Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2017

01-06-2017 | Research Article

A Novel Framework for Automated Segmentation and Labeling of Homogeneous Versus Heterogeneous Lung Tumors in [18F]FDG-PET Imaging

Authors: Motahare Soufi, Alireza Kamali-Asl, Parham Geramifar, Arman Rahmim

Published in: Molecular Imaging and Biology | Issue 3/2017

Login to get access

Abstract

Purpose

Determination of intra-tumor high-uptake area using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET) imaging is an important consideration for dose painting in radiation treatment applications. The aim of our study was to develop a framework towards automated segmentation and labeling of homogeneous vs. heterogeneous tumors in clinical lung [18F]FDG-PET with the capability of intra-tumor high-uptake region delineation.

Procedures

We utilized and extended a fuzzy random walk PET tumor segmentation algorithm to delineate intra-tumor high-uptake areas. Tumor textural feature (TF) analysis was used to find a relationship between tumor type and TF values. Segmentation accuracy was evaluated quantitatively utilizing 70 clinical [18F]FDG-PET lung images of patients with a total of 150 solid tumors. For volumetric analysis, the Dice similarity coefficient (DSC) and Hausdorff distance (HD) measures were extracted with respect to gold-standard manual segmentation. A multi-linear regression model was also proposed for automated tumor labeling based on TFs, including cross-validation analysis.

Results

Two-tailed t test analysis of TFs between homogeneous and heterogeneous tumors revealed significant statistical difference for size-zone variability (SZV), intensity variability (IV), zone percentage (ZP), proposed parameters II and III, entropy and tumor volume (p < 0.001), dissimilarity, high intensity emphasis (HIE), and SUVmin (p < 0.01). Lower statistical differences were observed for proposed parameter I (p = 0.02), and no significant differences were observed for SUVmax and SUVmean. Furthermore, the Spearman rank analysis between visual tumor labeling and TF analysis depicted a significant correlation for SZV, IV, entropy, parameters II and III, and tumor volume (0.68 ≤ ρ ≤ 0.84) and moderate correlation for ZP, HIE, homogeneity, dissimilarity, parameter I, and SUVmin (0.22 ≤ ρ ≤ 0.52), while no correlations were observed for SUVmax and SUVmean (ρ < 0.08). The multi-linear regression model for automated tumor labeling process resulted in R 2 and RMSE values of 0.93 and 0.14, respectively (p < 0.001), and generated tumor labeling sensitivity and specificity of 0.93 and 0.89. With respect to baseline random walk segmentation, the results showed significant (p < 0.001) mean DSC, HD, and SUVmean error improvements of 21.4 ± 11.5 %, 1.4 ± 0.8 mm, and 16.8 ± 8.1 % in homogeneous tumors and 7.4 ± 4.4 %, 1.5 ± 0.6 mm, and 7.9 ± 2.7 % in heterogeneous lesions. In addition, significant (p < 0.001) mean DSC, HD, and SUVmean error improvements were observed for tumor sub-volume delineations, namely 5 ± 2 %, 1.5 ± 0.6 mm, and 7 ± 3 % for the proposed Fuzzy RW method compared to RW segmentation.

