Skip to main content
Top
Published in: Archives of Virology 4/2017

01-04-2017 | Review

Implications of oxidative stress on viral pathogenesis

Authors: Fernanda Caetano Camini, Camila Carla da Silva Caetano, Letícia Trindade Almeida, Cintia Lopes de Brito Magalhães

Published in: Archives of Virology | Issue 4/2017

Login to get access

Abstract

Reactive species are frequently formed after viral infections. Antioxidant defences, including enzymatic and non-enzymatic components, protect against reactive species, but sometimes these defences are not completely adequate. An imbalance in the production of reactive species and the body’s inability to detoxify these reactive species is referred to as oxidative stress. The aim of this review is to analyse the role of oxidative stress in the pathogenesis of viral infections and highlight some major therapeutic approaches that have gained importance, with regards to controlling virus-induced oxidative injury. Attention will be focused on DNA viruses (papillomaviruses, hepadnaviruses), RNA viruses (flaviviruses, orthomyxoviruses, paramyxoviruses, togaviruses) and retroviruses (human immunodeficiency virus). In general, viruses cause an imbalance in the cellular redox environment, which depending on the virus and the cell can result in different responses, e.g. cell signaling, antioxidant defences, reactive species, and other processes. Therefore, the modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.
Literature
1.
go back to reference Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623PubMedCrossRef Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623PubMedCrossRef
2.
go back to reference Akaike T (2001) Role of free radicals in viral pathogenesis and mutation. Rev Med Virol 11:87–101PubMedCrossRef Akaike T (2001) Role of free radicals in viral pathogenesis and mutation. Rev Med Virol 11:87–101PubMedCrossRef
3.
go back to reference Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11(2):118–124PubMed Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11(2):118–124PubMed
4.
go back to reference Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505PubMedCrossRef Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505PubMedCrossRef
5.
go back to reference Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford
6.
go back to reference Nakashima I, Liu W, Akhand AA et al (2003) 4-Hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions. Mol Aspects Med 24:231–238PubMedCrossRef Nakashima I, Liu W, Akhand AA et al (2003) 4-Hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions. Mol Aspects Med 24:231–238PubMedCrossRef
7.
go back to reference Forman HJ, Dickinson DA (2004) Introduction to serial reviews on 4-hydroxy-2-nonenal as a signaling molecule. Free Radic Biol Med 37:594–596PubMedCrossRef Forman HJ, Dickinson DA (2004) Introduction to serial reviews on 4-hydroxy-2-nonenal as a signaling molecule. Free Radic Biol Med 37:594–596PubMedCrossRef
8.
go back to reference Armogida M, Nisticò R, Mercuri NB (2012) Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 166:1211–1224PubMedPubMedCentralCrossRef Armogida M, Nisticò R, Mercuri NB (2012) Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 166:1211–1224PubMedPubMedCentralCrossRef
9.
go back to reference Ratnam DV, Ankola DD, Bhardwaj V et al (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Controll Release 113:189–207CrossRef Ratnam DV, Ankola DD, Bhardwaj V et al (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Controll Release 113:189–207CrossRef
13.
go back to reference Peterhans E (1979) Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem Biophys Res Commun 91:383–392PubMedCrossRef Peterhans E (1979) Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem Biophys Res Commun 91:383–392PubMedCrossRef
14.
go back to reference Peterhans E, Grob M, Burge T et al (1987) Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3(1–5):39–46PubMedCrossRef Peterhans E, Grob M, Burge T et al (1987) Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3(1–5):39–46PubMedCrossRef
15.
go back to reference Muller F (1992) Reactive oxygen intermediates and human immunodeficiency virus (HIV) infection. Free Radic Biol Med 13(6):651–657PubMedCrossRef Muller F (1992) Reactive oxygen intermediates and human immunodeficiency virus (HIV) infection. Free Radic Biol Med 13(6):651–657PubMedCrossRef
17.
go back to reference Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794PubMedCrossRef Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794PubMedCrossRef
18.
go back to reference Albrecht T, Boldogh I, Fons MP (1992) Receptor-initiated activation of cells and their oncogenes by herpes-family viruses. J Investig Dermatol 98(6 Suppl):29S–35SPubMedCrossRef Albrecht T, Boldogh I, Fons MP (1992) Receptor-initiated activation of cells and their oncogenes by herpes-family viruses. J Investig Dermatol 98(6 Suppl):29S–35SPubMedCrossRef
19.
go back to reference Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19:523–528PubMedCrossRef Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19:523–528PubMedCrossRef
20.
