Skip to main content
Top
Published in: Brain Structure and Function 9/2021

Open Access 01-12-2021 | Review

Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network

Authors: Joanita F. D’Souza, Nicholas S. C. Price, Maureen A. Hagan

Published in: Brain Structure and Function | Issue 9/2021

Login to get access

Abstract

The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.
Literature
go back to reference Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRef Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRef
go back to reference Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113PubMedCrossRef Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113PubMedCrossRef
go back to reference Andersen RA, Bracewell RM, Barash S et al (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10:1176–1196PubMedPubMedCentralCrossRef Andersen RA, Bracewell RM, Barash S et al (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10:1176–1196PubMedPubMedCentralCrossRef
go back to reference Anderson JC, Kennedy H, Martin KAC (2011) Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. J Neurosci 31:10872–10881PubMedPubMedCentralCrossRef Anderson JC, Kennedy H, Martin KAC (2011) Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. J Neurosci 31:10872–10881PubMedPubMedCentralCrossRef
go back to reference Antoniades C, Ettinger U, Gaymard B et al (2013) An internationally standardised antisaccade protocol. Vision Res 84:1–5PubMedCrossRef Antoniades C, Ettinger U, Gaymard B et al (2013) An internationally standardised antisaccade protocol. Vision Res 84:1–5PubMedCrossRef
go back to reference Baker JT, Patel GH, Corbetta M, Snyder LH (2006) Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. Cereb Cortex 16:447–459PubMedCrossRef Baker JT, Patel GH, Corbetta M, Snyder LH (2006) Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. Cereb Cortex 16:447–459PubMedCrossRef
go back to reference Bakola S, Burman KJ, Rosa MGP (2015) The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 93:72–81PubMedCrossRef Bakola S, Burman KJ, Rosa MGP (2015) The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 93:72–81PubMedCrossRef
go back to reference Barash S, Bracewell RM, Fogassi L et al (1991) Saccade-related activity in the lateral intraparietal area. II Spatial Properties J Neurophysiol 66:1109–1124PubMed Barash S, Bracewell RM, Fogassi L et al (1991) Saccade-related activity in the lateral intraparietal area. II Spatial Properties J Neurophysiol 66:1109–1124PubMed
go back to reference Barton JJS, Cherkasova MV, Lindgren K et al (2002) Antisaccades and task switching: studies of control processes in saccadic function in normal subjects and schizophrenic patients. Ann N Y Acad Sci 956:250–263PubMedCrossRef Barton JJS, Cherkasova MV, Lindgren K et al (2002) Antisaccades and task switching: studies of control processes in saccadic function in normal subjects and schizophrenic patients. Ann N Y Acad Sci 956:250–263PubMedCrossRef
go back to reference Bastos AM, Vezoli J, Bosman CA et al (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401PubMedCrossRef Bastos AM, Vezoli J, Bosman CA et al (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401PubMedCrossRef
go back to reference Berman RA, Joiner WM, Cavanaugh J, Wurtz RH (2009) Modulation of presaccadic activity in the frontal eye field by the superior colliculus. J Neurophysiol 101:2934–2942PubMedPubMedCentralCrossRef Berman RA, Joiner WM, Cavanaugh J, Wurtz RH (2009) Modulation of presaccadic activity in the frontal eye field by the superior colliculus. J Neurophysiol 101:2934–2942PubMedPubMedCentralCrossRef
go back to reference Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86PubMedCrossRef Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86PubMedCrossRef
go back to reference Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445PubMedCrossRef Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445PubMedCrossRef
go back to reference Blum B, Kulikowski JJ, Carden D, Harwood D (1982) Eye movements induced by electrical stimulation of the frontal fields of marmosets and squirrel monkeys. Brain Behav Evol 21:34–41PubMedCrossRef Blum B, Kulikowski JJ, Carden D, Harwood D (1982) Eye movements induced by electrical stimulation of the frontal fields of marmosets and squirrel monkeys. Brain Behav Evol 21:34–41PubMedCrossRef
go back to reference Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRef Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRef
go back to reference Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734PubMedCrossRef Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734PubMedCrossRef
go back to reference Burman KJ, Palmer SM, Gamberini M, Rosa MGP (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172PubMedCrossRef Burman KJ, Palmer SM, Gamberini M, Rosa MGP (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172PubMedCrossRef
go back to reference Burman KJ, Bakola S, Richardson KE et al (2014a) Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 522:3683–3716PubMedCrossRef Burman KJ, Bakola S, Richardson KE et al (2014a) Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 522:3683–3716PubMedCrossRef
go back to reference Burman KJ, Bakola S, Richardson KE et al (2014b) Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 522:811–843PubMedCrossRef Burman KJ, Bakola S, Richardson KE et al (2014b) Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 522:811–843PubMedCrossRef
go back to reference Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862PubMedCrossRef Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862PubMedCrossRef
go back to reference Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566PubMedCrossRef Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566PubMedCrossRef
go back to reference Chaplin TA, Yu H-H, Soares JGM et al (2013) A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 33:15120–15125PubMedPubMedCentralCrossRef Chaplin TA, Yu H-H, Soares JGM et al (2013) A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 33:15120–15125PubMedPubMedCentralCrossRef
go back to reference Chen Y, Seidemann E (2012) Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1. Neuron 74:557–566PubMedPubMedCentralCrossRef Chen Y, Seidemann E (2012) Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1. Neuron 74:557–566PubMedPubMedCentralCrossRef
go back to reference Chen M, Liu Y, Wei L, Zhang M (2013) Parietal cortical neuronal activity is selective for express saccades. J Neurosci 33:814–823PubMedCrossRef Chen M, Liu Y, Wei L, Zhang M (2013) Parietal cortical neuronal activity is selective for express saccades. J Neurosci 33:814–823PubMedCrossRef
go back to reference Chen M, Li B, Guang J et al (2016) Two subdivisions of macaque LIP process visual-oculomotor information differently. Proc Natl Acad Sci USA 113:E6263–E6270PubMedPubMedCentralCrossRef Chen M, Li B, Guang J et al (2016) Two subdivisions of macaque LIP process visual-oculomotor information differently. Proc Natl Acad Sci USA 113:E6263–E6270PubMedPubMedCentralCrossRef
go back to reference Chen X, Zirnsak M, Vega GM et al (2020) Parietal cortex regulates visual salience and salience-driven behavior. Neuron 106:177-187.e4PubMedCrossRef Chen X, Zirnsak M, Vega GM et al (2020) Parietal cortex regulates visual salience and salience-driven behavior. Neuron 106:177-187.e4PubMedCrossRef
go back to reference Chen C-Y, Matrov D, Veale R et al (2021) Properties of visually guided saccadic behavior and bottom-up attention in marmoset, macaque, and human. J Neurophysiol 125:437–457PubMedCrossRef Chen C-Y, Matrov D, Veale R et al (2021) Properties of visually guided saccadic behavior and bottom-up attention in marmoset, macaque, and human. J Neurophysiol 125:437–457PubMedCrossRef
go back to reference Cloherty SL, Yates JL, Graf D et al (2020) Motion perception in the common marmoset. Cereb Cortex 30:2658–2672PubMedCrossRef Cloherty SL, Yates JL, Graf D et al (2020) Motion perception in the common marmoset. Cereb Cortex 30:2658–2672PubMedCrossRef
go back to reference Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349PubMedCrossRef Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349PubMedCrossRef
go back to reference Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:2841–2852PubMedCrossRef Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:2841–2852PubMedCrossRef
go back to reference Collins CE, Lyon DC, Kaas JH (2005) Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. Anat Rec A Discov Mol Cell Evol Biol 285:619–627PubMedCrossRef Collins CE, Lyon DC, Kaas JH (2005) Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. Anat Rec A Discov Mol Cell Evol Biol 285:619–627PubMedCrossRef
go back to reference Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95:831–838PubMedPubMedCentralCrossRef Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95:831–838PubMedPubMedCentralCrossRef
