Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 2/2007

01-06-2007

Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants

Authors: Olga Stakhovskaya, Divya Sridhar, Ben H. Bonham, Patricia A. Leake

Published in: Journal of the Association for Research in Otolaryngology | Issue 2/2007

Login to get access

Abstract

The goals of this study were to derive a frequency–position function for the human cochlear spiral ganglion (SG) to correlate represented frequency along the organ of Corti (OC) to location along the SG, to determine the range of individual variability, and to calculate an “average” frequency map (based on the trajectories of the dendrites of the SG cells). For both OC and SG frequency maps, a potentially important limitation is that accurate estimates of cochlear place frequency based upon the Greenwood function require knowledge of the total OC or SG length, which cannot be determined in most temporal bone and imaging studies. Therefore, an additional goal of this study was to evaluate a simple metric, basal coil diameter that might be utilized to estimate OC and SG length. Cadaver cochleae (n = 9) were fixed <24 h postmortem, stained with osmium tetroxide, microdissected, decalcified briefly, embedded in epoxy resin, and examined in surface preparations. In digital images, the OC and SG were measured, and the radial nerve fiber trajectories were traced to define a series of frequency-matched coordinates along the two structures. Images of the cochlear turns were reconstructed and measurements of basal turn diameter were made and correlated with OC and SG measurements. The data obtained provide a mathematical function for relating represented frequency along the OC to that of the SG. Results showed that whereas the distance along the OC that corresponds to a critical bandwidth is assumed to be constant throughout the cochlea, estimated critical band distance in the SG varies significantly along the spiral. Additional findings suggest that measurements of basal coil diameter in preoperative images may allow prediction of OC/SG length and estimation of the insertion depth required to reach specific angles of rotation and frequencies. Results also indicate that OC and SG percentage length expressed as a function of rotation angle from the round window is fairly constant across subjects. The implications of these findings for the design and surgical insertion of cochlear implants are discussed.
Literature
go back to reference Baskent D, Shannon R. Speech recognition under conditions of frequency-place compression and expansion. J. Acoust. Soc. Am. 113:2064–2076, 2003.PubMedCrossRef Baskent D, Shannon R. Speech recognition under conditions of frequency-place compression and expansion. J. Acoust. Soc. Am. 113:2064–2076, 2003.PubMedCrossRef
go back to reference Baskent D, Shannon R. Frequency-place compression and expansion in cochlear implant listeners. J. Acoust. Soc. Am. 116(5):3130–3140, 2004.CrossRef Baskent D, Shannon R. Frequency-place compression and expansion in cochlear implant listeners. J. Acoust. Soc. Am. 116(5):3130–3140, 2004.CrossRef
go back to reference Baumann U, Nobbe A. The cochlear implant electrode-pitch function. Hear. Res. 213(1–2):34–42, 2006.PubMedCrossRef Baumann U, Nobbe A. The cochlear implant electrode-pitch function. Hear. Res. 213(1–2):34–42, 2006.PubMedCrossRef
go back to reference Blamey PJ, Dooley GJ, Parisi ES, Clark GM. Pitch comparisons of acoustically and electrically evoked auditory sensations. Hear. Res. 99(1–2):139–150, 1996.PubMedCrossRef Blamey PJ, Dooley GJ, Parisi ES, Clark GM. Pitch comparisons of acoustically and electrically evoked auditory sensations. Hear. Res. 99(1–2):139–150, 1996.PubMedCrossRef
go back to reference Boex C, Baud L, Cosendai G, Sigrist A, Kos MI, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7:110–124, 2006.PubMedCrossRef Boex C, Baud L, Cosendai G, Sigrist A, Kos MI, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7:110–124, 2006.PubMedCrossRef