21.
go back to reference Deramaudt TB, Dill C, Bonay M (2013) Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Médecine et maladies infectieuses 43:100–107PubMedCrossRef Deramaudt TB, Dill C, Bonay M (2013) Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Médecine et maladies infectieuses 43:100–107PubMedCrossRef
22.
go back to reference Gloenbock DT, Hampton RY, Qusesh RS et al (1991) Lipid Al-like molecule that antagonize the effects of endotoxin on human monocytes. J Biol Chem 266:19490–19498 Gloenbock DT, Hampton RY, Qusesh RS et al (1991) Lipid Al-like molecule that antagonize the effects of endotoxin on human monocytes. J Biol Chem 266:19490–19498
23.
go back to reference Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21(5):641–649PubMedCrossRef Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21(5):641–649PubMedCrossRef
24.
go back to reference Zhang Y, Wanga Z, Chen H et al (2014) Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 24:30–36PubMedCrossRef Zhang Y, Wanga Z, Chen H et al (2014) Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 24:30–36PubMedCrossRef
25.
go back to reference Choi J, Ou JH (2006) Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290:G847–G851PubMedCrossRef Choi J, Ou JH (2006) Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290:G847–G851PubMedCrossRef
26.
27.
go back to reference Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127:962S–965SPubMed Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127:962S–965SPubMed
28.
go back to reference Gullberg RC, Jordan Steel J, Moon SL et al (2015) Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 475:219–229PubMedCrossRef Gullberg RC, Jordan Steel J, Moon SL et al (2015) Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 475:219–229PubMedCrossRef
29.
go back to reference Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86PubMedCrossRef Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86PubMedCrossRef
30.
go back to reference Peterhans E (1997) Reactive oxygen species and nitric oxide in viral diseases. Biol Trace Elem Res 56:107–116PubMedCrossRef Peterhans E (1997) Reactive oxygen species and nitric oxide in viral diseases. Biol Trace Elem Res 56:107–116PubMedCrossRef
31.
go back to reference Akaike T, Suga M, Maeda H (1998) Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 217:64–73PubMedCrossRef Akaike T, Suga M, Maeda H (1998) Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 217:64–73PubMedCrossRef
32.
go back to reference Beck MA (2000) Nutritionally induced oxidative stress: effect on viral disease. Am J Clin Nutr 71:1676S–1679SPubMed Beck MA (2000) Nutritionally induced oxidative stress: effect on viral disease. Am J Clin Nutr 71:1676S–1679SPubMed
33.
go back to reference Valyi-Nagy T, Dermody TS (2005) Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 20:957–967PubMed Valyi-Nagy T, Dermody TS (2005) Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 20:957–967PubMed
34.
go back to reference Williams VM, Filippova M, Soto U et al (2011) HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 6:45–57PubMedPubMedCentralCrossRef Williams VM, Filippova M, Soto U et al (2011) HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 6:45–57PubMedPubMedCentralCrossRef
35.
go back to reference Medvedev R, Ploen D, Hildt E (2016) HCV and oxidative stress: implications for HCV life cycle and HCV-associated pathogenesis. Oxid Med Cell Longev 2016:9012580PubMedPubMedCentralCrossRef Medvedev R, Ploen D, Hildt E (2016) HCV and oxidative stress: implications for HCV life cycle and HCV-associated pathogenesis. Oxid Med Cell Longev 2016:9012580PubMedPubMedCentralCrossRef
36.
go back to reference Huang H, Chen Y, Ye J (2007) Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci USA 104(47):18666–18670PubMedPubMedCentralCrossRef Huang H, Chen Y, Ye J (2007) Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci USA 104(47):18666–18670PubMedPubMedCentralCrossRef
37.