go back to reference Corbetta M, Akbudak E, Conturo TE et al (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773PubMedCrossRef Corbetta M, Akbudak E, Conturo TE et al (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773PubMedCrossRef
go back to reference Dafoe JM, Armstrong IT, Munoz DP (2007) The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Exp Brain Res 179:563–570PubMedCrossRef Dafoe JM, Armstrong IT, Munoz DP (2007) The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Exp Brain Res 179:563–570PubMedCrossRef
go back to reference Dai J, Brooks DI, Sheinberg DL (2014) Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr Biol 24:63–69PubMedCrossRef Dai J, Brooks DI, Sheinberg DL (2014) Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr Biol 24:63–69PubMedCrossRef
go back to reference DeSouza JFX, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J Neurophysiol 89:1016–1023PubMedCrossRef DeSouza JFX, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J Neurophysiol 89:1016–1023PubMedCrossRef
go back to reference Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488CrossRef Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488CrossRef
go back to reference Ebina T, Masamizu Y, Tanaka YR et al (2018) Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nat Commun 9:1879PubMedPubMedCentralCrossRef Ebina T, Masamizu Y, Tanaka YR et al (2018) Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nat Commun 9:1879PubMedPubMedCentralCrossRef
go back to reference Ebina T, Obara K, Watakabe A et al (2019) Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. Proc Natl Acad Sci USA 116:22844–22850PubMedPubMedCentralCrossRef Ebina T, Obara K, Watakabe A et al (2019) Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. Proc Natl Acad Sci USA 116:22844–22850PubMedPubMedCentralCrossRef
go back to reference Edelman JA, Valenzuela N, Barton JJS (2006) Antisaccade velocity, but not latency, results from a lack of saccade visual guidance. Vision Res 46:1411–1421PubMedCrossRef Edelman JA, Valenzuela N, Barton JJS (2006) Antisaccade velocity, but not latency, results from a lack of saccade visual guidance. Vision Res 46:1411–1421PubMedCrossRef
go back to reference Feizpour A, Majka P, Chaplin TA et al (2021) Visual responses in the dorsolateral frontal cortex of marmoset monkeys. J Neurophysiol 125:296–304PubMedCrossRef Feizpour A, Majka P, Chaplin TA et al (2021) Visual responses in the dorsolateral frontal cortex of marmoset monkeys. J Neurophysiol 125:296–304PubMedCrossRef
go back to reference Ferrier D (1874) XVI. The Croonian Lecture.—experiments on the brain of monkeys (second series) Ferrier D (1874) XVI. The Croonian Lecture.—experiments on the brain of monkeys (second series)
go back to reference Fiebelkorn IC, Kastner S (2020) Functional specialization in the attention network. Annu Rev Psychol 71:221–249PubMedCrossRef Fiebelkorn IC, Kastner S (2020) Functional specialization in the attention network. Annu Rev Psychol 71:221–249PubMedCrossRef
go back to reference Fiebelkorn IC, Pinsk MA, Kastner S (2018) A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99:842-853.e8PubMedPubMedCentralCrossRef Fiebelkorn IC, Pinsk MA, Kastner S (2018) A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99:842-853.e8PubMedPubMedCentralCrossRef
go back to reference Filali-Sadouk N, Castet E, Olivier E, Zenon A (2010) Similar effect of cueing conditions on attentional and saccadic temporal dynamics. J vis 10(21):1–13PubMedCrossRef Filali-Sadouk N, Castet E, Olivier E, Zenon A (2010) Similar effect of cueing conditions on attentional and saccadic temporal dynamics. J vis 10(21):1–13PubMedCrossRef
go back to reference Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230:55–76PubMedCrossRef Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230:55–76PubMedCrossRef
go back to reference Ghahremani M, Hutchison RM, Menon RS, Everling S (2017) Frontoparietal functional connectivity in the common marmoset. Cereb Cortex 27:3890–3905PubMed Ghahremani M, Hutchison RM, Menon RS, Everling S (2017) Frontoparietal functional connectivity in the common marmoset. Cereb Cortex 27:3890–3905PubMed
go back to reference Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220PubMedCrossRef Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220PubMedCrossRef
go back to reference Gold JI, Shadlen MN (2000) Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–394PubMedCrossRef Gold JI, Shadlen MN (2000) Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–394PubMedCrossRef