Conclusion

We proposed and demonstrated an automatic framework for significantly improved segmentation and labeling of homogeneous vs. heterogeneous tumors in lung [18F]FDG-PET images.
Literature
1.
go back to reference Juweid M, Cheson B (2006) Positron-emission tomography and assessment of cancer therapy. New Engl J Med 354:496–507CrossRefPubMed Juweid M, Cheson B (2006) Positron-emission tomography and assessment of cancer therapy. New Engl J Med 354:496–507CrossRefPubMed
2.
go back to reference Rahmim A, Wahl R (2006) An overview of clinical PET/CT. Iranian. J Nucl Med 14:1–14 Rahmim A, Wahl R (2006) An overview of clinical PET/CT. Iranian. J Nucl Med 14:1–14
3.
go back to reference de Geus-Oei LF, Vriens D, van Laarhoven HWM, van der Graaf WTA, Oyen WJG (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50:43–54CrossRef de Geus-Oei LF, Vriens D, van Laarhoven HWM, van der Graaf WTA, Oyen WJG (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50:43–54CrossRef
4.
go back to reference Orlhac F, Soussan M, Maisonobe JA et al (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422CrossRefPubMed Orlhac F, Soussan M, Maisonobe JA et al (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422CrossRefPubMed
5.
go back to reference Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892CrossRefPubMedPubMedCentral
6.
go back to reference Bradshaw TJ, Bowen SR, Jallow N et al (2013) Heterogeneity in intratumor correlations of 18F-FDG, 18F-FLT, and 61Cu-ATSM PET in canine sinonasal tumors. J Nucl Med 54(11):1931–1937CrossRefPubMedPubMedCentral Bradshaw TJ, Bowen SR, Jallow N et al (2013) Heterogeneity in intratumor correlations of 18F-FDG, 18F-FLT, and 61Cu-ATSM PET in canine sinonasal tumors. J Nucl Med 54(11):1931–1937CrossRefPubMedPubMedCentral
7.
go back to reference Basu S, Kwee T, Gatenby R et al (2011) Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging 38:987–991CrossRefPubMed Basu S, Kwee T, Gatenby R et al (2011) Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging 38:987–991CrossRefPubMed
8.
go back to reference Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline (18)F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline (18)F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral
9.
go back to reference Hatt M, Le Rest CC, van Baardwijk A et al (2011) Impact of tumor size and tracer uptake heterogeneity in 18F-FDG PET and CT non small cell lung cancer tumor delineation. J Nucl Med 52:1690–1697CrossRefPubMedPubMedCentral Hatt M, Le Rest CC, van Baardwijk A et al (2011) Impact of tumor size and tracer uptake heterogeneity in 18F-FDG PET and CT non small cell lung cancer tumor delineation. J Nucl Med 52:1690–1697CrossRefPubMedPubMedCentral
10.
11.
go back to reference Ling C, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:10CrossRef Ling C, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:10CrossRef
12.
go back to reference Riegel A, Berson A, Destian S et al (2006) Variability of gross tumor volume delineation in head-andneck cancer using CT and PET/CT fusion. Int. J. Radiat. Oncol., Biol. Phys 65(3):726–732CrossRef Riegel A, Berson A, Destian S et al (2006) Variability of gross tumor volume delineation in head-andneck cancer using CT and PET/CT fusion. Int. J. Radiat. Oncol., Biol. Phys 65(3):726–732CrossRef
13.
go back to reference Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86CrossRefPubMed Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86CrossRefPubMed
14.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 46:1342–1348PubMed Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 46:1342–1348PubMed
15.
go back to reference Hatt M, Le Rest CC, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiation Oncology Biol Phys 77:301–308CrossRef Hatt M, Le Rest CC, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiation Oncology Biol Phys 77:301–308CrossRef
16.
go back to reference Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1–17CrossRef Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1–17CrossRef
17.
go back to reference Soufi M, Kamali-Asl A, Geramifar P et al (2016) Combined fuzzy logic and random walker algorithm for PET image tumor delineation. Nucl Med Comm 37:171–181CrossRef Soufi M, Kamali-Asl A, Geramifar P et al (2016) Combined fuzzy logic and random walker algorithm for PET image tumor delineation. Nucl Med Comm 37:171–181CrossRef
18.
go back to reference Onoma DP, Ruan S, Gardin I, et al. (2012) 3D random walk based segmentation for lung tumor delineation in PET imaging. Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on; p. 1260–3 Onoma DP, Ruan S, Gardin I, et al. (2012) 3D random walk based segmentation for lung tumor delineation in PET imaging. Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on; p. 1260–3
19.
go back to reference Soufi M, Kamali Asl AR, Geramifar P (2015) Random walk algorithm seed localization parameters in lung positron emission tomography (PET) images. Med Phys 42 Soufi M, Kamali Asl AR, Geramifar P (2015) Random walk algorithm seed localization parameters in lung positron emission tomography (PET) images. Med Phys 42
20.
go back to reference Fechter T, Mix M, Gardin I et al (2013) Malignant glioma delineation in amino acid PET-images using a 3D random walk approach. Intl J Radiat Oncol Biol Physics 87:S622CrossRef Fechter T, Mix M, Gardin I et al (2013) Malignant glioma delineation in amino acid PET-images using a 3D random walk approach. Intl J Radiat Oncol Biol Physics 87:S622CrossRef
