Skip to main content
Top
Published in: Inflammation 3/2014

01-06-2014

Ability of Recombinant Human Catalase to Suppress Inflammation of the Murine Lung Induced by Influenza A

Authors: Xunlong Shi, Zhihui Shi, Hai Huang, Hongguang Zhu, Pei Zhou, Haiyan Zhu, Dianwen Ju

Published in: Inflammation | Issue 3/2014

Login to get access

Abstract

Influenza A virus pandemics and emerging antiviral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and inflammation of the lung. We have previously investigated the therapeutic efficacy of recombinant human catalase (rhCAT) against viral pneumonia in mice, but the protection mechanisms involved were not explored. In the present study, we have performed a more in-depth analysis covering survival, lung inflammation, immune cell responses, production of cytokines, and inflammation signaling pathways in mice. Male imprinting control region mice were infected intranasally with high pathogenicity (H1N1) influenza A virus followed by treatment with recombinant human catalase. The administration of rhCAT resulted in a significant reduction in inflammatory cell infiltration (e.g., macrophages and neutrophils), inflammatory cytokine levels (e.g., IL-2, IL-6, TNF-α, IFN-γ), the level of the intercellular adhesion molecule 1 chemokine and the mRNA levels of toll-like receptors TLR-4, TLR-7, and NF-κB, as well as partially maintaining the activity of the antioxidant enzymes system. These findings indicated that rhCAT might play a key protective role in viral pneumonia of mice via suppression of inflammatory immune responses.
Literature
1.
go back to reference Deng, W., L. Baki, J. Yin, H. Zhou, and C.M. Baumgarten. 2000. HIV protease inhibitors elicit volume-sensitive Cl− current in cardiac myocytes via mitochondrial ROS. Journal of Molecular and Cellular Cardiology 49: 746–752.CrossRef Deng, W., L. Baki, J. Yin, H. Zhou, and C.M. Baumgarten. 2000. HIV protease inhibitors elicit volume-sensitive Cl current in cardiac myocytes via mitochondrial ROS. Journal of Molecular and Cellular Cardiology 49: 746–752.CrossRef
2.
go back to reference Liu, D., W. Shi, Y. Shi, D. Wang, H. Xiao, W. Li, Y. Bi, Y. Wu, X. Li, J. Yan, W. Liu, G. Zhao, W. Yang, Y. Wang, J. Ma, Y. Shu, F. Lei, and G.F. Gao. 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381: 1926–1932.PubMedCrossRef Liu, D., W. Shi, Y. Shi, D. Wang, H. Xiao, W. Li, Y. Bi, Y. Wu, X. Li, J. Yan, W. Liu, G. Zhao, W. Yang, Y. Wang, J. Ma, Y. Shu, F. Lei, and G.F. Gao. 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381: 1926–1932.PubMedCrossRef
4.
go back to reference Derek, G. 2009. The 2009 H1N1 influenza outbreak in its historical context. Journal of Clinical Virology 45: 174–178.CrossRef Derek, G. 2009. The 2009 H1N1 influenza outbreak in its historical context. Journal of Clinical Virology 45: 174–178.CrossRef
5.
go back to reference Ruuskanen, O., E. Lahti, L.C. Jennings, and D.R. Murdoch. 2011. Viral pneumonia. Lancet 9773: 1264–1275.CrossRef Ruuskanen, O., E. Lahti, L.C. Jennings, and D.R. Murdoch. 2011. Viral pneumonia. Lancet 9773: 1264–1275.CrossRef
6.
go back to reference Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. Van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, H. Liu, Y. Sun, M. Pasparakis, M. Kopf, C. Mech, S. Bavari, J.S. Peiris, A.S. Slutsky, S. Akira, M. Hultqvist, R. Holmdahl, J. Nicholls, C. Jiang, C.J. Binder, and J.M. Penninger. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133: 235–249.PubMedCrossRef Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. Van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, H. Liu, Y. Sun, M. Pasparakis, M. Kopf, C. Mech, S. Bavari, J.S. Peiris, A.S. Slutsky, S. Akira, M. Hultqvist, R. Holmdahl, J. Nicholls, C. Jiang, C.J. Binder, and J.M. Penninger. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133: 235–249.PubMedCrossRef
7.
