Skip to main content
Top
Published in: Brain Structure and Function 9/2021

Open Access 01-12-2021 | Review

Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion

Author: Andrew T. Smith

Published in: Brain Structure and Function | Issue 9/2021

Login to get access

Abstract

The response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342–353, 1996) is proposed to reflect this.
Footnotes
1
The words “homologue” and “homologous” are used here to refer to cortical areas in two species that have closely related functions and are assumed to derive from the same anatomical region in a common ancestor, whether or not they still have corresponding anatomical locations.
 
2
Different classificatory systems are in use for sub-divisions of both human and macaque cerebral cortex and these sometimes reflect differences not only in terminology but also in the positions of boundaries and the number of sub-divisions. In this review, Brodmann’s system is used to provide anchor points while refinements and sub-divisions are described in the terms chosen by the authors cited. Alternative names for the same area are added where this will aid clarity.
 
Literature
go back to reference Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Essen DCV, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99:509–524PubMedCrossRef Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Essen DCV, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99:509–524PubMedCrossRef
go back to reference Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24:563–578PubMedCrossRef Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24:563–578PubMedCrossRef
go back to reference Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681–2692PubMedPubMedCentralCrossRef Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681–2692PubMedPubMedCentralCrossRef
go back to reference Antal A, Baudewig J, Paulus W, Dechent P (2008) The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis Neurosci 25:17–26PubMedCrossRef Antal A, Baudewig J, Paulus W, Dechent P (2008) The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis Neurosci 25:17–26PubMedCrossRef
go back to reference Avila E, Lakshminarasimhan KJ, DeAngelis GC, Angelaki DE (2019) Visual and vestibular selectivity for self-motion in macaque posterior parietal Area 7a. Cereb Cortex 29:3932–3947PubMedCrossRef Avila E, Lakshminarasimhan KJ, DeAngelis GC, Angelaki DE (2019) Visual and vestibular selectivity for self-motion in macaque posterior parietal Area 7a. Cereb Cortex 29:3932–3947PubMedCrossRef
go back to reference Bakola S, Gamberini M, Passarelli L, Fattori P, Galletti C (2010) Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. Cereb Cortex 20:2592–2604PubMedCrossRef Bakola S, Gamberini M, Passarelli L, Fattori P, Galletti C (2010) Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. Cereb Cortex 20:2592–2604PubMedCrossRef
go back to reference Bakola S, Passarelli L, Gamberini M, Fattori P, Galletti C (2013) Behavioral/cognitive cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex. J Neurosci 33:6648–6658PubMedPubMedCentralCrossRef Bakola S, Passarelli L, Gamberini M, Fattori P, Galletti C (2013) Behavioral/cognitive cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex. J Neurosci 33:6648–6658PubMedPubMedCentralCrossRef
go back to reference Bates J, Goldman-Rakic P (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMedCrossRef Bates J, Goldman-Rakic P (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMedCrossRef
go back to reference Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in human superior temporal sulcus. Neuroimage 41:1011–1020PubMedCrossRef Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in human superior temporal sulcus. Neuroimage 41:1011–1020PubMedCrossRef
go back to reference Beckmann M, JohansenBerg H, Rushworth MFS (2009) Connectivity-based parcellation of human cingulate cortex and Its relation to functional specialization. J Neurosci 29:1175–1190PubMedPubMedCentralCrossRef Beckmann M, JohansenBerg H, Rushworth MFS (2009) Connectivity-based parcellation of human cingulate cortex and Its relation to functional specialization. J Neurosci 29:1175–1190PubMedPubMedCentralCrossRef
go back to reference Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 8:209–225PubMedPubMedCentralCrossRef Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 8:209–225PubMedPubMedCentralCrossRef
go back to reference Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior teemporal visual areas of the macaque. J Comp Neurol 296:462–495PubMedCrossRef Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior teemporal visual areas of the macaque. J Comp Neurol 296:462–495PubMedCrossRef