go back to reference Bredberg G. Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol. Suppl. 236:1–135, 1968. Bredberg G. Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol. Suppl. 236:1–135, 1968.
go back to reference Briaire JJ, Frijns JHM. Unraveling the electrically evoked compound action potential. Hear. Res. 205(1–2):143–156, 2005.PubMedCrossRef Briaire JJ, Frijns JHM. Unraveling the electrically evoked compound action potential. Hear. Res. 205(1–2):143–156, 2005.PubMedCrossRef
go back to reference Briaire JJ, Frijns JHM. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear. Res. 214(1–2):17–27, 2006.PubMedCrossRef Briaire JJ, Frijns JHM. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear. Res. 214(1–2):17–27, 2006.PubMedCrossRef
go back to reference Cohen LT, Xu J, Xu SA, Clark GM. Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. Am. J. Otol. 17(6):859–865, 1996.PubMed Cohen LT, Xu J, Xu SA, Clark GM. Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. Am. J. Otol. 17(6):859–865, 1996.PubMed
go back to reference Cohen LT, Richardson LM, Saunders E, Cowan RSC. Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking. Hear. Res. 179:72–87, 2003.PubMedCrossRef Cohen LT, Richardson LM, Saunders E, Cowan RSC. Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking. Hear. Res. 179:72–87, 2003.PubMedCrossRef
go back to reference Dimopoulos P, Muren C. Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol. 31:439–444, 1990.PubMedCrossRef Dimopoulos P, Muren C. Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol. 31:439–444, 1990.PubMedCrossRef
go back to reference Dorman MF, Loizou PC, Rainey D. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102:2993–2996, 1997.PubMedCrossRef Dorman MF, Loizou PC, Rainey D. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102:2993–2996, 1997.PubMedCrossRef
go back to reference Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B. The size of the cochlea and prediction of the insertion depth angles for cochlear implant electrodes. Audiol. Neurootol. 11(Suppl):27–33, 2006.PubMed Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B. The size of the cochlea and prediction of the insertion depth angles for cochlear implant electrodes. Audiol. Neurootol. 11(Suppl):27–33, 2006.PubMed
go back to reference Fayad J, Linthicum FH, Galey FR, Otto S, House W. Cochlear implants: histopathologic findings related to performance in 16 human temporal bones. Ann. Otol. Rhinol. Laryngol. 100:807–811, 1991.PubMed Fayad J, Linthicum FH, Galey FR, Otto S, House W. Cochlear implants: histopathologic findings related to performance in 16 human temporal bones. Ann. Otol. Rhinol. Laryngol. 100:807–811, 1991.PubMed
go back to reference Finley CC, Blake S, Wilson S, White MW. Models of neural responsiveness to electrical stimulation. In: Miller JM and Spellman FA (eds) Models of the Electrically Stimulated Ear. New York, Springer-Verlag, 1990. Finley CC, Blake S, Wilson S, White MW. Models of neural responsiveness to electrical stimulation. In: Miller JM and Spellman FA (eds) Models of the Electrically Stimulated Ear. New York, Springer-Verlag, 1990.
go back to reference Frijns JH, de Snoo SL, Schoonhoven R. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 87(1–2):170–186, 1995.PubMedCrossRef Frijns JH, de Snoo SL, Schoonhoven R. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 87(1–2):170–186, 1995.PubMedCrossRef
go back to reference Frijns JH, Briaire JJ, Grote JJ. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol. Neurotol. 22(3):340–349, 2001.PubMedCrossRef Frijns JH, Briaire JJ, Grote JJ. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol. Neurotol. 22(3):340–349, 2001.PubMedCrossRef
go back to reference Fu QJ, Shannon RV. Recognition of spectrally degraded and frequency shifted vowels in acoustic and electric hearing. J. Acoust. Soc. Am. 105:1889–1900, 1999.PubMedCrossRef Fu QJ, Shannon RV. Recognition of spectrally degraded and frequency shifted vowels in acoustic and electric hearing. J. Acoust. Soc. Am. 105:1889–1900, 1999.PubMedCrossRef