go back to reference Oda, T., T. Akaike, T. Hamamoto, F. Suzuki, T. Hirano, and H. Maeda. 1989. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymerconjugated SOD. Science 244: 974–976.PubMedCrossRef Oda, T., T. Akaike, T. Hamamoto, F. Suzuki, T. Hirano, and H. Maeda. 1989. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymerconjugated SOD. Science 244: 974–976.PubMedCrossRef
8.
go back to reference Vlahos, R., J. Stambas, and S. Selemidis. 2012. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends in Pharmacological Sciences 33: 3–8.PubMedCrossRef Vlahos, R., J. Stambas, and S. Selemidis. 2012. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends in Pharmacological Sciences 33: 3–8.PubMedCrossRef
9.
go back to reference Selemidis, S., C.G. Sobey, K. Wingler, H.H. Schmidt, and G.R. Drummond. 2008. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacology & Therapeutics 120: 254–291.CrossRef Selemidis, S., C.G. Sobey, K. Wingler, H.H. Schmidt, and G.R. Drummond. 2008. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacology & Therapeutics 120: 254–291.CrossRef
10.
go back to reference Ogbeyalu, E.O., E.J. George, Y.F. Zhao, L.C. Zhou, H. Yang, and Z.M. Guo. 2009. Overexpression of catalase delays G0/G1- to S phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radical Biology & Medicine 46: 1658–1667.CrossRef Ogbeyalu, E.O., E.J. George, Y.F. Zhao, L.C. Zhou, H. Yang, and Z.M. Guo. 2009. Overexpression of catalase delays G0/G1- to S phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radical Biology & Medicine 46: 1658–1667.CrossRef
11.
go back to reference Hanawa, T., S. Asayama, T. Watanabe, S. Owada, and H. Kawakami. 2009. Protective effects of the complex between manganese porphyrins and catalase-poly (ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. Journal of Controlled Release 135: 60–64.PubMedCrossRef Hanawa, T., S. Asayama, T. Watanabe, S. Owada, and H. Kawakami. 2009. Protective effects of the complex between manganese porphyrins and catalase-poly (ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. Journal of Controlled Release 135: 60–64.PubMedCrossRef
12.
go back to reference Nishikawa, M., M. Hashida, and Y. Takakura. 2009. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Advanced Drug Delivery Reviews 61: 319–326.PubMedCrossRef Nishikawa, M., M. Hashida, and Y. Takakura. 2009. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Advanced Drug Delivery Reviews 61: 319–326.PubMedCrossRef
13.
go back to reference Brown-Borg, H.M., and S.G. Rakoczy. 2000. Catalase expression in delayed and premature aging mouse models. Experimental Gerontology 35: 199–212.PubMedCrossRef Brown-Borg, H.M., and S.G. Rakoczy. 2000. Catalase expression in delayed and premature aging mouse models. Experimental Gerontology 35: 199–212.PubMedCrossRef
14.
go back to reference Guy, J., X. Qi, and W.W. Hauswirth. 1998. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proceedings of the National Academy of Science 95: 13847–13852.CrossRef Guy, J., X. Qi, and W.W. Hauswirth. 1998. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proceedings of the National Academy of Science 95: 13847–13852.CrossRef
15.
go back to reference Shi, X.L., Z.H. Shi, H. Huang, H.G. Zhu, P. Zhou, and D.W. Ju. 2010. Therapeutic effect of recombinant human catalase on H1N1 influenza-induced pneumonia in mice. Inflammation 33: 166–172.PubMedCrossRef Shi, X.L., Z.H. Shi, H. Huang, H.G. Zhu, P. Zhou, and D.W. Ju. 2010. Therapeutic effect of recombinant human catalase on H1N1 influenza-induced pneumonia in mice. Inflammation 33: 166–172.PubMedCrossRef
17.
go back to reference Michelle, D.T., R.J. Emma, G.B. Andrew, and C.R. Patrick. 2011. Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice. Virology 413: 84–92.CrossRef Michelle, D.T., R.J. Emma, G.B. Andrew, and C.R. Patrick. 2011. Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice. Virology 413: 84–92.CrossRef
18.