go back to reference Choi J, Lee KJ, Zheng Y et al (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39(1):81–89PubMedCrossRef Choi J, Lee KJ, Zheng Y et al (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39(1):81–89PubMedCrossRef
38.
go back to reference Ezzikouri S, Nishimura T, Kohara M et al (2015) Inhibitory effects of Pycnogenol® on hepatitis C virus replication. Antiviral Res 113:93–102PubMedCrossRef Ezzikouri S, Nishimura T, Kohara M et al (2015) Inhibitory effects of Pycnogenol® on hepatitis C virus replication. Antiviral Res 113:93–102PubMedCrossRef
40.
go back to reference Perry G, Raina AK, Nunomura A et al (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28:831–834PubMedCrossRef Perry G, Raina AK, Nunomura A et al (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28:831–834PubMedCrossRef
42.
go back to reference Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRef Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRef
43.
go back to reference Foppoli C, DeMarco F, Cini C et al (2015) Redox control of viral carcinogenesis: the human papillomavirus paradigm. Biochimica et Biophysica Acta 1850:1622–1632PubMedCrossRef Foppoli C, DeMarco F, Cini C et al (2015) Redox control of viral carcinogenesis: the human papillomavirus paradigm. Biochimica et Biophysica Acta 1850:1622–1632PubMedCrossRef
44.
go back to reference Czaja MJ (2007) Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis 27:378–389PubMedCrossRef Czaja MJ (2007) Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis 27:378–389PubMedCrossRef
45.
go back to reference Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896 (PubMed:15769673) PubMedCrossRef Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896 (PubMed:15769673) PubMedCrossRef
46.
go back to reference Hagen TM, Huang S, Curnutte J et al (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci USA 91:12808–12812PubMedPubMedCentralCrossRef Hagen TM, Huang S, Curnutte J et al (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci USA 91:12808–12812PubMedPubMedCentralCrossRef
47.
go back to reference Demirdag K, Yilmaz S, Ozdarendeli A et al (2003) Levels of plasma malondialdehyde and erythrocyte antioxidant enzyme activities in patients with chronic hepatitis B. Hepatogastroenterology 50:766–770PubMed Demirdag K, Yilmaz S, Ozdarendeli A et al (2003) Levels of plasma malondialdehyde and erythrocyte antioxidant enzyme activities in patients with chronic hepatitis B. Hepatogastroenterology 50:766–770PubMed
48.
go back to reference Bolukbas C, Bolukbas FF, Horoz M et al (2005) Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis 5:95PubMedPubMedCentralCrossRef Bolukbas C, Bolukbas FF, Horoz M et al (2005) Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis 5:95PubMedPubMedCentralCrossRef
49.
go back to reference Fujita N, Sugimoto R, Ma N et al (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507PubMedCrossRef Fujita N, Sugimoto R, Ma N et al (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507PubMedCrossRef
50.
go back to reference Gwak GY, Lee DH, Moon TG et al (2008) The correlation of hepatitis B virus PreS mutation with cellular oxidative DNA damage in hepatocellular carcinoma. Hepatogastroenterology 55:2028–2032PubMed Gwak GY, Lee DH, Moon TG et al (2008) The correlation of hepatitis B virus PreS mutation with cellular oxidative DNA damage in hepatocellular carcinoma. Hepatogastroenterology 55:2028–2032PubMed
51.
go back to reference Higgs MR, Chouteau P, Lerat H (2014) ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J Gen Virol 95:991–1004PubMedCrossRef Higgs MR, Chouteau P, Lerat H (2014) ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J Gen Virol 95:991–1004PubMedCrossRef
53.
go back to reference Farinati F, Cardin R, Degan P et al (1999) Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection. Free Radic Biol Med 27:1284–1291PubMedCrossRef Farinati F, Cardin R, Degan P et al (1999) Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection. Free Radic Biol Med 27:1284–1291PubMedCrossRef
54.
go back to reference Sumida Y, Nakashima T, Yoh T et al (2000) Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33:616–622PubMedCrossRef Sumida Y, Nakashima T, Yoh T et al (2000) Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33:616–622PubMedCrossRef
55.