go back to reference Fu QJ, Nogaki G, Galvin JJ. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation. J. Assoc. Res. Otolaryngol. 6:180–189, 2005.PubMedCrossRef Fu QJ, Nogaki G, Galvin JJ. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation. J. Assoc. Res. Otolaryngol. 6:180–189, 2005.PubMedCrossRef
go back to reference Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A. The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audiol. Neurootol. 10:258–273, 2005.PubMedCrossRef Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A. The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audiol. Neurootol. 10:258–273, 2005.PubMedCrossRef
go back to reference Greenwood DD. Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 33:1344–1356, 1961.CrossRef Greenwood DD. Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 33:1344–1356, 1961.CrossRef
go back to reference Greenwood DD. A cochlear frequency–position function for several species—29 years later. J. Acoust. Soc. Am. 87(6):2592–2605, 1990.PubMedCrossRef Greenwood DD. A cochlear frequency–position function for several species—29 years later. J. Acoust. Soc. Am. 87(6):2592–2605, 1990.PubMedCrossRef
go back to reference Greenwood DD. Critical bandwidth and consonance in relation to cochlear frequency–position coordinates. Hear. Res. 54:164–208, 1991.PubMedCrossRef Greenwood DD. Critical bandwidth and consonance in relation to cochlear frequency–position coordinates. Hear. Res. 54:164–208, 1991.PubMedCrossRef
go back to reference Hardy M. The length of the organ of Corti in man. Am. J. Anat. 62:291–311, 1968.CrossRef Hardy M. The length of the organ of Corti in man. Am. J. Anat. 62:291–311, 1968.CrossRef
go back to reference Hinojosa R, Marion M. Histopathology of profound sensorineural deafness. Ann. N. Y. Acad. Sci. 405:459–483, 1983.PubMedCrossRef Hinojosa R, Marion M. Histopathology of profound sensorineural deafness. Ann. N. Y. Acad. Sci. 405:459–483, 1983.PubMedCrossRef
go back to reference Hochmair I, Arnold W, Nopp P, Jolly C, Muller J, Roland P. Deep electrode insertion in cochlear implants: apical morphology, electrodes and speech perception results. Acta Otolaryngol. 123:612–617, 2003.PubMedCrossRef Hochmair I, Arnold W, Nopp P, Jolly C, Muller J, Roland P. Deep electrode insertion in cochlear implants: apical morphology, electrodes and speech perception results. Acta Otolaryngol. 123:612–617, 2003.PubMedCrossRef
go back to reference Kawano A, Seldon HL, Clark GM. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann. Otol. Rhinol. Laryngol. 105(9):701–709, 1996.PubMed Kawano A, Seldon HL, Clark GM. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann. Otol. Rhinol. Laryngol. 105(9):701–709, 1996.PubMed
go back to reference Ketten D, Skinner MW, Wand G, Vannier MW, Gates GA, Neely JG. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann. Otol. Rhinol. Laryngol. 107:1–16, 1998. Ketten D, Skinner MW, Wand G, Vannier MW, Gates GA, Neely JG. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann. Otol. Rhinol. Laryngol. 107:1–16, 1998.
go back to reference Khan A, Handzel O, Damian D, Eddington DK, Nadol JB. Effect of cochlear implantation on residual spiral ganglion cell count as determined by comparison with the contralateral nonimplanted inner ear in humans. Ann. Otol. Rhinol. Laryngol. 114(5):381–385, 2005.PubMed Khan A, Handzel O, Damian D, Eddington DK, Nadol JB. Effect of cochlear implantation on residual spiral ganglion cell count as determined by comparison with the contralateral nonimplanted inner ear in humans. Ann. Otol. Rhinol. Laryngol. 114(5):381–385, 2005.PubMed
go back to reference Leake P, Hradek G. Cochlear pathology of long term neomycin induced deafness in cats. Hear. Res. 33(1):11–33, 1988.PubMedCrossRef Leake P, Hradek G. Cochlear pathology of long term neomycin induced deafness in cats. Hear. Res. 33(1):11–33, 1988.PubMedCrossRef