go back to reference Bremmer F, Schlack A, Shah N, Zafiris O, Kubischik M, Hoffmann K-P, Zillies K, Fink G (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRef Bremmer F, Schlack A, Shah N, Zafiris O, Kubischik M, Hoffmann K-P, Zillies K, Fink G (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRef
go back to reference Bremmer F, Duhamel JR, Hamed SB, Graf W (2002a) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1554–1568PubMedCrossRef Bremmer F, Duhamel JR, Hamed SB, Graf W (2002a) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1554–1568PubMedCrossRef
go back to reference Bremmer F, Klam F, Duhamel JR, Hamed SB, Graf W (2002b) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586PubMedCrossRef Bremmer F, Klam F, Duhamel JR, Hamed SB, Graf W (2002b) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586PubMedCrossRef
go back to reference Breveglieri R, Galletti C, Monaco S, Fattori P (2008) Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cereb Cortex 18:806–816PubMedCrossRef Breveglieri R, Galletti C, Monaco S, Fattori P (2008) Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cereb Cortex 18:806–816PubMedCrossRef
go back to reference Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63PubMedCrossRef Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63PubMedCrossRef
go back to reference Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in seperior temporal sulcus of the macaque. J Neurophysiol 46:369–384PubMedCrossRef Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in seperior temporal sulcus of the macaque. J Neurophysiol 46:369–384PubMedCrossRef
go back to reference Cadoret G, Smith AM (1995) Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey. J Neurophysiol 73:2584–2590PubMedCrossRef Cadoret G, Smith AM (1995) Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey. J Neurophysiol 73:2584–2590PubMedCrossRef
go back to reference Cadoret G, Smith AM (1997) Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol 77:153–166PubMedCrossRef Cadoret G, Smith AM (1997) Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol 77:153–166PubMedCrossRef
go back to reference Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20:1964–1973PubMedCrossRef Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20:1964–1973PubMedCrossRef
go back to reference Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23PubMedCrossRef Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23PubMedCrossRef
go back to reference Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421PubMedCrossRef Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421PubMedCrossRef
go back to reference Chen A, DeAngelis GC, Angelaki DE (2011a) Convergence of vestibular and visual self-motion signals in an area of the posterior Sylvian fissure. J Neurosci 31:11617–11627PubMedPubMedCentralCrossRef Chen A, DeAngelis GC, Angelaki DE (2011a) Convergence of vestibular and visual self-motion signals in an area of the posterior Sylvian fissure. J Neurosci 31:11617–11627PubMedPubMedCentralCrossRef
go back to reference Chen A, DeAngelis GC, Angelaki DE (2011b) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31:12036–12052PubMedPubMedCentralCrossRef Chen A, DeAngelis GC, Angelaki DE (2011b) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31:12036–12052PubMedPubMedCentralCrossRef
go back to reference Chen A, DeAngelis GC, Angelaki DE (2013) Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J Neurosci 33:3567–3581PubMedPubMedCentralCrossRef Chen A, DeAngelis GC, Angelaki DE (2013) Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J Neurosci 33:3567–3581PubMedPubMedCentralCrossRef
go back to reference Chen A, Gu Y, Liu S, DeAngelis GC, Angelaki DE (2016) Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J Neurosci 36:3789–3798PubMedPubMedCentralCrossRef Chen A, Gu Y, Liu S, DeAngelis GC, Angelaki DE (2016) Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J Neurosci 36:3789–3798PubMedPubMedCentralCrossRef
go back to reference Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914PubMedCrossRef Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914PubMedCrossRef
go back to reference Cooke D, Taylor CSR, Moore T, Graziano MSA (2003) Complex movements evoked by microstimulation of the ventral intraparietal area. Proc Natl Acad Sci USA 100:6163–6168PubMedPubMedCentralCrossRef Cooke D, Taylor CSR, Moore T, Graziano MSA (2003) Complex movements evoked by microstimulation of the ventral intraparietal area. Proc Natl Acad Sci USA 100:6163–6168PubMedPubMedCentralCrossRef