go back to reference Mahmood S, Kawanaka M, Kamei A et al (2004) Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 6:19–24PubMedCrossRef Mahmood S, Kawanaka M, Kamei A et al (2004) Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 6:19–24PubMedCrossRef
56.
go back to reference Sukowati Caecilia HC, El-Khobar Korri E, Ie Susan I et al (2016) Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma. World J Gastroenterol 22(4):1497–1512PubMedPubMedCentralCrossRef Sukowati Caecilia HC, El-Khobar Korri E, Ie Susan I et al (2016) Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma. World J Gastroenterol 22(4):1497–1512PubMedPubMedCentralCrossRef
57.
go back to reference Gong G, Waris G, Tanveer R et al (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kB. Proc Natl Acad Sci USA 98:9599–9604PubMedPubMedCentralCrossRef Gong G, Waris G, Tanveer R et al (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kB. Proc Natl Acad Sci USA 98:9599–9604PubMedPubMedCentralCrossRef
58.
go back to reference Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 0:683–701 Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 0:683–701
59.
go back to reference Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature (London) 395:645–648CrossRef Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature (London) 395:645–648CrossRef
61.
go back to reference Yen HH, Shih KL, Lin TT et al (2012) Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J Gastroenterol 18(36):5084–5089PubMedPubMedCentralCrossRef Yen HH, Shih KL, Lin TT et al (2012) Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J Gastroenterol 18(36):5084–5089PubMedPubMedCentralCrossRef
62.
go back to reference Piccoli C, Quarato G, Ripoli M et al (2009) Review HCV infection induces mitochondrial bioenergetic unbalance: causes and effects. Biochim Biophys Acta 1787(5):539–546PubMedCrossRef Piccoli C, Quarato G, Ripoli M et al (2009) Review HCV infection induces mitochondrial bioenergetic unbalance: causes and effects. Biochim Biophys Acta 1787(5):539–546PubMedCrossRef
63.
go back to reference Piccoli C, Scrima R, D’Aprile A et al (2006) Review mitochondrial dysfunction in hepatitis C virus infection. Biochim Biophys Acta 1757(9–10):1429–1437PubMedCrossRef Piccoli C, Scrima R, D’Aprile A et al (2006) Review mitochondrial dysfunction in hepatitis C virus infection. Biochim Biophys Acta 1757(9–10):1429–1437PubMedCrossRef
65.
go back to reference Qadri I, Iwahashi M, Capasso JM et al (2004) Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–928PubMedPubMedCentralCrossRef Qadri I, Iwahashi M, Capasso JM et al (2004) Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–928PubMedPubMedCentralCrossRef
67.
go back to reference Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26(Suppl 1):173–179PubMedCrossRef Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26(Suppl 1):173–179PubMedCrossRef
69.
go back to reference Waris G, Turkson J, Hassanein T et al (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol 79:1569–1580PubMedPubMedCentralCrossRef Waris G, Turkson J, Hassanein T et al (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol 79:1569–1580PubMedPubMedCentralCrossRef
70.
go back to reference Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135PubMedCrossRef Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135PubMedCrossRef
71.
go back to reference Lozano-Sepulveda AS, Bryan-Marrugo OL, Cordova-Fletes C et al (2015) Oxidative stress modulation in hepatitis C virus infected cells. World J Hepatol 7(29):2880–2889PubMedPubMedCentralCrossRef Lozano-Sepulveda AS, Bryan-Marrugo OL, Cordova-Fletes C et al (2015) Oxidative stress modulation in hepatitis C virus infected cells. World J Hepatol 7(29):2880–2889PubMedPubMedCentralCrossRef
72.
go back to reference Gabbay E, Zigmond E, Pappo O et al (2007) Antioxidant therapy for chronic hepatitis C after failure of interferon: results of phase II randomized, double-blind placebo controlled clinical trial. World J Gastroenterol 13:5317–5323PubMedPubMedCentralCrossRef Gabbay E, Zigmond E, Pappo O et al (2007) Antioxidant therapy for chronic hepatitis C after failure of interferon: results of phase II randomized, double-blind placebo controlled clinical trial. World J Gastroenterol 13:5317–5323PubMedPubMedCentralCrossRef
73.
