Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 8/2019

01-08-2019 | Computed Tomography | Otology

CT-scan contouring technique allows for direct and reliable measurements of the cochlear duct length: implication in cochlear implantation with straight electrode-arrays

Authors: Thi Hau Vu, Chiara Perazzini, Mathilde Puechmaille, Aurélie Bachy, Aurélien Mulliez, Louis Boyer, Thierry Mom, Jean Gabrillargues

Published in: European Archives of Oto-Rhino-Laryngology | Issue 8/2019

Login to get access

Abstract

Objectives

The advent of hybrid electro-acoustic implants requires precise positioning of the electrode-array (EA) within the cochlea. The cochlea size, that is, the length of the cochlear scala tympani, is often indirectly estimated from distance A by Escudé’s method. This technique has been confirmed by anatomical studies, in a bunch of cadaveric specimens, but it is not yet widely established in the field of computed tomography (CT). We compared cochlear duct length obtained by Escudé’s method to those directly acquired on CT images.

Materials and methods

The lengths of cochlear scala tympani were directly measured on CT scans by contouring the external cochlear wall (contouring technique-CoT). In fifteen patients implanted with a straight EA, the length of the EA and the measured length of the cochlea by the CoT were compared, to check the reliability of the CoT. Then, in 200 CT-scans, the length of the cochlear duct was measured by the CoT then compared to Escudé’s method.

Results

In the 200 CT-scans which served for cochlear length measurements, a significant variability between the cochleae were observed, as expected. At 360°, the correlation between the measurements of the length of the cochlear scala tympani between the two techniques differed, with a difference of 0.2 ± 0.7 mm at 360° (extreme: 2 mm; p < 0.001) and 2.2 ± 1.2 mm at 540° (extreme: 5.6 mm; p < 0.001).