go back to reference Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard S, Renaud L, Lejards C, Vayssière N, Trotter Y, Durand J-B (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27:330–343PubMedPubMedCentral Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard S, Renaud L, Lejards C, Vayssière N, Trotter Y, Durand J-B (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27:330–343PubMedPubMedCentral
go back to reference Crutcher MD, Russo GS, Ye S, Backus D (2004) Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey. Exp Brain Res 158:278–288PubMedCrossRef Crutcher MD, Russo GS, Ye S, Backus D (2004) Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey. Exp Brain Res 158:278–288PubMedCrossRef
go back to reference De Castro V, Smith AT, Beer AL, Leguen C, Vayssière N, Héjja-Brichard Y, Audurier YP, Cottereau BR, Durand J-B (2021) Connectivity of the cingulate sulcus visual area (CSv) in macaque monkeys. Cereb Cortex 31:1347–1364PubMedCrossRef De Castro V, Smith AT, Beer AL, Leguen C, Vayssière N, Héjja-Brichard Y, Audurier YP, Cottereau BR, Durand J-B (2021) Connectivity of the cingulate sulcus visual area (CSv) in macaque monkeys. Cereb Cortex 31:1347–1364PubMedCrossRef
go back to reference Dean HL, Crowley JC, Platt ML (2004) Visual and saccade-related activity in macaque posterior cingulate cortex. J Neurophysiol 92:3056–3068PubMedCrossRef Dean HL, Crowley JC, Platt ML (2004) Visual and saccade-related activity in macaque posterior cingulate cortex. J Neurophysiol 92:3056–3068PubMedCrossRef
go back to reference Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S (2021) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92PubMedCrossRef Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S (2021) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92PubMedCrossRef
go back to reference Dukelow SP, DeSouza JFX, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86:1991–2000PubMedCrossRef Dukelow SP, DeSouza JFX, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86:1991–2000PubMedCrossRef
go back to reference Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621PubMedCrossRef Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621PubMedCrossRef
go back to reference Fetsch CR, DeAngelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14:429–442PubMedCrossRef Fetsch CR, DeAngelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14:429–442PubMedCrossRef
go back to reference Field D, Inman L, Li L (2015) Visual processing of optic flow and motor control in the human posterior cingulate sulcus. Cortex 71:377–389PubMedCrossRef Field D, Inman L, Li L (2015) Visual processing of optic flow and motor control in the human posterior cingulate sulcus. Cortex 71:377–389PubMedCrossRef
go back to reference Field DT, Biagi N, Inman LA (2020) The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. Neuroimage 211:116679CrossRef Field DT, Biagi N, Inman LA (2020) The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. Neuroimage 211:116679CrossRef
go back to reference Fink G, Frackowiak R, Pietrzyk U, Passingham R (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedCrossRef Fink G, Frackowiak R, Pietrzyk U, Passingham R (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedCrossRef
go back to reference Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22:865–876PubMedCrossRef Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22:865–876PubMedCrossRef
go back to reference Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112:2481–2491PubMedCrossRef Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112:2481–2491PubMedCrossRef
go back to reference Fukushima J, Akao T, Kurkin S, Kaneko CRS, Fukushima K (2006) The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions. J Vestib Res 16:1–22PubMedPubMedCentralCrossRef Fukushima J, Akao T, Kurkin S, Kaneko CRS, Fukushima K (2006) The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions. J Vestib Res 16:1–22PubMedPubMedCentralCrossRef
go back to reference Furlan M, Wann JP, Smith AT (2014) A representation of changing heading direction in human cortical areas pVIP and CSv. Cereb Cortex 24:2848–2858PubMedCrossRef Furlan M, Wann JP, Smith AT (2014) A representation of changing heading direction in human cortical areas pVIP and CSv. Cereb Cortex 24:2848–2858PubMedCrossRef
go back to reference Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727PubMedCrossRef Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727PubMedCrossRef
go back to reference Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588PubMedCrossRef Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588PubMedCrossRef