go back to reference Goldberg ME, Colby CL, Duhamel JR (1990) Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb Symp Quant Biol 55:729–739PubMedCrossRef Goldberg ME, Colby CL, Duhamel JR (1990) Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb Symp Quant Biol 55:729–739PubMedCrossRef
go back to reference Gottlieb J, Goldberg ME (1999) Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci 2:906–912PubMedCrossRef Gottlieb J, Goldberg ME (1999) Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci 2:906–912PubMedCrossRef
go back to reference Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484PubMedCrossRef Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484PubMedCrossRef
go back to reference Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210PubMedPubMedCentralCrossRef Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210PubMedPubMedCentralCrossRef
go back to reference Han X, Chow BY, Zhou H et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18PubMedPubMedCentralCrossRef Han X, Chow BY, Zhou H et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18PubMedPubMedCentralCrossRef
go back to reference Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9:682–689PubMedPubMedCentralCrossRef Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9:682–689PubMedPubMedCentralCrossRef
go back to reference Heider B, Nathanson JL, Isacoff EY et al (2010) Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey. PLoS One 5:e13829 Heider B, Nathanson JL, Isacoff EY et al (2010) Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey. PLoS One 5:e13829
go back to reference Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144PubMedPubMedCentralCrossRef Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144PubMedPubMedCentralCrossRef
go back to reference Hook MA, Rogers LJ (2008) Visuospatial reaching preferences of common marmosets (Callithrix jacchus): an assessment of individual biases across a variety of tasks. J Comp Psychol 122:41–51PubMedCrossRef Hook MA, Rogers LJ (2008) Visuospatial reaching preferences of common marmosets (Callithrix jacchus): an assessment of individual biases across a variety of tasks. J Comp Psychol 122:41–51PubMedCrossRef
go back to reference Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II Cortical Connections J Comp Neurol 265:332–361PubMed Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II Cortical Connections J Comp Neurol 265:332–361PubMed
go back to reference Hung CC, Yen CC, Ciuchta JL et al (2015) Functional MRI of visual responses in the awake, behaving marmoset. Neuroimage 120:1–11PubMedCrossRef Hung CC, Yen CC, Ciuchta JL et al (2015) Functional MRI of visual responses in the awake, behaving marmoset. Neuroimage 120:1–11PubMedCrossRef
go back to reference Inoue K-I, Takada M, Matsumoto M (2015) Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat Commun 6:8378PubMedCrossRef Inoue K-I, Takada M, Matsumoto M (2015) Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat Commun 6:8378PubMedCrossRef
go back to reference Jerde TA, Curtis CE (2013) Maps of space in human frontoparietal cortex. J Physiol Paris 107:510–516PubMedCrossRef Jerde TA, Curtis CE (2013) Maps of space in human frontoparietal cortex. J Physiol Paris 107:510–516PubMedCrossRef
go back to reference Johnston K, Everling S (2011) Frontal cortex and flexible control of saccades. The Oxford handbook of eye movements Johnston K, Everling S (2011) Frontal cortex and flexible control of saccades. The Oxford handbook of eye movements
go back to reference Klein C, Evrard HC, Shapcott KA et al (2016) Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90:143–151PubMedCrossRef Klein C, Evrard HC, Shapcott KA et al (2016) Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90:143–151PubMedCrossRef
go back to reference Koyama M, Hasegawa I, Osada T et al (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807PubMedCrossRef Koyama M, Hasegawa I, Osada T et al (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807PubMedCrossRef
go back to reference Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77PubMedCrossRef Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77PubMedCrossRef
go back to reference Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res 40:1459–1468PubMedCrossRef Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res 40:1459–1468PubMedCrossRef
go back to reference Lecoq J, Savall J, Vučinić D et al (2014) Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat Neurosci 17:1825–1829PubMedPubMedCentralCrossRef Lecoq J, Savall J, Vučinić D et al (2014) Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat Neurosci 17:1825–1829PubMedPubMedCentralCrossRef