go back to reference Marsh MA, Xu J, Blamey PJ, Whitford LA, Xu SA, Silverman JM, Clark GM. Radiologic evaluation of multichannel intracochlear implant insertion depth. Am. J. Otol. 14(4):386–391, 1993.PubMed Marsh MA, Xu J, Blamey PJ, Whitford LA, Xu SA, Silverman JM, Clark GM. Radiologic evaluation of multichannel intracochlear implant insertion depth. Am. J. Otol. 14(4):386–391, 1993.PubMed
go back to reference McFadden SL, Ding D, Jiang H, Salvi RJ. Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res. 997(1):40–51, 2004.PubMedCrossRef McFadden SL, Ding D, Jiang H, Salvi RJ. Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res. 997(1):40–51, 2004.PubMedCrossRef
go back to reference Mino H, Rubinstein JT, Miller CA, Abbas PJ. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. IEEE Trans. Biomed. Eng. 51(1):13–20, 2004.PubMedCrossRef Mino H, Rubinstein JT, Miller CA, Abbas PJ. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. IEEE Trans. Biomed. Eng. 51(1):13–20, 2004.PubMedCrossRef
go back to reference Nadol JBJ. Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear. Res. 49(1–3):141–154, 1990.PubMedCrossRef Nadol JBJ. Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear. Res. 49(1–3):141–154, 1990.PubMedCrossRef
go back to reference Nadol JB. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol. Head Neck Surg. 117:220–228, 1997.PubMedCrossRef Nadol JB. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol. Head Neck Surg. 117:220–228, 1997.PubMedCrossRef
go back to reference Nadol JB, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann. Otol. Rhinol. Laryngol. 98(6):411–416, 1989.PubMed Nadol JB, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann. Otol. Rhinol. Laryngol. 98(6):411–416, 1989.PubMed
go back to reference Otte J, Chile S, Schuknecht H, Kerr AG. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88:1231–1246, 1978.PubMedCrossRef Otte J, Chile S, Schuknecht H, Kerr AG. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88:1231–1246, 1978.PubMedCrossRef
go back to reference Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. J. Assoc. Res. Otolaryngol. 2(2):87–103, 2001.PubMed Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. J. Assoc. Res. Otolaryngol. 2(2):87–103, 2001.PubMed
go back to reference Richter B, Jaekel K, Aschendorff A, Marangos N, Laszig R. Cochlear structures after implantation of a perimodiolar electrode array. Laryngoscope 111(5):837–843, 2001.PubMedCrossRef Richter B, Jaekel K, Aschendorff A, Marangos N, Laszig R. Cochlear structures after implantation of a perimodiolar electrode array. Laryngoscope 111(5):837–843, 2001.PubMedCrossRef
go back to reference Rosen S, Faulkner A, Wilkinson L. Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. J. Acoust. Soc. Am. 106:3629–3636, 1999.PubMedCrossRef Rosen S, Faulkner A, Wilkinson L. Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. J. Acoust. Soc. Am. 106:3629–3636, 1999.PubMedCrossRef
go back to reference Sato H, Sando I, Takahashi H. Sexual dimorphism and development of the human cochlea. Computer 3-D measurement. Acta Otolaryngol. 111(6):1037–1040, 1991.PubMed Sato H, Sando I, Takahashi H. Sexual dimorphism and development of the human cochlea. Computer 3-D measurement. Acta Otolaryngol. 111(6):1037–1040, 1991.PubMed
go back to reference Shannon RV, Zeng FG, Wygonski J. Speech recognition with altered spectral distribution of envelope cues. J. Acoust. Soc. Am. 104:2467–2476, 1998.PubMedCrossRef Shannon RV, Zeng FG, Wygonski J. Speech recognition with altered spectral distribution of envelope cues. J. Acoust. Soc. Am. 104:2467–2476, 1998.PubMedCrossRef
go back to reference Skinner MW, Ketten DR, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J. Assoc. Res. Otolaryngol. 3:332–350, 2002.PubMedCrossRef Skinner MW, Ketten DR, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J. Assoc. Res. Otolaryngol. 3:332–350, 2002.PubMedCrossRef
go back to reference Sridhar D, Stakhovskaya O, Leake P. A frequency–position function for the human cochlear spiral ganglion. Audiol. Neurootol. 11(Suppl):16–20, 2006.PubMed Sridhar D, Stakhovskaya O, Leake P. A frequency–position function for the human cochlear spiral ganglion. Audiol. Neurootol. 11(Suppl):16–20, 2006.PubMed