go back to reference Gamberini M, Bò GD, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C (2018) Sensory properties of the caudal aspect of the macaque’s superior parietal lobule. Brain Struct Funct 223:1863–1879PubMed Gamberini M, Bò GD, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C (2018) Sensory properties of the caudal aspect of the macaque’s superior parietal lobule. Brain Struct Funct 223:1863–1879PubMed
go back to reference Gamberini M, Passarelli L, Fattori P, Galletti C (2020a) Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 225:1349–1367PubMedCrossRef Gamberini M, Passarelli L, Fattori P, Galletti C (2020a) Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 225:1349–1367PubMedCrossRef
go back to reference Gamberini M, Passarelli L, Impieri D, Worthy KH, Burman KJ, Fattori P, Galletti C, Rosa MGP, Bakola S (2020b) Thalamic afferents emphasize the different functions of macaque precuneate areas. Brain Struct Funct 225:853–870PubMedCrossRef Gamberini M, Passarelli L, Impieri D, Worthy KH, Burman KJ, Fattori P, Galletti C, Rosa MGP, Bakola S (2020b) Thalamic afferents emphasize the different functions of macaque precuneate areas. Brain Struct Funct 225:853–870PubMedCrossRef
go back to reference Ghaziri J, Tucholka A, Girard G, Houde J-C, Boucher O, Gilbert G, Descoteaux M, Lippé S, Rainville P, Nguyen DK (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27:1216–1228PubMedCrossRef Ghaziri J, Tucholka A, Girard G, Houde J-C, Boucher O, Gilbert G, Descoteaux M, Lippé S, Rainville P, Nguyen DK (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27:1216–1228PubMedCrossRef
go back to reference Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston
go back to reference Gu Y (2018) Vestibular signals in primate cortex for self-motion perception. Curr Opin Neurobiol 52:10–17PubMedCrossRef Gu Y (2018) Vestibular signals in primate cortex for self-motion perception. Curr Opin Neurobiol 52:10–17PubMedCrossRef
go back to reference Gu Y, DeAngelis GC, Angelaki DE (2012) Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J Neurosci 32:2299–2313PubMedPubMedCentralCrossRef Gu Y, DeAngelis GC, Angelaki DE (2012) Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J Neurosci 32:2299–2313PubMedPubMedCentralCrossRef
go back to reference Gu Y, Cheng Z, Yang L, DeAngelis GC, Angelaki DE (2016) Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field. Cereb Cortex 26:3785–3801PubMedPubMedCentralCrossRef Gu Y, Cheng Z, Yang L, DeAngelis GC, Angelaki DE (2016) Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field. Cereb Cortex 26:3785–3801PubMedPubMedCentralCrossRef
go back to reference Guldin WO, Akbarian S, Grüsser DO-J (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401PubMedCrossRef Guldin WO, Akbarian S, Grüsser DO-J (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401PubMedCrossRef
go back to reference Habas C (2010) Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T. Neuroradiology 52:47–59PubMedCrossRef Habas C (2010) Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T. Neuroradiology 52:47–59PubMedCrossRef
go back to reference Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Nambu A, Takada M (2003) Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 462:121–138PubMedCrossRef Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Nambu A, Takada M (2003) Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 462:121–138PubMedCrossRef
go back to reference He S, Dum R, Strick P (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMedPubMedCentralCrossRef He S, Dum R, Strick P (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMedPubMedCentralCrossRef
go back to reference Hietanen JK, Perrett DI (1997) A comparison of visual responses to object- and ego-motion in the macaque superior temporal polysensory area. Exp Brain Res 108:341–345 Hietanen JK, Perrett DI (1997) A comparison of visual responses to object- and ego-motion in the macaque superior temporal polysensory area. Exp Brain Res 108:341–345
go back to reference Howells H, Thiebaut de Schotten M, Dell’Acqua F, Beyh A, Zappalà G, Leslie A, Simmons A, Murphy DG, Catani M (2018) Frontoparietal tracts linked to lateralized hand preference and manual specialization. Cereb Cortex 28:2482–2494PubMedPubMedCentralCrossRef Howells H, Thiebaut de Schotten M, Dell’Acqua F, Beyh A, Zappalà G, Leslie A, Simmons A, Murphy DG, Catani M (2018) Frontoparietal tracts linked to lateralized hand preference and manual specialization. Cereb Cortex 28:2482–2494PubMedPubMedCentralCrossRef