go back to reference Ma L, Selvanayagam J, Ghahremani M et al (2020) Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 123:896–911PubMedCrossRef Ma L, Selvanayagam J, Ghahremani M et al (2020) Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 123:896–911PubMedCrossRef
go back to reference Majka P, Chaplin TA, Yu H-H et al (2016) Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 524:2161–2181PubMedPubMedCentralCrossRef Majka P, Chaplin TA, Yu H-H et al (2016) Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 524:2161–2181PubMedPubMedCentralCrossRef
go back to reference Majka P, Bai S, Bakola S et al (2020) Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 11:1133PubMedPubMedCentralCrossRef Majka P, Bai S, Bakola S et al (2020) Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 11:1133PubMedPubMedCentralCrossRef
go back to reference Malach R, Schirman TD, Harel M et al (1997) Organization of intrinsic connections in owl monkey area MT. Cereb Cortex 7:386–393PubMedCrossRef Malach R, Schirman TD, Harel M et al (1997) Organization of intrinsic connections in owl monkey area MT. Cereb Cortex 7:386–393PubMedCrossRef
go back to reference Mazzoni P, Bracewell RM, Barash S, Andersen RA (1996) Motor intention activity in the macaque’s lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J Neurophysiol 76:1439–1456PubMedCrossRef Mazzoni P, Bracewell RM, Barash S, Andersen RA (1996) Motor intention activity in the macaque’s lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J Neurophysiol 76:1439–1456PubMedCrossRef
go back to reference Meister MLR, Hennig JA, Huk AC (2013) Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J Neurosci 33:2254–2267PubMedPubMedCentralCrossRef Meister MLR, Hennig JA, Huk AC (2013) Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J Neurosci 33:2254–2267PubMedPubMedCentralCrossRef
go back to reference Miller CT, Wren Thomas A (2012) Individual recognition during bouts of antiphonal calling in common marmosets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:337–346PubMedPubMedCentralCrossRef Miller CT, Wren Thomas A (2012) Individual recognition during bouts of antiphonal calling in common marmosets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:337–346PubMedPubMedCentralCrossRef
go back to reference Mohler CW, Goldberg ME, Wurtz RH (1973) Visual receptive fields of frontal eye field neurons. Brain Res 61:385–389PubMedCrossRef Mohler CW, Goldberg ME, Wurtz RH (1973) Visual receptive fields of frontal eye field neurons. Brain Res 61:385–389PubMedCrossRef
go back to reference Mott FW, Schuster E, Halliburton WD (1910) Cortical lamination and localisation in the brain of the marmoset. Proc R Soc Lond B Biol Sci 82:124–134CrossRef Mott FW, Schuster E, Halliburton WD (1910) Cortical lamination and localisation in the brain of the marmoset. Proc R Soc Lond B Biol Sci 82:124–134CrossRef
go back to reference Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228PubMedCrossRef Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228PubMedCrossRef
go back to reference Nandy AS, Nassi JJ, Reynolds JH (2017) Laminar organization of attentional modulation in macaque visual area V4. Neuron 93:235–246PubMedCrossRef Nandy AS, Nassi JJ, Reynolds JH (2017) Laminar organization of attentional modulation in macaque visual area V4. Neuron 93:235–246PubMedCrossRef
go back to reference Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216PubMedCrossRef Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216PubMedCrossRef
go back to reference Nummela SU, Jovanovic V, de la Mothe L, Miller CT (2017) Social context-dependent activity in marmoset frontal cortex populations during natural conversations. J Neurosci 37:7036–7047PubMedPubMedCentralCrossRef Nummela SU, Jovanovic V, de la Mothe L, Miller CT (2017) Social context-dependent activity in marmoset frontal cortex populations during natural conversations. J Neurosci 37:7036–7047PubMedPubMedCentralCrossRef
go back to reference Nurminen L, Merlin S, Bijanzadeh M et al (2018) Top-down feedback controls spatial summation and response amplitude in primate visual cortex. Nat Commun 9:2281PubMedPubMedCentralCrossRef Nurminen L, Merlin S, Bijanzadeh M et al (2018) Top-down feedback controls spatial summation and response amplitude in primate visual cortex. Nat Commun 9:2281PubMedPubMedCentralCrossRef