21.
go back to reference Hui C, Xiuying W, Fulham M, Feng DD (2013) Prior knowledge enhanced random walk for lung tumor segmentation from low-contrast CT images. Eng Med Biol Soc (EMBC), 2013 35th Annual International Conference of the IEEE:6071–6074 Hui C, Xiuying W, Fulham M, Feng DD (2013) Prior knowledge enhanced random walk for lung tumor segmentation from low-contrast CT images. Eng Med Biol Soc (EMBC), 2013 35th Annual International Conference of the IEEE:6071–6074
22.
go back to reference Bagci U, Udupa JK, Mendhiratta N et al (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med Image Anal 17:929–945CrossRefPubMedPubMedCentral Bagci U, Udupa JK, Mendhiratta N et al (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med Image Anal 17:929–945CrossRefPubMedPubMedCentral
23.
go back to reference Bagci U, Udupa J, Yao J, Mollura D. (2012) Co-segmentation of functional and anatomical images. In: Proc. Med Image Computing and Computer-Assisted Intervention:459–67 Bagci U, Udupa J, Yao J, Mollura D. (2012) Co-segmentation of functional and anatomical images. In: Proc. Med Image Computing and Computer-Assisted Intervention:459–67
24.
go back to reference Bagci U, Yao J, Caban J, et al. (2011) A graph-theoretic approach for segmentation of pet images. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE:8479–82 Bagci U, Yao J, Caban J, et al. (2011) A graph-theoretic approach for segmentation of pet images. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE:8479–82
25.
go back to reference Kaur EK, Mutenja EV (2010) Fuzzy logic based image edge detection algorithm in MATLAB. Intl J Computer Appl 1:55–58 Kaur EK, Mutenja EV (2010) Fuzzy logic based image edge detection algorithm in MATLAB. Intl J Computer Appl 1:55–58
26.
go back to reference Kumar D J, Mohan V. (2014) Edge detection in the medical MR brain image based on fuzzy logic technique. Information Communication and Embedded Systems (ICICES), 2014 International Conference on; p. 1–9 Kumar D J, Mohan V. (2014) Edge detection in the medical MR brain image based on fuzzy logic technique. Information Communication and Embedded Systems (ICICES), 2014 International Conference on; p. 1–9
27.
go back to reference Rashmi KA, Kusagur DA (2012) An improved fast edge detection for medical image based on fuzzy techniques. Fuzzy Systems 4:147–150 Rashmi KA, Kusagur DA (2012) An improved fast edge detection for medical image based on fuzzy techniques. Fuzzy Systems 4:147–150
28.
go back to reference Eary JF, O'Sullivan F, O'Sullivan J, Conrad EU (2008) Spatial heterogeneity in sarcoma (18)F-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979CrossRefPubMedPubMedCentral Eary JF, O'Sullivan F, O'Sullivan J, Conrad EU (2008) Spatial heterogeneity in sarcoma (18)F-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979CrossRefPubMedPubMedCentral
29.
go back to reference El Naqa I, Grigsby PW, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef El Naqa I, Grigsby PW, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef
30.
go back to reference van Velden FHP, Cheebsumon P, Yaqub M et al (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol I 38:1636–1647CrossRef van Velden FHP, Cheebsumon P, Yaqub M et al (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol I 38:1636–1647CrossRef
31.
go back to reference Asselin MC, O’Connor JPB, Boellaard R et al (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48:447–455CrossRefPubMed Asselin MC, O’Connor JPB, Boellaard R et al (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48:447–455CrossRefPubMed
32.
go back to reference Vriens D, Disselhorst JA, Oyen WJG et al (2012) Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int. J Radiat Oncol 82:E725–EE31CrossRef Vriens D, Disselhorst JA, Oyen WJG et al (2012) Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int. J Radiat Oncol 82:E725–EE31CrossRef
33.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral
35.
go back to reference Chicklore S, Goh V, Siddique M et al (2013) Quantifying tumour heterogeneity in F-18-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol I 40:133–140CrossRef Chicklore S, Goh V, Siddique M et al (2013) Quantifying tumour heterogeneity in F-18-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol I 40:133–140CrossRef
36.
go back to reference Tixier F, Hatt M, Valla C et al (2014) Visual versus quantitative assessment of intratumor F-18-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med 55:1235–1241CrossRefPubMed Tixier F, Hatt M, Valla C et al (2014) Visual versus quantitative assessment of intratumor F-18-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med 55:1235–1241CrossRefPubMed
38.
go back to reference Hatt M, Majdoub M, Vallieres M et al (2015) F-18-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMed Hatt M, Majdoub M, Vallieres M et al (2015) F-18-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMed
39.
go back to reference Rahmim A, Schmidtlein CR, Jackson A et al (2016) A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys Med Biol 61:227–242CrossRefPubMed Rahmim A, Schmidtlein CR, Jackson A et al (2016) A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys Med Biol 61:227–242CrossRefPubMed