go back to reference Miura K, Taura K, Kodama Y et al (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429PubMedCrossRef Miura K, Taura K, Kodama Y et al (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429PubMedCrossRef
74.
go back to reference Deng L, Shoji I, Ogawa W et al (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568PubMedPubMedCentralCrossRef Deng L, Shoji I, Ogawa W et al (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568PubMedPubMedCentralCrossRef
75.
go back to reference Chambers TJ, Hahn CS, Galler R et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688PubMedCrossRef Chambers TJ, Hahn CS, Galler R et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688PubMedCrossRef
76.
go back to reference Burke DS, Lorsomrudee W, Leake CJ et al (1985) Fatal outcome in Japanese encephalitis. Am J Trop Med Hyg 34:1203–1210PubMed Burke DS, Lorsomrudee W, Leake CJ et al (1985) Fatal outcome in Japanese encephalitis. Am J Trop Med Hyg 34:1203–1210PubMed
77.
go back to reference Mathur A, Kulshreshtha R, Chaturvedi UC (1989) Evidence for latency of Japanese encephalitis virus in T lymphocytes. J Gen Virol 70:461–465PubMedCrossRef Mathur A, Kulshreshtha R, Chaturvedi UC (1989) Evidence for latency of Japanese encephalitis virus in T lymphocytes. J Gen Virol 70:461–465PubMedCrossRef
78.
go back to reference Raung SL, Kuo MD, Wang YM et al (2001) Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett 315:9–12PubMedCrossRef Raung SL, Kuo MD, Wang YM et al (2001) Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett 315:9–12PubMedCrossRef
79.
go back to reference Liao SL, Raung SL, Chen CJ (2002) Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neurosci Lett 324:133–136PubMedCrossRef Liao SL, Raung SL, Chen CJ (2002) Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neurosci Lett 324:133–136PubMedCrossRef
80.
go back to reference Srivastava R, Kalita J, Khan MY et al (2009) Free radical generation by neurons in rat model of Japanese encephalitis. Neurochem Res 34:2141–2146PubMedCrossRef Srivastava R, Kalita J, Khan MY et al (2009) Free radical generation by neurons in rat model of Japanese encephalitis. Neurochem Res 34:2141–2146PubMedCrossRef
81.
go back to reference Kumar S, Misra UK, Kalita J et al (2009) Imbalance in oxidant/ antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem Int 55:648–654PubMedCrossRef Kumar S, Misra UK, Kalita J et al (2009) Imbalance in oxidant/ antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem Int 55:648–654PubMedCrossRef
82.
go back to reference Yang TC, Lai CC, Shiu SL et al (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12:643–651PubMedCrossRef Yang TC, Lai CC, Shiu SL et al (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12:643–651PubMedCrossRef
83.
go back to reference Kaushik DK, Gupta M, Kumawat KL, Basu A (2012) NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One 7:e32270PubMedPubMedCentralCrossRef Kaushik DK, Gupta M, Kumawat KL, Basu A (2012) NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One 7:e32270PubMedPubMedCentralCrossRef
84.
go back to reference Gil L, Martínez G, Tápanes R et al (2004) Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71:652–657PubMed Gil L, Martínez G, Tápanes R et al (2004) Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71:652–657PubMed
85.
go back to reference Klassen P, Biesalski HK, Mazariegos M et al (2004) Classic dengue fever affects levels of circulating antioxidants. Nutrition 20:542–547PubMedCrossRef Klassen P, Biesalski HK, Mazariegos M et al (2004) Classic dengue fever affects levels of circulating antioxidants. Nutrition 20:542–547PubMedCrossRef
86.
go back to reference Soundravally R, Sankar P, Bobby Z et al (2008) Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation. Platelets 19(6):447–454PubMedCrossRef Soundravally R, Sankar P, Bobby Z et al (2008) Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation. Platelets 19(6):447–454PubMedCrossRef
87.