go back to reference O’Driscoll GA, Alpert NM, Matthysse SW et al (1995) Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc Natl Acad Sci USA 92:925–929PubMedPubMedCentralCrossRef O’Driscoll GA, Alpert NM, Matthysse SW et al (1995) Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc Natl Acad Sci USA 92:925–929PubMedPubMedCentralCrossRef
go back to reference Ohayon S, Grimaldi P, Schweers N, Tsao DY (2013) Saccade modulation by optical and electrical stimulation in the macaque frontal eye field. J Neurosci 33:16684–16697PubMedPubMedCentralCrossRef Ohayon S, Grimaldi P, Schweers N, Tsao DY (2013) Saccade modulation by optical and electrical stimulation in the macaque frontal eye field. J Neurosci 33:16684–16697PubMedPubMedCentralCrossRef
go back to reference Paré M, Wurtz RH (1997) Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J Neurophysiol 78:3493–3497PubMedCrossRef Paré M, Wurtz RH (1997) Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J Neurophysiol 78:3493–3497PubMedCrossRef
go back to reference Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227–277PubMedCrossRef Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci 21:227–277PubMedCrossRef
go back to reference Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123(Pt 11):2273–2288PubMedCrossRef Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123(Pt 11):2273–2288PubMedCrossRef
go back to reference Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310PubMedCrossRef Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310PubMedCrossRef
go back to reference Petrides M, Cadoret G, Mackey S (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435:1235–1238PubMedCrossRef Petrides M, Cadoret G, Mackey S (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435:1235–1238PubMedCrossRef
go back to reference Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238PubMedCrossRef Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238PubMedCrossRef
go back to reference Premereur E, Janssen P, Vanduffel W (2013) FEF-microstimulation causes task-dependent modulation of occipital fMRI activity. Neuroimage 67:42–50PubMedCrossRef Premereur E, Janssen P, Vanduffel W (2013) FEF-microstimulation causes task-dependent modulation of occipital fMRI activity. Neuroimage 67:42–50PubMedCrossRef
go back to reference Reser DH, Burman KJ, Yu HH et al (2013) Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: A retrograde tracing study in marmoset monkeys. Cereb Cortex 23:1901–1922PubMedCrossRef Reser DH, Burman KJ, Yu HH et al (2013) Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: A retrograde tracing study in marmoset monkeys. Cereb Cortex 23:1901–1922PubMedCrossRef
go back to reference Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32:637–648PubMedCrossRef Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32:637–648PubMedCrossRef
go back to reference Rosa MGP, Palmer SM, Gamberini M et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29:4548–4563PubMedPubMedCentralCrossRef Rosa MGP, Palmer SM, Gamberini M et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29:4548–4563PubMedPubMedCentralCrossRef
go back to reference Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615PubMedCrossRef Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615PubMedCrossRef
go back to reference Saalmann YB, Pinsk MA, Wang L et al (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756PubMedPubMedCentralCrossRef Saalmann YB, Pinsk MA, Wang L et al (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756PubMedPubMedCentralCrossRef
go back to reference Sadakane O, Masamizu Y, Watakabe A et al (2015) Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Rep 13:1989–1999PubMedCrossRef Sadakane O, Masamizu Y, Watakabe A et al (2015) Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Rep 13:1989–1999PubMedCrossRef
go back to reference Santisakultarm TP, Kersbergen CJ, Bandy DK et al (2016) Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. J Neurosci Methods 271:55–64PubMedPubMedCentralCrossRef Santisakultarm TP, Kersbergen CJ, Bandy DK et al (2016) Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. J Neurosci Methods 271:55–64PubMedPubMedCentralCrossRef
go back to reference Sasaki E, Suemizu H, Shimada A et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527PubMedCrossRef Sasaki E, Suemizu H, Shimada A et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527PubMedCrossRef