Conclusion

The CoT can predict with accuracy the length of EA-insertion depth, more precisely than estimation methods such as Escudé’s.
Literature
1.
go back to reference Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8:220–233CrossRefPubMedPubMedCentral Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8:220–233CrossRefPubMedPubMedCentral
2.
go back to reference Alexiades G, Dhanasingh A, Jolly C (2015) Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 36:904–907CrossRefPubMed Alexiades G, Dhanasingh A, Jolly C (2015) Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 36:904–907CrossRefPubMed
3.
go back to reference Connor SEJ, Bell DJ, O’Gorman R, Fitzgerald-O’Connor A (2009) CT and MR imaging cochlear distance measurements may predict cochlear implant length required for a 360° insertion. AJNR Am J Neuroradiol 30:1425–1430CrossRefPubMed Connor SEJ, Bell DJ, O’Gorman R, Fitzgerald-O’Connor A (2009) CT and MR imaging cochlear distance measurements may predict cochlear implant length required for a 360° insertion. AJNR Am J Neuroradiol 30:1425–1430CrossRefPubMed
4.
go back to reference Dunlap WP, Cortina JM, Vaslow JB, Burke MJ (1996) Meta-analysis of experiments with matched groups or repeated measures designs. Psychol Methods 1:170–177CrossRef Dunlap WP, Cortina JM, Vaslow JB, Burke MJ (1996) Meta-analysis of experiments with matched groups or repeated measures designs. Psychol Methods 1:170–177CrossRef
5.
go back to reference Escudé B, James C, Deguine O et al (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11(suppl 1):27–33CrossRef Escudé B, James C, Deguine O et al (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11(suppl 1):27–33CrossRef
6.
go back to reference James C, Albegger K, Battmer R, Burdo S, Deggouj N, Deguine O, Dillier N, Gersdorff M, Laszig R, Lenarz T, Rodriguez MM, Mondain M, Offeciers E, Macías AR, Ramsden R, Sterkers O, Von Wallenberg E, Weber B, Fraysse B (2005) Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 125:481–491CrossRefPubMed James C, Albegger K, Battmer R, Burdo S, Deggouj N, Deguine O, Dillier N, Gersdorff M, Laszig R, Lenarz T, Rodriguez MM, Mondain M, Offeciers E, Macías AR, Ramsden R, Sterkers O, Von Wallenberg E, Weber B, Fraysse B (2005) Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 125:481–491CrossRefPubMed
7.
go back to reference Pelliccia P, Venail F, Bonafé A et al (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49PubMedPubMedCentral Pelliccia P, Venail F, Bonafé A et al (2014) Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital 34:42–49PubMedPubMedCentral
8.
go back to reference Sato H, Sando I, Takahashi H (1991) Sexual dimorphism and development of the human cochlea. Computer 3-D measurement. Acta Otolaryngol 111:1037–1040CrossRefPubMed Sato H, Sando I, Takahashi H (1991) Sexual dimorphism and development of the human cochlea. Computer 3-D measurement. Acta Otolaryngol 111:1037–1040CrossRefPubMed
9.
go back to reference Hochmair I, Hochmair E, Nopp P, Waller M, Jolly C (2015) Deep electrode insertion and sound coding in cochlear implants. Hear Res 322:14–23CrossRefPubMed Hochmair I, Hochmair E, Nopp P, Waller M, Jolly C (2015) Deep electrode insertion and sound coding in cochlear implants. Hear Res 322:14–23CrossRefPubMed
10.
go back to reference Mori MC, Chang KW (2012) CT analysis demonstrates that cochlear height does not change with age. AJNR Am J Neuroradiol 33:119–123CrossRefPubMed Mori MC, Chang KW (2012) CT analysis demonstrates that cochlear height does not change with age. AJNR Am J Neuroradiol 33:119–123CrossRefPubMed
11.
go back to reference Boyd PJ (2011) Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear 32:411–427CrossRefPubMed Boyd PJ (2011) Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear 32:411–427CrossRefPubMed
13.
go back to reference Kawano A, Seldon HL, Clark GM (1996) Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann Otol Rhinol Laryngol 105:701–709CrossRefPubMed Kawano A, Seldon HL, Clark GM (1996) Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann Otol Rhinol Laryngol 105:701–709CrossRefPubMed
14.
go back to reference Hardy M (1938) The length of the organ of Corti in man. Am J Anat 62:291–311CrossRef Hardy M (1938) The length of the organ of Corti in man. Am J Anat 62:291–311CrossRef
15.
go back to reference Singla A, Sahni D, Gupta AK, Aggarwal A, Gupta T (2015) Surgical anatomy of the basal turn of the human cochlea as pertaining to cochlear implantation. Otol Neurotol 36:323–328CrossRefPubMed Singla A, Sahni D, Gupta AK, Aggarwal A, Gupta T (2015) Surgical anatomy of the basal turn of the human cochlea as pertaining to cochlear implantation. Otol Neurotol 36:323–328CrossRefPubMed
16.
go back to reference Vaid S, Vaid N (2014) Imaging for cochlear implantation: structuring a clinically relevant report. Clin Radiol 69:307–322CrossRef Vaid S, Vaid N (2014) Imaging for cochlear implantation: structuring a clinically relevant report. Clin Radiol 69:307–322CrossRef
17.
go back to reference Buchman CA, Dillon MT, King ER, Adunka MC, Adunka OF, Pillsbury HC (2014) Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 35:1773–1779CrossRefPubMed Buchman CA, Dillon MT, King ER, Adunka MC, Adunka OF, Pillsbury HC (2014) Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 35:1773–1779CrossRefPubMed
18.
go back to reference Erixon E, Rask-Andersen H (2013) How to predict cochlear length before cochlear implantation surgery. Acta Oto-Laryngol 133:1258–1265CrossRef Erixon E, Rask-Andersen H (2013) How to predict cochlear length before cochlear implantation surgery. Acta Oto-Laryngol 133:1258–1265CrossRef
19.
go back to reference Neumann M, Aschendorff A, Schipper J, Laszig R, Klenzner T (2005) The influence of insertion depth on the preservation of residual hearing after cochlear implantation. Laryngorhinootol 84:113–116CrossRef Neumann M, Aschendorff A, Schipper J, Laszig R, Klenzner T (2005) The influence of insertion depth on the preservation of residual hearing after cochlear implantation. Laryngorhinootol 84:113–116CrossRef