go back to reference Liu, K., Z. Yao, L. Zhang, J. Li, L. Xing, and X. Wang. 2012. MDCK cell-cultured influenza virus vaccine protects mice from lethal challenge with different influenza viruses. Applied Microbiology and Biotechnology 94: 1173–1179.PubMedCrossRef Liu, K., Z. Yao, L. Zhang, J. Li, L. Xing, and X. Wang. 2012. MDCK cell-cultured influenza virus vaccine protects mice from lethal challenge with different influenza viruses. Applied Microbiology and Biotechnology 94: 1173–1179.PubMedCrossRef
19.
go back to reference Shi, X.L., M.Q. Feng, J. Shi, Z.H. Shi, J. Zhong, and P. Zhou. 2007. High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expression and Purification 54: 24–29.PubMedCrossRef Shi, X.L., M.Q. Feng, J. Shi, Z.H. Shi, J. Zhong, and P. Zhou. 2007. High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expression and Purification 54: 24–29.PubMedCrossRef
20.
go back to reference Kobasa, D., S.M. Jones, K. Shinya, J.C. Kash, J. Copps, H. Ebihara, Y. Hatta, J.H. Kim, P. Halfmann, M. Hatta, F. Feldmann, J.B. Alimonti, L. Fernando, Y. Li, M.G. Katze, H. Feldmann, and Y. Kawaoka. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319–323.PubMedCrossRef Kobasa, D., S.M. Jones, K. Shinya, J.C. Kash, J. Copps, H. Ebihara, Y. Hatta, J.H. Kim, P. Halfmann, M. Hatta, F. Feldmann, J.B. Alimonti, L. Fernando, Y. Li, M.G. Katze, H. Feldmann, and Y. Kawaoka. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319–323.PubMedCrossRef
21.
go back to reference Cillóniz, C., K. Shinya, X. Peng, M.J. Korth, S.C. Proll, L.D. Aicher, V.S. Carter, J.H. Chang, D. Kobasa, F. Feldmann, J.E. Strong, H. Feldmann, Y. Kawaoka, and M.G. Katze. 2009. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathogens 5: e1000604.PubMedCentralPubMedCrossRef Cillóniz, C., K. Shinya, X. Peng, M.J. Korth, S.C. Proll, L.D. Aicher, V.S. Carter, J.H. Chang, D. Kobasa, F. Feldmann, J.E. Strong, H. Feldmann, Y. Kawaoka, and M.G. Katze. 2009. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathogens 5: e1000604.PubMedCentralPubMedCrossRef
22.
go back to reference de Jong, M.D., C.P. Simmons, T.T. Thanh, V.M. Hien, G.J. Smith, T.N. Chau, D.M. Hoang, N.V. Chau, T.H. Khanh, V.C. Dong, P.T. Qui, B.V. Cam, Q. Ha do, Y. Guan, J.S. Peiris, N.T. Chinh, T.T. Hien, and J. Farrar. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12: 1203–1207.PubMedCrossRef de Jong, M.D., C.P. Simmons, T.T. Thanh, V.M. Hien, G.J. Smith, T.N. Chau, D.M. Hoang, N.V. Chau, T.H. Khanh, V.C. Dong, P.T. Qui, B.V. Cam, Q. Ha do, Y. Guan, J.S. Peiris, N.T. Chinh, T.T. Hien, and J. Farrar. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12: 1203–1207.PubMedCrossRef
23.
go back to reference Bermejo-Martin, J.F., R. Ortiz de Lejarazu, T. Pumarola, J. Rello, R. Almansa, P. Ramírez, I. Martin-Loeches, D. Varillas, M.C. Gallegos, C. Serón, D. Micheloud, J.M. Gomez, A. Tenorio-Abreu, M.J. Ramos, M.L. Molina, S. Huidobro, E. Sanchez, M. Gordón, V. Fernández, A. Del Castillo, M.A. Marcos, B. Villanueva, C.J. López, M. Rodríguez-Domínguez, J.C. Galan, R. Cantón, A. Lietor, S. Rojo, J.M. Eiros, C. Hinojosa, I. Gonzalez, N. Torner, D. Banner, A. Leon, P. Cuesta, T. Rowe, and D.J. Kelvin. 2009. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Critical Care 13: R201.PubMedCentralPubMedCrossRef Bermejo-Martin, J.F., R. Ortiz de Lejarazu, T. Pumarola, J. Rello, R. Almansa, P. Ramírez, I. Martin-Loeches, D. Varillas, M.C. Gallegos, C. Serón, D. Micheloud, J.M. Gomez, A. Tenorio-Abreu, M.J. Ramos, M.L. Molina, S. Huidobro, E. Sanchez, M. Gordón, V. Fernández, A. Del Castillo, M.A. Marcos, B. Villanueva, C.J. López, M. Rodríguez-Domínguez, J.C. Galan, R. Cantón, A. Lietor, S. Rojo, J.M. Eiros, C. Hinojosa, I. Gonzalez, N. Torner, D. Banner, A. Leon, P. Cuesta, T. Rowe, and D.J. Kelvin. 2009. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Critical Care 13: R201.PubMedCentralPubMedCrossRef
24.