go back to reference Soundravally R, Hoti SL, Patil SA et al (2014) Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int J Infect Dis 18:68–72PubMedCrossRef Soundravally R, Hoti SL, Patil SA et al (2014) Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int J Infect Dis 18:68–72PubMedCrossRef
88.
go back to reference Yen YTCH, Lin YD, Shieh CC et al (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82(24):12312–12324PubMedPubMedCentralCrossRef Yen YTCH, Lin YD, Shieh CC et al (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82(24):12312–12324PubMedPubMedCentralCrossRef
89.
go back to reference Tian YJW, Gao N, Zhang J et al (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397(3):420–424PubMedCrossRef Tian YJW, Gao N, Zhang J et al (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397(3):420–424PubMedCrossRef
90.
go back to reference Wang J, Chen Y, Gao N et al (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PloS One 8(1):e55407PubMedPubMedCentralCrossRef Wang J, Chen Y, Gao N et al (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PloS One 8(1):e55407PubMedPubMedCentralCrossRef
91.
go back to reference Akaike T, Noguchi Y, Ijiri S et al (1996) Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453PubMedPubMedCentralCrossRef Akaike T, Noguchi Y, Ijiri S et al (1996) Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453PubMedPubMedCentralCrossRef
92.
go back to reference Choi AM, Knobil K, Otterbein SL et al (1996) Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am J Physiol 271(3 Pt 1):L383–L391PubMed Choi AM, Knobil K, Otterbein SL et al (1996) Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am J Physiol 271(3 Pt 1):L383–L391PubMed
93.
go back to reference Suliman HB, Ryan LK, Bishop L et al (2001) Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 280(1):L69–L78PubMed Suliman HB, Ryan LK, Bishop L et al (2001) Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 280(1):L69–L78PubMed
94.
go back to reference Kobasa D, Jones SM, Shinya K et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323PubMedCrossRef Kobasa D, Jones SM, Shinya K et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323PubMedCrossRef
95.
go back to reference Walsh KB, Teijaro JR, Wilker PR et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 108(29):12018–12023PubMedPubMedCentralCrossRef Walsh KB, Teijaro JR, Wilker PR et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 108(29):12018–12023PubMedPubMedCentralCrossRef
97.
go back to reference Buffinton GD, Christen S, Peterhans E et al (1992) Oxidative stress in lungs of mice infected with influenza A virus. Free Radic Res Commun 16(2):99–110PubMedCrossRef Buffinton GD, Christen S, Peterhans E et al (1992) Oxidative stress in lungs of mice infected with influenza A virus. Free Radic Res Commun 16(2):99–110PubMedCrossRef
98.
go back to reference Hennet T, Peterhans E, Stocker R (1992) Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J Gen Virol 73(Pt 1):39–46PubMedCrossRef Hennet T, Peterhans E, Stocker R (1992) Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J Gen Virol 73(Pt 1):39–46PubMedCrossRef
99.
go back to reference Cai J, Chen Y, Seth S et al (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34(7):928–936PubMedCrossRef Cai J, Chen Y, Seth S et al (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34(7):928–936PubMedCrossRef
101.
go back to reference Lin X, Wang R, Zou W et al (2016) The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 8:13. doi:10.3390/v8010013 PubMedCentralCrossRef Lin X, Wang R, Zou W et al (2016) The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 8:13. doi:10.​3390/​v8010013 PubMedCentralCrossRef
102.
103.
go back to reference Casola A, Burger N, Liu T et al (2001) Oxidant tone regulates RANTES gene transcription in airway epithelial cells infected with respiratory syncytial virus: role in viral-induced interferon regulatory factor activation. J Biol Chem 276:19715–19722PubMedCrossRef Casola A, Burger N, Liu T et al (2001) Oxidant tone regulates RANTES gene transcription in airway epithelial cells infected with respiratory syncytial virus: role in viral-induced interferon regulatory factor activation. J Biol Chem 276:19715–19722PubMedCrossRef
104.
go back to reference Liu T, Shawn C, Brasier AR et al (2004) Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem 279:2461–2469PubMedCrossRef Liu T, Shawn C, Brasier AR et al (2004) Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem 279:2461–2469PubMedCrossRef
105.