40.
go back to reference Tixier F, Groves AM, Goh V et al (2014) Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One 9:1–7CrossRef Tixier F, Groves AM, Goh V et al (2014) Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One 9:1–7CrossRef
41.
go back to reference Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in F-18-FDG PET. J Nucl Med 53:693–700CrossRefPubMedPubMedCentral Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in F-18-FDG PET. J Nucl Med 53:693–700CrossRefPubMedPubMedCentral
42.
go back to reference Leijenaar RTH, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefPubMed Leijenaar RTH, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefPubMed
43.
go back to reference Kim K, Kim SJ, Kim IJ et al (2012) Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected nonsmall- cell lung cancer. Nucl Med Commun 33:613–620CrossRefPubMed Kim K, Kim SJ, Kim IJ et al (2012) Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected nonsmall- cell lung cancer. Nucl Med Commun 33:613–620CrossRefPubMed
44.
go back to reference Liao S, Penney BC, Wroblewski K et al (2012) Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 39:27–38CrossRefPubMed Liao S, Penney BC, Wroblewski K et al (2012) Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 39:27–38CrossRefPubMed
45.
go back to reference Hyun SH, Ahn H, Kim H et al (2014) Volume-based assessment by 18F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:50–58CrossRefPubMed Hyun SH, Ahn H, Kim H et al (2014) Volume-based assessment by 18F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:50–58CrossRefPubMed
46.
go back to reference Galavis P, Hollensen C, Jallow N,P et al (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRefPubMedPubMedCentral Galavis P, Hollensen C, Jallow N,P et al (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRefPubMedPubMedCentral
47.
go back to reference Hatt M, Tixier F, Le Rest CC et al (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. European Journal of Nuclear Medicine Molecular Imaging 40:1662–1671CrossRefPubMed Hatt M, Tixier F, Le Rest CC et al (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. European Journal of Nuclear Medicine Molecular Imaging 40:1662–1671CrossRefPubMed
48.
go back to reference Lu L, Lv W, Jiang J et al (2016) Robustness of radiomic features in 11C-choline and 18F-FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization (supplement). Molec Imag Biol. doi:10.1007/s11307-016-0973-6 Lu L, Lv W, Jiang J et al (2016) Robustness of radiomic features in 11C-choline and 18F-FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization (supplement). Molec Imag Biol. doi:10.​1007/​s11307-016-0973-6
49.
go back to reference Grkovski M, Apte A, Schwartz J, et al. (2015) Reproducibility of F-18-FMISO intratumor distribution and texture features in NSCLC. J Nucl Med 56 Grkovski M, Apte A, Schwartz J, et al. (2015) Reproducibility of F-18-FMISO intratumor distribution and texture features in NSCLC. J Nucl Med 56
50.
go back to reference van Velden F, Kramer G, Frings V, et al. (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Molec. Imag. Biol. In Press van Velden F, Kramer G, Frings V, et al. (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Molec. Imag. Biol. In Press
51.
go back to reference Ashrafinia S, Gonzalez EM, Mohy-ud-Din H et al (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. Nuc Med Med 57(suppl. 2):479 Ashrafinia S, Gonzalez EM, Mohy-ud-Din H et al (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. Nuc Med Med 57(suppl. 2):479
52.
go back to reference Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO (2013) Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol 58:187–203CrossRefPubMed Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO (2013) Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol 58:187–203CrossRefPubMed
53.
go back to reference Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef
54.
go back to reference Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Computer Graphics Forum 18:167–174CrossRef Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Computer Graphics Forum 18:167–174CrossRef
55.
56.
go back to reference Belhassen S, Zaidi H (2010) A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 37:1309–1324CrossRefPubMed Belhassen S, Zaidi H (2010) A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 37:1309–1324CrossRefPubMed
57.
go back to reference Abdoli M, Dierckx RAJO, Zaidi H (2012) Deformable model-based PET segmentation for heterogeneous tumor volume delineation. IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) M22-45:3947–3951CrossRef Abdoli M, Dierckx RAJO, Zaidi H (2012) Deformable model-based PET segmentation for heterogeneous tumor volume delineation. IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) M22-45:3947–3951CrossRef
Metadata
Title
A Novel Framework for Automated Segmentation and Labeling of Homogeneous Versus Heterogeneous Lung Tumors in [18F]FDG-PET Imaging
Authors
Motahare Soufi
Alireza Kamali-Asl
Parham Geramifar
Arman Rahmim
Publication date
01-06-2017
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 3/2017
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-016-1015-0

Other articles of this Issue 3/2017

Molecular Imaging and Biology 3/2017 Go to the issue