go back to reference Stickney GS, Loizou PC, Mishra LN, Assmann PF, Shannon RV, Opie JM. Effects of electrode design and configuration on channel interactions. Hear. Res. 211(1–2):33–45, 2006.PubMedCrossRef Stickney GS, Loizou PC, Mishra LN, Assmann PF, Shannon RV, Opie JM. Effects of electrode design and configuration on channel interactions. Hear. Res. 211(1–2):33–45, 2006.PubMedCrossRef
go back to reference Tykocinski M, Cohen LT, Pyman BC, Roland T Jr, Treaba C, Palamara J, Dahm MC, Shepherd RK, Xu J, Cowan RS, Cohen NL, Clark GM. Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays. Am. J. Otol. 21(2):205–211, 2000.PubMedCrossRef Tykocinski M, Cohen LT, Pyman BC, Roland T Jr, Treaba C, Palamara J, Dahm MC, Shepherd RK, Xu J, Cowan RS, Cohen NL, Clark GM. Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays. Am. J. Otol. 21(2):205–211, 2000.PubMedCrossRef
go back to reference Ulehlova L, Voldrich L, Janisch R. Correlative study of sensory cell density and cochlear length in humans. Hear. Res. 28:149–151, 1987.PubMedCrossRef Ulehlova L, Voldrich L, Janisch R. Correlative study of sensory cell density and cochlear length in humans. Hear. Res. 28:149–151, 1987.PubMedCrossRef
go back to reference Wardrop P, Whinney D, Rebscher SJ, Roland JT Jr, Luxford W, Leake PA. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: comparison of Nucleus banded and Nucleus Contour™ electrodes. Hear. Res. 203:54–67, 2005a.PubMedCrossRef Wardrop P, Whinney D, Rebscher SJ, Roland JT Jr, Luxford W, Leake PA. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: comparison of Nucleus banded and Nucleus Contour™ electrodes. Hear. Res. 203:54–67, 2005a.PubMedCrossRef
go back to reference Wardrop P, Whinney D, Rebscher SJ, Luxford W, Leake PA. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: comparison of Spiral Clarion™ and HiFocus II™ electrodes. Hear. Res. 203:68–79, 2005b.PubMedCrossRef Wardrop P, Whinney D, Rebscher SJ, Luxford W, Leake PA. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: comparison of Spiral Clarion™ and HiFocus II™ electrodes. Hear. Res. 203:68–79, 2005b.PubMedCrossRef
go back to reference Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H. Hair cell distributions in the normal human cochlea. Acta Otolaryngol. Suppl. 444:1–48, 1987.PubMed Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H. Hair cell distributions in the normal human cochlea. Acta Otolaryngol. Suppl. 444:1–48, 1987.PubMed
go back to reference Xu J, Xu SA, Cohen LT, Clark GM. Cochlear view: postoperative radiography for cochlear implantation. Am. J. Otol. 21(1):49–56, 2000.PubMed Xu J, Xu SA, Cohen LT, Clark GM. Cochlear view: postoperative radiography for cochlear implantation. Am. J. Otol. 21(1):49–56, 2000.PubMed
go back to reference Yoo SK, Wang G, Rubinstein JT, Vannier MW. Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans. Biomed. Eng. 47(10):1392–1402, 2000.PubMedCrossRef Yoo SK, Wang G, Rubinstein JT, Vannier MW. Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans. Biomed. Eng. 47(10):1392–1402, 2000.PubMedCrossRef
go back to reference Yukawa K, Cohen L, Blamey P, Pyman B, Tungvachirakul V, O’Leary S. Effects of insertion depth of cochlear implant electrodes upon speech perception. Audiol Neurootol. 9:163–172, 2004.PubMedCrossRef Yukawa K, Cohen L, Blamey P, Pyman B, Tungvachirakul V, O’Leary S. Effects of insertion depth of cochlear implant electrodes upon speech perception. Audiol Neurootol. 9:163–172, 2004.PubMedCrossRef
Metadata
Title
Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants
Authors
Olga Stakhovskaya
Divya Sridhar
Ben H. Bonham
Patricia A. Leake
Publication date
01-06-2007
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 2/2007
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-007-0076-9

Other articles of this Issue 2/2007

Journal of the Association for Research in Otolaryngology 2/2007 Go to the issue