go back to reference Hosakote YM, Liu T, Castro SM et al (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357PubMedPubMedCentralCrossRef Hosakote YM, Liu T, Castro SM et al (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357PubMedPubMedCentralCrossRef
106.
go back to reference Castro SM, Guerrero-Plata A, Suarez-Real G et al (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369PubMedPubMedCentralCrossRef Castro SM, Guerrero-Plata A, Suarez-Real G et al (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369PubMedPubMedCentralCrossRef
107.
go back to reference Hosakote YM, Jantzi PD, Esham DL et al (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560PubMedPubMedCentralCrossRef Hosakote YM, Jantzi PD, Esham DL et al (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560PubMedPubMedCentralCrossRef
110.
go back to reference Moreno-Solís G, de la Torre-Aguilar MJ, Torres-Borrego J et al (2015) Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J. doi:10.1111/crj.12425 PubMed Moreno-Solís G, de la Torre-Aguilar MJ, Torres-Borrego J et al (2015) Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J. doi:10.​1111/​crj.​12425 PubMed
111.
go back to reference Dhanwani R, Khan M, Alam SI et al (2011) Differential proteome analysis of Chikungunya virus infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11:1936–1951PubMedCrossRef Dhanwani R, Khan M, Alam SI et al (2011) Differential proteome analysis of Chikungunya virus infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11:1936–1951PubMedCrossRef
112.
go back to reference Dhanwani R, Khan M, Bhaskar AS et al (2012) Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res 163(2012):563–572PubMedCrossRef Dhanwani R, Khan M, Bhaskar AS et al (2012) Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res 163(2012):563–572PubMedCrossRef
113.
go back to reference Patil DR, Hundekar SL, Arankalle VA (2012) Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Institut Pasteur Microbes Infect 14:457–469CrossRef Patil DR, Hundekar SL, Arankalle VA (2012) Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Institut Pasteur Microbes Infect 14:457–469CrossRef
114.
go back to reference Joubert PE, Werneke SW, de la Calle C et al (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209(5):1029–1047PubMedPubMedCentralCrossRef Joubert PE, Werneke SW, de la Calle C et al (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209(5):1029–1047PubMedPubMedCentralCrossRef
115.
go back to reference Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326(6114):711–713PubMedCrossRef Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326(6114):711–713PubMedCrossRef
116.
go back to reference Fuchs J, Ochsendorf F, Schofer H et al (1991) Oxidative imbalance in HIV infected patients. Med Hypotheses 36(1):60–64PubMedCrossRef Fuchs J, Ochsendorf F, Schofer H et al (1991) Oxidative imbalance in HIV infected patients. Med Hypotheses 36(1):60–64PubMedCrossRef
117.
go back to reference Staal FJT, Roederer M, Herzenberg LA et al (1990) Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87(24):9943–9947PubMedPubMedCentralCrossRef Staal FJT, Roederer M, Herzenberg LA et al (1990) Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87(24):9943–9947PubMedPubMedCentralCrossRef
118.
go back to reference Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem-Biol Interact 91(2–3):91–100PubMedCrossRef Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem-Biol Interact 91(2–3):91–100PubMedCrossRef
119.
go back to reference Sonnerborg A, Carlin G, Akerlund B et al (1988) Increased production of malondialdehyde in patients with HIV infection”. Scand J Infect Dis 20(3):287–290PubMedCrossRef Sonnerborg A, Carlin G, Akerlund B et al (1988) Increased production of malondialdehyde in patients with HIV infection”. Scand J Infect Dis 20(3):287–290PubMedCrossRef
120.
go back to reference Revillard J-P, Vincent CMA, Favier AE et al (1992) Lipid peroxidation in human immunodeficiency virus infection. J Acquired Immune Defic Syndromes 5(6):637–638 Revillard J-P, Vincent CMA, Favier AE et al (1992) Lipid peroxidation in human immunodeficiency virus infection. J Acquired Immune Defic Syndromes 5(6):637–638
121.
