) Revaccination of cattle with bacille Calmette-Guerin two years after first vaccination when immunity has waned, boosted protection against challenge with Mycobacterium bovis. PLoS One 9(9):e106519PubMedPubMedCentral Parlane NA et al (2014) Revaccination of cattle with bacille Calmette-Guerin two years after first vaccination when immunity has waned, boosted protection against challenge with Mycobacterium bovis. PLoS One 9(9):e106519PubMedPubMedCentral
101.
go back to reference Kashyap RS et al (2010) Assessment of immune response to repeat stimulation with BCG vaccine using in vitro PBMC model. J Immune Based Ther Vaccines 8:3PubMedPubMedCentral Kashyap RS et al (2010) Assessment of immune response to repeat stimulation with BCG vaccine using in vitro PBMC model. J Immune Based Ther Vaccines 8:3PubMedPubMedCentral
102.
go back to reference Nemes E et al (2018) Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med 379(2):138–149PubMedPubMedCentral Nemes E et al (2018) Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med 379(2):138–149PubMedPubMedCentral
103.
go back to reference Nieuwenhuizen NE et al (2017) The recombinant Bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147PubMedPubMedCentral Nieuwenhuizen NE et al (2017) The recombinant Bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147PubMedPubMedCentral
104.
go back to reference Hamon MA et al (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368PubMed Hamon MA et al (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368PubMed
105.
go back to reference Shaughnessy LM et al (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8(5):781–792PubMedPubMedCentral Shaughnessy LM et al (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8(5):781–792PubMedPubMedCentral
106.
go back to reference Reyrat JM, Berthet FX, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci U S A 92(19):8768–8772PubMedPubMedCentral Reyrat JM, Berthet FX, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci U S A 92(19):8768–8772PubMedPubMedCentral
107.
go back to reference Gordon AH, Hart PD, Young MR (1980) Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286(5768):79–80PubMed Gordon AH, Hart PD, Young MR (1980) Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286(5768):79–80PubMed
108.
go back to reference Kaufmann SH et al (2014) The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 13(5):619–630PubMed Kaufmann SH et al (2014) The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 13(5):619–630PubMed
109.
go back to reference Grode L et al (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31(9):1340–1348PubMed Grode L et al (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31(9):1340–1348PubMed
110.
go back to reference Loxton AG,Knaul JK,Grode L,Gutschmidt A,Meller C,Eisele B,Johnstone H,van der Spuy G,Maertzdorf J,Kaufmann SHE,Hesseling AC,Walzl G,Cotton MF., Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol. 2017 Feb 6;24(2). pii: e00439-16. https://doi.org/10.1128/CVI.00439-16. Print 2017 Feb Loxton AG,Knaul JK,Grode L,Gutschmidt A,Meller C,Eisele B,Johnstone H,van der Spuy G,Maertzdorf J,Kaufmann SHE,Hesseling AC,Walzl G,Cotton MF., Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol. 2017 Feb 6;24(2). pii: e00439-16. https://​doi.​org/​10.​1128/​CVI.​00439-16. Print 2017 Feb
111.
go back to reference Lindenstrom T et al (2013) Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. J Immunol 190(12):6311–6319PubMed Lindenstrom T et al (2013) Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. J Immunol 190(12):6311–6319PubMed
112.
go back to reference Grode L et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479PubMedPubMedCentral Grode L et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479PubMedPubMedCentral
113.
go back to reference Desel C et al (2011) Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204(10):1573–1584PubMedPubMedCentral Desel C et al (2011) Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204(10):1573–1584PubMedPubMedCentral
114.
go back to reference Vogelzang A et al (2014) Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guerin DeltaureC::hly vaccine's superior protection against tuberculosis. J Infect Dis 210(12):1928–1937PubMedPubMedCentral Vogelzang A et al (2014) Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guerin DeltaureC::hly vaccine's superior protection against tuberculosis. J Infect Dis 210(12):1928–1937PubMedPubMedCentral
115.
go back to reference Gengenbacher M et al (2016) Post-exposure vaccination with the vaccine candidate Bacillus Calmette-Guerin DeltaureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes Infect 18(5):364–368PubMed Gengenbacher M et al (2016) Post-exposure vaccination with the vaccine candidate Bacillus Calmette-Guerin DeltaureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes Infect 18(5):364–368PubMed
116.
go back to reference Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S, Lazar D, Wagner I, Mollenkopf HJ, Kaufmann SH., Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG DeltaureC::hly Improves Protection against Tuberculosis. mBio.2016 May 24;7(3). pii: e00679-16. https://doi.org/10.1128/mBio.00679-16 Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S, Lazar D, Wagner I, Mollenkopf HJ, Kaufmann SH., Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG DeltaureC::hly Improves Protection against Tuberculosis. mBio.2016 May 24;7(3). pii: e00679-16. https://​doi.​org/​10.​1128/​mBio.​00679-16
117.