go back to reference Indovina I, Bosco G, Riccelli R, Maffei V, Lacquaniti F, Passamonti L, Toschi N (2020) Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. Neuroimage 222:117247PubMedCrossRef Indovina I, Bosco G, Riccelli R, Maffei V, Lacquaniti F, Passamonti L, Toschi N (2020) Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. Neuroimage 222:117247PubMedCrossRef
go back to reference Kong X-Z, Wang X, Pu Y, Huang L, Hao X, Zhen Z, Liu J (2017) Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222:749–764PubMedCrossRef Kong X-Z, Wang X, Pu Y, Huang L, Hao X, Zhen Z, Liu J (2017) Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222:749–764PubMedCrossRef
go back to reference Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat Rec 263:215–236PubMedCrossRef Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat Rec 263:215–236PubMedCrossRef
go back to reference Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137PubMedCrossRef Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137PubMedCrossRef
go back to reference Luppino G, Matelli M, Camarda R, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in medial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482PubMedCrossRef Luppino G, Matelli M, Camarda R, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in medial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482PubMedCrossRef
go back to reference Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140PubMedCrossRef Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140PubMedCrossRef
go back to reference Markov NT, Ercsey-Ravasz MM, Gomes ARR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Essen DCV, Kennedy H (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17–36PubMedCrossRef Markov NT, Ercsey-Ravasz MM, Gomes ARR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Essen DCV, Kennedy H (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17–36PubMedCrossRef
go back to reference Morecraft RJ, van Hoesen GW (1992) Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J Comp Neurol 322:471–489PubMedCrossRef Morecraft RJ, van Hoesen GW (1992) Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J Comp Neurol 322:471–489PubMedCrossRef
go back to reference Morecraft R, van Hoesen G (1993) Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol 337:669–689PubMedCrossRef Morecraft R, van Hoesen G (1993) Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol 337:669–689PubMedCrossRef
go back to reference Morecraft RJ, Van Hoesen GW (1998) Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res Bull 45:209–232PubMedCrossRef Morecraft RJ, Van Hoesen GW (1998) Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res Bull 45:209–232PubMedCrossRef
go back to reference Morecraft RJ, Rockland KS, Van Hoesen GW (2000) Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. Cereb Cortex 10:192–203PubMedCrossRef Morecraft RJ, Rockland KS, Van Hoesen GW (2000) Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. Cereb Cortex 10:192–203PubMedCrossRef
go back to reference Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469:37–69PubMedCrossRef Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469:37–69PubMedCrossRef
go back to reference Olson C, Musil S, Goldberg M (1993) Posterior cingulate cortex and visuospatial cognition: properties of single neurons in the behaving monkey. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhauser, Boston, pp 366–380CrossRef Olson C, Musil S, Goldberg M (1993) Posterior cingulate cortex and visuospatial cognition: properties of single neurons in the behaving monkey. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhauser, Boston, pp 366–380CrossRef
go back to reference Olson C, Musil S, Goldberg M (1996) Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J Neurophysiol 76:3285–3300PubMedCrossRef Olson C, Musil S, Goldberg M (1996) Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J Neurophysiol 76:3285–3300PubMedCrossRef
go back to reference Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210PubMedCrossRef Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210PubMedCrossRef
go back to reference Parvizi J, Van Hoesen G, Buckwalter J, Damasio A (2006) Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci USA 103:1563–1568PubMedPubMedCentralCrossRef Parvizi J, Van Hoesen G, Buckwalter J, Damasio A (2006) Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci USA 103:1563–1568PubMedPubMedCentralCrossRef
go back to reference Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C (2018) Uniformity and diversity of cortical projections to precuneate areas in the macaque monkey: What defines area PGm? Cereb Cortex 28:1700–1717PubMedCrossRef Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C (2018) Uniformity and diversity of cortical projections to precuneate areas in the macaque monkey: What defines area PGm? Cereb Cortex 28:1700–1717PubMedCrossRef