go back to reference Favier A, Sappey C, Leclerc P et al (1994) Antioxidant status and lipid peroxidation in patients infected with HIV. Chem-Biol Interact 91(2–3):165–180PubMedCrossRef Favier A, Sappey C, Leclerc P et al (1994) Antioxidant status and lipid peroxidation in patients infected with HIV. Chem-Biol Interact 91(2–3):165–180PubMedCrossRef
122.
go back to reference Malvy DJM, Richard M-J, Arnaud J et al (1994) Relationship of plasma malondialdehyde, vitamin E and antioxidant micronutrients to human immunodeficiency virus-1 seropositivity. Clin Chim Acta 224:89–94PubMedCrossRef Malvy DJM, Richard M-J, Arnaud J et al (1994) Relationship of plasma malondialdehyde, vitamin E and antioxidant micronutrients to human immunodeficiency virus-1 seropositivity. Clin Chim Acta 224:89–94PubMedCrossRef
123.
go back to reference Dröge W, Eck HP, Mihm S (1994) Oxidant-antioxidant status in human immunodeficiency virus infection. Oxygen Radic Biol Syst Methods Enzymol 233:594–601CrossRef Dröge W, Eck HP, Mihm S (1994) Oxidant-antioxidant status in human immunodeficiency virus infection. Oxygen Radic Biol Syst Methods Enzymol 233:594–601CrossRef
124.
go back to reference Fuchs J, Emerit I, Levy A et al (1995) Clastogenic factors in plasma of HIV-1 infected patients. Free Radic Biol Med 19:843–848PubMedCrossRef Fuchs J, Emerit I, Levy A et al (1995) Clastogenic factors in plasma of HIV-1 infected patients. Free Radic Biol Med 19:843–848PubMedCrossRef
125.
go back to reference De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteinereplenishes glutathione in HIV infection. Eur J Clin Investig 30:915–929CrossRef De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteinereplenishes glutathione in HIV infection. Eur J Clin Investig 30:915–929CrossRef
126.
go back to reference De La Fuente M, Miquel J, Catalan MP et al (2002) The amount of thiolic antioxidant ingestion related to improve several immune functions is higher in aged than in adult mice. Free Radic Res 36:119–126CrossRef De La Fuente M, Miquel J, Catalan MP et al (2002) The amount of thiolic antioxidant ingestion related to improve several immune functions is higher in aged than in adult mice. Free Radic Res 36:119–126CrossRef
127.
go back to reference Leff JA, Oppegard MA, Curiel TJ et al (1992) Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radic Biol Med 13(2):143–149PubMedCrossRef Leff JA, Oppegard MA, Curiel TJ et al (1992) Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radic Biol Med 13(2):143–149PubMedCrossRef
128.
go back to reference Greenspan HC (1994) Aruoma OI (1994) Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity. Immunol Today 15(5):209–213PubMedCrossRef Greenspan HC (1994) Aruoma OI (1994) Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity. Immunol Today 15(5):209–213PubMedCrossRef
129.
go back to reference Mishra MK, Ghosh D, Duseja R et al (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470PubMedCrossRef Mishra MK, Ghosh D, Duseja R et al (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470PubMedCrossRef
130.
go back to reference Dutta K, Ghosh D, Basu A (2009) Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin–proteasome system. J Neuroimmune Pharmacol 4:328–337PubMedCrossRef Dutta K, Ghosh D, Basu A (2009) Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin–proteasome system. J Neuroimmune Pharmacol 4:328–337PubMedCrossRef
131.
go back to reference Gansukh E, Kazibwe Z, Pandurangan M et al (2016) Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine 23:958–967PubMedCrossRef Gansukh E, Kazibwe Z, Pandurangan M et al (2016) Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine 23:958–967PubMedCrossRef
Metadata
Title
Implications of oxidative stress on viral pathogenesis
Authors
Fernanda Caetano Camini
Camila Carla da Silva Caetano
Letícia Trindade Almeida
Cintia Lopes de Brito Magalhães
Publication date
01-04-2017
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 4/2017
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-016-3187-y

Other articles of this Issue 4/2017

Archives of Virology 4/2017 Go to the issue