go back to reference Sato TK, Häusser M, Carandini M (2014) Distal connectivity causes summation and division across mouse visual cortex. Nat Neurosci 17:30–32PubMedCrossRef Sato TK, Häusser M, Carandini M (2014) Distal connectivity causes summation and division across mouse visual cortex. Nat Neurosci 17:30–32PubMedCrossRef
go back to reference Schaeffer DJ, Gilbert KM, Hori Y et al (2019) Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. Neuroimage 202:116147 Schaeffer DJ, Gilbert KM, Hori Y et al (2019) Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. Neuroimage 202:116147
go back to reference Schall JD (1991) Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J Neurophysiol 66:559–579PubMedCrossRef Schall JD (1991) Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J Neurophysiol 66:559–579PubMedCrossRef
go back to reference Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15(4464):4487 Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15(4464):4487
go back to reference Schall JD, Zinke W, Cosman JD et al (2020) On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans. In: Evolutionary Neuroscience. Elsevier, pp 861–890 Schall JD, Zinke W, Cosman JD et al (2020) On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans. In: Evolutionary Neuroscience. Elsevier, pp 861–890
go back to reference Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:915–924PubMedCrossRef Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:915–924PubMedCrossRef
go back to reference Schmolesky MT, Wang Y, Hanes DP et al (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278PubMedCrossRef Schmolesky MT, Wang Y, Hanes DP et al (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278PubMedCrossRef
go back to reference Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592PubMedCrossRef Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592PubMedCrossRef
go back to reference Selvanayagam J, Johnston KD, Schaeffer DJ et al (2019) Functional localization of the frontal eye fields in the common marmoset using microstimulation. J Neurosci 39:9197–9206PubMedPubMedCentralCrossRef Selvanayagam J, Johnston KD, Schaeffer DJ et al (2019) Functional localization of the frontal eye fields in the common marmoset using microstimulation. J Neurosci 39:9197–9206PubMedPubMedCentralCrossRef
go back to reference Shewcraft RA, Dean HL, Fabiszak MM et al (2020) Excitatory/inhibitory responses shape coherent neuronal dynamics driven by optogenetic stimulation in the primate brain. J Neurosci 40:2056–2068PubMedPubMedCentralCrossRef Shewcraft RA, Dean HL, Fabiszak MM et al (2020) Excitatory/inhibitory responses shape coherent neuronal dynamics driven by optogenetic stimulation in the primate brain. J Neurosci 40:2056–2068PubMedPubMedCentralCrossRef
go back to reference Shibutani H, Sakata H, Hyvärinen J (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res 55:1–8PubMedCrossRef Shibutani H, Sakata H, Hyvärinen J (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res 55:1–8PubMedCrossRef
go back to reference Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170PubMedCrossRef Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170PubMedCrossRef
go back to reference Solomon SG, White AJR, Martin PR (2002) Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J Neurosci 22:338–349PubMedPubMedCentralCrossRef Solomon SG, White AJR, Martin PR (2002) Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J Neurosci 22:338–349PubMedPubMedCentralCrossRef
go back to reference Solomon SS, Chen SC, Morley JW, Solomon SG (2015) Local and global correlations between neurons in the middle temporal area of primate visual cortex. Cereb Cortex 25:3182–3196PubMedCrossRef Solomon SS, Chen SC, Morley JW, Solomon SG (2015) Local and global correlations between neurons in the middle temporal area of primate visual cortex. Cereb Cortex 25:3182–3196PubMedCrossRef
go back to reference Solomon SS, Morley JW, Solomon SG (2017) Spectral signatures of feedforward and recurrent circuitry in monkey area MT. Cereb Cortex 27:2793–2808PubMedCrossRef Solomon SS, Morley JW, Solomon SG (2017) Spectral signatures of feedforward and recurrent circuitry in monkey area MT. Cereb Cortex 27:2793–2808PubMedCrossRef
go back to reference Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–377PubMedCrossRef Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–377PubMedCrossRef
go back to reference Stanton GB, Deng SY, Goldberg ME, McMullen NT (1989) Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J Comp Neurol 282:415–427PubMedCrossRef Stanton GB, Deng SY, Goldberg ME, McMullen NT (1989) Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J Comp Neurol 282:415–427PubMedCrossRef