go back to reference Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353PubMedCrossRef Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353PubMedCrossRef
go back to reference Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20:411–424PubMedCrossRef Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20:411–424PubMedCrossRef
go back to reference Pitzalis S, Sdoia S, Bultrini A, Committeri G, Russo FD, Fattori P, Galletti C, Galati G (2013b) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241PubMedPubMedCentralCrossRef Pitzalis S, Sdoia S, Bultrini A, Committeri G, Russo FD, Fattori P, Galletti C, Galati G (2013b) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241PubMedPubMedCentralCrossRef
go back to reference Pitzalis S, Serra C, Sulpizio V, Marco SD, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092PubMedCrossRef Pitzalis S, Serra C, Sulpizio V, Marco SD, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092PubMedCrossRef
go back to reference Pitzalis S, Serra C, Sulpizio V, Committeri G, Pasquale Fd, Fattori P, Galletti C, Sepe R, Galati G (2020) Neural bases of self- and object-motion in a naturalistic vision. Hum Brain Mapp 41:1084–1111PubMedCrossRef Pitzalis S, Serra C, Sulpizio V, Committeri G, Pasquale Fd, Fattori P, Galletti C, Sepe R, Galati G (2020) Neural bases of self- and object-motion in a naturalistic vision. Hum Brain Mapp 41:1084–1111PubMedCrossRef
go back to reference Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area PEc. Cereb Cortex 12:639–646PubMedCrossRef Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area PEc. Cereb Cortex 12:639–646PubMedCrossRef
go back to reference Raffi M, Carrozzini C, Maioli M, Squatrito S (2010) Multimodal representation of optic flow in area PEc of macaque monkey. Neuroscience 171:1241–1255PubMedCrossRef Raffi M, Carrozzini C, Maioli M, Squatrito S (2010) Multimodal representation of optic flow in area PEc of macaque monkey. Neuroscience 171:1241–1255PubMedCrossRef
go back to reference Raiser TM, Flanagin VL, Duering M, van Ombergen A, Ruehl RM, zu Eulenberg P (2020) The human corticocortical vestibular network. NeuoImage 223:117362CrossRef Raiser TM, Flanagin VL, Duering M, van Ombergen A, Ruehl RM, zu Eulenberg P (2020) The human corticocortical vestibular network. NeuoImage 223:117362CrossRef
go back to reference Russo GS, Backus DA, Ye S, Crutcher MD (2002) Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area. J Neurophysiol 88:2612–2629PubMedCrossRef Russo GS, Backus DA, Ye S, Crutcher MD (2002) Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area. J Neurophysiol 88:2612–2629PubMedCrossRef
go back to reference Saito H-A, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157PubMedPubMedCentralCrossRef Saito H-A, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157PubMedPubMedCentralCrossRef
go back to reference Schaafsma SJ, Duysens J (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol 76:4056–4068PubMedCrossRef Schaafsma SJ, Duysens J (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol 76:4056–4068PubMedCrossRef
go back to reference Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15:4464–4487PubMedPubMedCentralCrossRef Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15:4464–4487PubMedPubMedCentralCrossRef
go back to reference Schlack A, Hoffmann KP, Bremmer F (2002) Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1877–1886PubMedCrossRef Schlack A, Hoffmann KP, Bremmer F (2002) Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1877–1886PubMedCrossRef
go back to reference Seltzer B, Pandya DN (1994) Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343:445–463PubMedCrossRef Seltzer B, Pandya DN (1994) Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343:445–463PubMedCrossRef
go back to reference Serra C, Galletti C, Marco SD, Fattori P, Galati G, Sulpizio V, Pitzalis S (2019) Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 40:3174–3191PubMedPubMedCentralCrossRef Serra C, Galletti C, Marco SD, Fattori P, Galati G, Sulpizio V, Pitzalis S (2019) Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp 40:3174–3191PubMedPubMedCentralCrossRef
go back to reference Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci 10(10):3171–3193PubMedCrossRef Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci 10(10):3171–3193PubMedCrossRef
go back to reference Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7:327–346PubMedCrossRef Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7:327–346PubMedCrossRef