go back to reference Velmurugan K et al (2013) Nonclinical development of BCG replacement vaccine candidates. Vaccines (Basel) 1(2):120–138 Velmurugan K et al (2013) Nonclinical development of BCG replacement vaccine candidates. Vaccines (Basel) 1(2):120–138
118.
go back to reference Irwin SM et al (2005) Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun 73(9):5809–5816PubMedPubMedCentral Irwin SM et al (2005) Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun 73(9):5809–5816PubMedPubMedCentral
119.
go back to reference Brandt L et al (2004) The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72(11):6622–6632PubMedPubMedCentral Brandt L et al (2004) The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72(11):6622–6632PubMedPubMedCentral
120.
go back to reference Tsenova L et al (2006) Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect Immun 74(4):2392–2401PubMedPubMedCentral Tsenova L et al (2006) Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect Immun 74(4):2392–2401PubMedPubMedCentral
121.
go back to reference Reed SG et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106(7):2301–2306PubMedPubMedCentral Reed SG et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106(7):2301–2306PubMedPubMedCentral
122.
124.
go back to reference Commandeur S et al (2014) The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice and Guinea pigs. Vaccine 32(29):3580–3588PubMed Commandeur S et al (2014) The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice and Guinea pigs. Vaccine 32(29):3580–3588PubMed
126.
go back to reference Lanoix JP et al (2015) Sterilizing activity of pyrazinamide in combination with first-line drugs in a C3HeB/FeJ mouse model of tuberculosis. Antimicrob Agents Chemother 60(2):1091–1096PubMed Lanoix JP et al (2015) Sterilizing activity of pyrazinamide in combination with first-line drugs in a C3HeB/FeJ mouse model of tuberculosis. Antimicrob Agents Chemother 60(2):1091–1096PubMed
127.
go back to reference Lanoix JP et al (2015) Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8(6):603–610PubMedPubMedCentral Lanoix JP et al (2015) Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8(6):603–610PubMedPubMedCentral
128.
go back to reference Aagaard C et al (2011) A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17(2):189–194PubMed Aagaard C et al (2011) A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17(2):189–194PubMed
129.
go back to reference Jacobs RE et al (2015) Reactivation of pulmonary tuberculosis during cancer treatment. Int J Mycobacteriol 4(4):337–340PubMed Jacobs RE et al (2015) Reactivation of pulmonary tuberculosis during cancer treatment. Int J Mycobacteriol 4(4):337–340PubMed
130.
go back to reference Kashino SS et al (2008) Guinea pig model of Mycobacterium tuberculosis latent/dormant infection. Microbes Infect 10(14–15):1469–1476PubMedPubMedCentral Kashino SS et al (2008) Guinea pig model of Mycobacterium tuberculosis latent/dormant infection. Microbes Infect 10(14–15):1469–1476PubMedPubMedCentral
131.
go back to reference Ordway DJ et al (2010) Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother 54(5):1820–1833PubMedPubMedCentral Ordway DJ et al (2010) Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother 54(5):1820–1833PubMedPubMedCentral
132.
go back to reference Clark S et al (2014) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572PubMed Clark S et al (2014) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572PubMed
133.
go back to reference Converse PJ et al (1996) Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun 64(11):4776–4787PubMedPubMedCentral Converse PJ et al (1996) Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun 64(11):4776–4787PubMedPubMedCentral
134.
go back to reference Zhang G et al (2010) Evaluation of mycobacterial virulence using rabbit skin liquefaction model. Virulence 1(3):156–163PubMedPubMedCentral Zhang G et al (2010) Evaluation of mycobacterial virulence using rabbit skin liquefaction model. Virulence 1(3):156–163PubMedPubMedCentral
135.
go back to reference Dannenberg AM Jr (2009) Liquefaction and cavity formation in pulmonary TB: a simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb) 89(4):243–247 Dannenberg AM Jr (2009) Liquefaction and cavity formation in pulmonary TB: a simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb) 89(4):243–247
136.
go back to reference Sun H et al (2012) Effects of immunomodulators on liquefaction and ulceration in the rabbit skin model of tuberculosis. Tuberculosis (Edinb) 92(4):345–350 Sun H et al (2012) Effects of immunomodulators on liquefaction and ulceration in the rabbit skin model of tuberculosis. Tuberculosis (Edinb) 92(4):345–350
138.
go back to reference Manabe YC et al (2008) The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb) 88(3):187–196 Manabe YC et al (2008) The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb) 88(3):187–196
139.
go back to reference Rahyussalim AJ et al (2016) New bone formation in tuberculous-infected vertebral body defect after administration of bone marrow stromal cells in rabbit model. Asian Spine J 10(1):1–5PubMedPubMedCentral Rahyussalim AJ et al (2016) New bone formation in tuberculous-infected vertebral body defect after administration of bone marrow stromal cells in rabbit model. Asian Spine J 10(1):1–5PubMedPubMedCentral
140.