20.
go back to reference Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22CrossRefPubMed Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22CrossRefPubMed
21.
go back to reference Xu J, Xu SA, Cohen LT, Clark GM (2000) Cochlear view: postoperative radiography for cochlear implantation. Am J Otol 21:49–56CrossRefPubMed Xu J, Xu SA, Cohen LT, Clark GM (2000) Cochlear view: postoperative radiography for cochlear implantation. Am J Otol 21:49–56CrossRefPubMed
22.
go back to reference Dimopoulos P, Muren C (1990) Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol 31:439–444CrossRefPubMed Dimopoulos P, Muren C (1990) Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol 31:439–444CrossRefPubMed
23.
go back to reference Koch RW, Ladak HM, Elfarnawany M, Agrawal SK (2017) Measuring Cochlear Duct Length—a historical analysis of methods and results. J Otolaryngol Head Neck Surg 46:19CrossRefPubMedPubMedCentral Koch RW, Ladak HM, Elfarnawany M, Agrawal SK (2017) Measuring Cochlear Duct Length—a historical analysis of methods and results. J Otolaryngol Head Neck Surg 46:19CrossRefPubMedPubMedCentral
24.
go back to reference Deep NL, Howard BE, Holbert SO, Hoxworth JM (2017) Barrs measurement of cochlear length using the ‘A’ value for cochlea basal diameter: a feasibility study. DM Cochlear Implants Int 18:226–229CrossRef Deep NL, Howard BE, Holbert SO, Hoxworth JM (2017) Barrs measurement of cochlear length using the ‘A’ value for cochlea basal diameter: a feasibility study. DM Cochlear Implants Int 18:226–229CrossRef
25.
go back to reference Rivas A, Cakir A, Hunter JB, Labadie RF, Zuniga MG, Wanna GB, Dawant BM, Noble JH (2017) Automatic cochlear duct length estimation for selection of cochlear implant electrode arrays. Otol Neurotol 38:339–346CrossRefPubMedPubMedCentral Rivas A, Cakir A, Hunter JB, Labadie RF, Zuniga MG, Wanna GB, Dawant BM, Noble JH (2017) Automatic cochlear duct length estimation for selection of cochlear implant electrode arrays. Otol Neurotol 38:339–346CrossRefPubMedPubMedCentral
26.
go back to reference Meng J, Li S, Zhang F, Li Q, Qin Z (2016) Cochlear size and shape variability and implications in cochlear implantation surgery. Otol Neurotol 37:1307–1313CrossRefPubMed Meng J, Li S, Zhang F, Li Q, Qin Z (2016) Cochlear size and shape variability and implications in cochlear implantation surgery. Otol Neurotol 37:1307–1313CrossRefPubMed
27.
go back to reference Liu YK, Qi CL, Tang J, Jiang ML, Du L, Li ZH, Tan SH, Tang AZ (2017) The diagnostic value of measurement of cochlear length and height in temporal bone CT multiplanar reconstruction of inner ear malformation. Acta Otolaryngol 137:119–126CrossRefPubMed Liu YK, Qi CL, Tang J, Jiang ML, Du L, Li ZH, Tan SH, Tang AZ (2017) The diagnostic value of measurement of cochlear length and height in temporal bone CT multiplanar reconstruction of inner ear malformation. Acta Otolaryngol 137:119–126CrossRefPubMed
29.
go back to reference Svrakic M, Roland JT, McMenomey SO, Svirsky MA (2016) Initial operative experience and short-term hearing preservation results with a mid-scala cochlear implant electrode array. Otol Neurotol 37:1549–1554CrossRefPubMedPubMedCentral Svrakic M, Roland JT, McMenomey SO, Svirsky MA (2016) Initial operative experience and short-term hearing preservation results with a mid-scala cochlear implant electrode array. Otol Neurotol 37:1549–1554CrossRefPubMedPubMedCentral
30.
go back to reference Buchman CA, Dillon MT, Kung ER, Adunka MC, Adunka OF, Pillsbury HC (2014) Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 35:1773–1779CrossRefPubMed Buchman CA, Dillon MT, Kung ER, Adunka MC, Adunka OF, Pillsbury HC (2014) Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 35:1773–1779CrossRefPubMed
31.
go back to reference Hilly O, Smith L, Hwang E, Shipp D, Symons S, Nedzelski JM, Chen JM, Lin VY (2016) Depth of cochlear implant array within the cochlea and performance outcome. Ann Otol Rhinol Laryngol 125:886–892CrossRefPubMed Hilly O, Smith L, Hwang E, Shipp D, Symons S, Nedzelski JM, Chen JM, Lin VY (2016) Depth of cochlear implant array within the cochlea and performance outcome. Ann Otol Rhinol Laryngol 125:886–892CrossRefPubMed
32.
go back to reference Kennedy DW (1987) Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 97:42–49PubMed Kennedy DW (1987) Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 97:42–49PubMed
33.
go back to reference Rask-Andersen H, Liu W, Erixon E et al (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec 295:1791–1811CrossRef Rask-Andersen H, Liu W, Erixon E et al (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec 295:1791–1811CrossRef
34.
go back to reference Kjer HM, Fagertun J, Wimmer W, Gerber N, Vera S, Barazzetti L et al (2018) Patient-specific estimation of detailed cochlear shape from clinical CT images. Int J Comput Assist Radiol Surg 13:389–396CrossRefPubMed Kjer HM, Fagertun J, Wimmer W, Gerber N, Vera S, Barazzetti L et al (2018) Patient-specific estimation of detailed cochlear shape from clinical CT images. Int J Comput Assist Radiol Surg 13:389–396CrossRefPubMed
Metadata
Title
CT-scan contouring technique allows for direct and reliable measurements of the cochlear duct length: implication in cochlear implantation with straight electrode-arrays
Authors
Thi Hau Vu
Chiara Perazzini
Mathilde Puechmaille
Aurélie Bachy
Aurélien Mulliez
Louis Boyer
Thierry Mom
Jean Gabrillargues
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 8/2019
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-019-05432-6

Other articles of this Issue 8/2019

European Archives of Oto-Rhino-Laryngology 8/2019 Go to the issue