go back to reference Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22:1068–1077PubMedCrossRef Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22:1068–1077PubMedCrossRef
go back to reference Smith AT, Greenlee MW, DeAngelis GC, Angelaki DE (2017) Distributed visual–vestibular processing in the cerebral cortex of man and macaque. Multisens Res 30:91–120CrossRef Smith AT, Greenlee MW, DeAngelis GC, Angelaki DE (2017) Distributed visual–vestibular processing in the cerebral cortex of man and macaque. Multisens Res 30:91–120CrossRef
go back to reference Smith AT, Beer AL, Furlan M, Mars RB (2018) Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex. Cereb Cortex 28:713–725PubMed Smith AT, Beer AL, Furlan M, Mars RB (2018) Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex. Cereb Cortex 28:713–725PubMed
go back to reference Stanton G, Bruce C, Goldberg M (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef Stanton G, Bruce C, Goldberg M (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef
go back to reference Sunaert S, VanHecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMedCrossRef Sunaert S, VanHecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMedCrossRef
go back to reference Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641PubMedCrossRef Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641PubMedCrossRef
go back to reference Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745PubMedCrossRef Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745PubMedCrossRef
go back to reference Tian JR, Lynch JC (1996) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. J Neurophysiol 76:2754–2771PubMedCrossRef Tian JR, Lynch JC (1996) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. J Neurophysiol 76:2754–2771PubMedCrossRef
go back to reference Uesaki M, Furlan M, Smith AT, Takemura H (2019) White matter connections of the cingulate sulcus visual area (CSv). i-Perception 10:80 Uesaki M, Furlan M, Smith AT, Takemura H (2019) White matter connections of the cingulate sulcus visual area (CSv). i-Perception 10:80
go back to reference Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analysis of visual cortex. J Am Med Inform Assoc 8:443–459PubMedPubMedCentralCrossRef Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analysis of visual cortex. J Am Med Inform Assoc 8:443–459PubMedPubMedCentralCrossRef
go back to reference Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: Surface features, flat maps and cytoarchitecture. J Comp Neurol 359: 490–506PubMedCrossRef Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: Surface features, flat maps and cytoarchitecture. J Comp Neurol 359: 490–506PubMedCrossRef
go back to reference Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194PubMedCrossRef Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194PubMedCrossRef
go back to reference Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757PubMedCrossRef Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757PubMedCrossRef
go back to reference Wang Y, Matsuzaka Y, Shima K, Tanji J (2004) Cingulate cortical cells projecting to monkey frontal eye field and primary motor cortex. NeuroReport 19:1559–1563CrossRef Wang Y, Matsuzaka Y, Shima K, Tanji J (2004) Cingulate cortical cells projecting to monkey frontal eye field and primary motor cortex. NeuroReport 19:1559–1563CrossRef
go back to reference Warren WH, Hannon DJ (1988) Direction of self-motion is perceived from optical flow. Nature 336:162–163CrossRef Warren WH, Hannon DJ (1988) Direction of self-motion is perceived from optical flow. Nature 336:162–163CrossRef
go back to reference Wirth AM, Frank SM, Greenlee MW, Beer AL (2018) White matter connections of the visual–vestibular cortex examined by diffusion-weighted imaging. Brain Connect 8:235–249PubMedCrossRef Wirth AM, Frank SM, Greenlee MW, Beer AL (2018) White matter connections of the visual–vestibular cortex examined by diffusion-weighted imaging. Brain Connect 8:235–249PubMedCrossRef
go back to reference Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M (2011) Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuoImage 54:2571–2581CrossRef Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M (2011) Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuoImage 54:2571–2581CrossRef
Metadata
Title
Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion
Author
Andrew T. Smith
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2021
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02325-5

Other articles of this Issue 9/2021

Brain Structure and Function 9/2021 Go to the issue