go back to reference Scanga CA et al (1999) Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67(9):4531–4538PubMedPubMedCentral Scanga CA et al (1999) Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67(9):4531–4538PubMedPubMedCentral
141.
go back to reference Izzo AA et al (2015) A novel MVA-based multiphasic vaccine for prevention or treatment of tuberculosis induces broad and multifunctional cell-mediated immunity in mice and primates. PLoS One 10(11):e0143552 Izzo AA et al (2015) A novel MVA-based multiphasic vaccine for prevention or treatment of tuberculosis induces broad and multifunctional cell-mediated immunity in mice and primates. PLoS One 10(11):e0143552
143.
go back to reference Phuah J et al (2016) Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 84(5):1301–1311PubMedPubMedCentral Phuah J et al (2016) Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 84(5):1301–1311PubMedPubMedCentral
144.
go back to reference Lin PL et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642PubMedPubMedCentral Lin PL et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642PubMedPubMedCentral
145.
go back to reference Diedrich CR et al (2010) Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5(3):e9611PubMedPubMedCentral Diedrich CR et al (2010) Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5(3):e9611PubMedPubMedCentral
146.
go back to reference Kupferschmidt K (2011) Infectious disease. Taking a new shot at a TB vaccine. Science 334(6062):1488–1490PubMed Kupferschmidt K (2011) Infectious disease. Taking a new shot at a TB vaccine. Science 334(6062):1488–1490PubMed
147.
go back to reference McShane H et al (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240–1244PubMed McShane H et al (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240–1244PubMed
148.
go back to reference Verreck FA et al (2009) MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4(4):e5264PubMedPubMedCentral Verreck FA et al (2009) MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4(4):e5264PubMedPubMedCentral
149.
go back to reference Beveridge NE et al (2007) Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 37(11):3089–3100PubMedPubMedCentral Beveridge NE et al (2007) Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 37(11):3089–3100PubMedPubMedCentral
150.
go back to reference Minassian AM et al (2011) A phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 1(2):e000223PubMedPubMedCentral Minassian AM et al (2011) A phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 1(2):e000223PubMedPubMedCentral
151.
go back to reference Odutola AA et al (2012) A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 30(38):5591–5594PubMed Odutola AA et al (2012) A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 30(38):5591–5594PubMed
152.
go back to reference Pathan AA et al (2012) Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30(38):5616–5624PubMedPubMedCentral Pathan AA et al (2012) Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30(38):5616–5624PubMedPubMedCentral
153.
go back to reference Sander CR et al (2009) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med 179(8):724–733PubMedPubMedCentral Sander CR et al (2009) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med 179(8):724–733PubMedPubMedCentral
154.
go back to reference Scriba TJ et al (2010) Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40(1):279–290PubMedPubMedCentral Scriba TJ et al (2010) Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40(1):279–290PubMedPubMedCentral
155.
go back to reference Scriba TJ et al (2011) Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 203(12):1832–1843PubMed Scriba TJ et al (2011) Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 203(12):1832–1843PubMed
156.
go back to reference Scriba TJ et al (2012) A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med 185(7):769–778PubMedPubMedCentral Scriba TJ et al (2012) A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med 185(7):769–778PubMedPubMedCentral
157.
go back to reference Tameris MD et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028PubMedPubMedCentral Tameris MD et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028PubMedPubMedCentral
158.
go back to reference Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMed Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMed
159.
go back to reference Kaufmann SH (2011) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11(8):633–640PubMed Kaufmann SH (2011) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11(8):633–640PubMed
160.
161.
go back to reference Barker LF et al (2009) Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol 21(3):331–338PubMed Barker LF et al (2009) Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol 21(3):331–338PubMed
163.
go back to reference Williams A, Hall Y, Orme IM (2009) Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb) 89(6):389–397 Williams A, Hall Y, Orme IM (2009) Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb) 89(6):389–397
164.
go back to reference Reed SG et al (2003) Prospects for a better vaccine against tuberculosis. Tuberculosis (Edinb) 83(1–3):213–219 Reed SG et al (2003) Prospects for a better vaccine against tuberculosis. Tuberculosis (Edinb) 83(1–3):213–219
165.
go back to reference Fennelly KP et al (2012) Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am J Respir Crit Care Med 186(5):450–457PubMedPubMedCentral Fennelly KP et al (2012) Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am J Respir Crit Care Med 186(5):450–457PubMedPubMedCentral
Metadata
Title
Tuberculosis vaccine development: from classic to clinical candidates
Authors
Junli Li
Aihua Zhao
Jun Tang
Guozhi Wang
Yanan Shi
Lingjun Zhan
Chuan Qin
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Clinical Microbiology & Infectious Diseases / Issue 8/2020
Print ISSN: 0934-9723
Electronic ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-020-03843-6

Other articles of this Issue 8/2020

European Journal of Clinical Microbiology & Infectious Diseases 8/2020 Go to the issue