go back to reference Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef
go back to reference Stettler DD, Yamahachi H, Li W et al (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49:877–887PubMedCrossRef Stettler DD, Yamahachi H, Li W et al (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49:877–887PubMedCrossRef
go back to reference Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787PubMedCrossRef Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787PubMedCrossRef
go back to reference Thier P, Andersen RA (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J Neurophysiol 80:1713–1735PubMedCrossRef Thier P, Andersen RA (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J Neurophysiol 80:1713–1735PubMedCrossRef
go back to reference Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055PubMedCrossRef Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055PubMedCrossRef
go back to reference Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86CrossRef Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86CrossRef
go back to reference Wardak C, Olivier E, Duhamel J-R (2002) Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J Neurosci 22:9877–9884PubMedPubMedCentralCrossRef Wardak C, Olivier E, Duhamel J-R (2002) Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J Neurosci 22:9877–9884PubMedPubMedCentralCrossRef
go back to reference Wardak C, Vanduffel W, Orban GA (2010) Searching for a salient target involves frontal regions. Cereb Cortex 20:2464–2477PubMedCrossRef Wardak C, Vanduffel W, Orban GA (2010) Searching for a salient target involves frontal regions. Cereb Cortex 20:2464–2477PubMedCrossRef
go back to reference Wardak C, Olivier E, Duhamel J-R (2011) The relationship between spatial attention and saccades in the frontoparietal network of the monkey. Eur J Neurosci 33:1973–1981PubMedCrossRef Wardak C, Olivier E, Duhamel J-R (2011) The relationship between spatial attention and saccades in the frontoparietal network of the monkey. Eur J Neurosci 33:1973–1981PubMedCrossRef
go back to reference Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef
go back to reference Wong YT, Fabiszak MM, Novikov Y et al (2016) Coherent neuronal ensembles are rapidly recruited when making a look-reach decision. Nat Neurosci 19:327–334PubMedPubMedCentralCrossRef Wong YT, Fabiszak MM, Novikov Y et al (2016) Coherent neuronal ensembles are rapidly recruited when making a look-reach decision. Nat Neurosci 19:327–334PubMedPubMedCentralCrossRef
go back to reference Wurtz RH, Mohler CW (1976) Enhancement of visual responses in monkey striate cortex and frontal eye fields. J Neurophysiol 39:766–772PubMedCrossRef Wurtz RH, Mohler CW (1976) Enhancement of visual responses in monkey striate cortex and frontal eye fields. J Neurophysiol 39:766–772PubMedCrossRef
go back to reference Yang M, Zhou Z, Zhang J et al (2019) MATRIEX imaging: multi-area two-photon real-time in-vivo explorer. bioRxiv 510545 Yang M, Zhou Z, Zhang J et al (2019) MATRIEX imaging: multi-area two-photon real-time in-vivo explorer. bioRxiv 510545
go back to reference Zhang M, Barash S (2000) Neuronal switching of sensorimotor transformations for antisaccades. Nature 408:971–975PubMedCrossRef Zhang M, Barash S (2000) Neuronal switching of sensorimotor transformations for antisaccades. Nature 408:971–975PubMedCrossRef
go back to reference Zhang M, Barash S (2004) Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J Neurophysiol 91:1424–1441PubMedCrossRef Zhang M, Barash S (2004) Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J Neurophysiol 91:1424–1441PubMedCrossRef
go back to reference Zhu Q, Vanduffel W (2019) Submillimeter fMRI reveals a layout of dorsal visual cortex in macaques, remarkably similar to new world monkeys. Proc Natl Acad Sci U S A 116:2306–2311PubMedPubMedCentralCrossRef Zhu Q, Vanduffel W (2019) Submillimeter fMRI reveals a layout of dorsal visual cortex in macaques, remarkably similar to new world monkeys. Proc Natl Acad Sci U S A 116:2306–2311PubMedPubMedCentralCrossRef
Metadata
Title
Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network
Authors
Joanita F. D’Souza
Nicholas S. C. Price
Maureen A. Hagan
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2021
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02367-9

Other articles of this Issue 9/2021

Brain Structure and Function 9/2021 Go to the issue