go back to reference La Gruta, N.L., K. Kedzierska, J. Stambas, and P.C. Doherty. 2007. A question of self-preservation: immunopathology in influenza virus infection. Immunology and Cell Biology 85: 85–92.PubMedCrossRef La Gruta, N.L., K. Kedzierska, J. Stambas, and P.C. Doherty. 2007. A question of self-preservation: immunopathology in influenza virus infection. Immunology and Cell Biology 85: 85–92.PubMedCrossRef
25.
go back to reference Sirén, J., T. Sareneva, J. Pirhonen, M. Strengell, V. Veckman, I. Julkunen, and S. Matikainen. 2004. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. Journal of General Virology 85: 2357–2364.PubMedCrossRef Sirén, J., T. Sareneva, J. Pirhonen, M. Strengell, V. Veckman, I. Julkunen, and S. Matikainen. 2004. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. Journal of General Virology 85: 2357–2364.PubMedCrossRef
26.
go back to reference Galligan, C.L., T.T. Murooka, R. Rahbar, E. Baig, B. Majchrzak-Kita, and E.N. Fish. 2006. Interferons and viruses: signaling for supremacy. Immunologic Research 35: 27–40.PubMedCrossRef Galligan, C.L., T.T. Murooka, R. Rahbar, E. Baig, B. Majchrzak-Kita, and E.N. Fish. 2006. Interferons and viruses: signaling for supremacy. Immunologic Research 35: 27–40.PubMedCrossRef
27.
go back to reference Billiau, A., H. Heremans, K. Vermeire, and P. Matthys. 2006. Immunomodulatory properties of interferon-gamma. An update. Annals of the New York Academy of Sciences 856: 22–32.CrossRef Billiau, A., H. Heremans, K. Vermeire, and P. Matthys. 2006. Immunomodulatory properties of interferon-gamma. An update. Annals of the New York Academy of Sciences 856: 22–32.CrossRef
28.
go back to reference Kaiser, L., R.S. Fritz, S.E. Straus, L. Gubareva, and F.G. Hayden. 2001. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. Journal of Medical Virology 64: 262–268.PubMedCrossRef Kaiser, L., R.S. Fritz, S.E. Straus, L. Gubareva, and F.G. Hayden. 2001. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. Journal of Medical Virology 64: 262–268.PubMedCrossRef
29.
go back to reference Rosenblum, M.D., E. Olasz, J.E. Woodliff, B.D. Johnson, M.C. Konkol, K.A. Gerber, R.J. Orentas, G. Sandford, and R.L. Truitt. 2004. CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance. Blood 103: 2691–2698.PubMedCrossRef Rosenblum, M.D., E. Olasz, J.E. Woodliff, B.D. Johnson, M.C. Konkol, K.A. Gerber, R.J. Orentas, G. Sandford, and R.L. Truitt. 2004. CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance. Blood 103: 2691–2698.PubMedCrossRef
30.
go back to reference Snelgrove, R.J., L. Edwards, A.J. Rae, and T. Hussell. 2006. An absence of reactive oxygen species improves the resolution of lung influenza infection. European Journal of Immunology 36: 1364–1373.PubMedCrossRef Snelgrove, R.J., L. Edwards, A.J. Rae, and T. Hussell. 2006. An absence of reactive oxygen species improves the resolution of lung influenza infection. European Journal of Immunology 36: 1364–1373.PubMedCrossRef
31.
go back to reference Shirey, K.A., W. Lai, A.J. Scott, M. Lipsky, P. Mistry, L.M. Pletneva, C.L. Karp, J. McAlees, T.L. Gioannini, J. Weiss, W.H. Chen, R.K. Ernst, D.P. Rossignol, F. Gusovsky, J.C. Blanco, and S.N. Vogel. 2013. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497: 498–502.PubMedCentralPubMedCrossRef Shirey, K.A., W. Lai, A.J. Scott, M. Lipsky, P. Mistry, L.M. Pletneva, C.L. Karp, J. McAlees, T.L. Gioannini, J. Weiss, W.H. Chen, R.K. Ernst, D.P. Rossignol, F. Gusovsky, J.C. Blanco, and S.N. Vogel. 2013. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497: 498–502.PubMedCentralPubMedCrossRef
Metadata
Title
Ability of Recombinant Human Catalase to Suppress Inflammation of the Murine Lung Induced by Influenza A
Authors
Xunlong Shi
Zhihui Shi
Hai Huang
Hongguang Zhu
Pei Zhou
Haiyan Zhu
Dianwen Ju
Publication date
01-06-2014
Publisher
Springer US
Published in
Inflammation / Issue 3/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9800-2

Other articles of this Issue 3/2014

Inflammation 3/2014 Go to the issue