Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2016

01-12-2016 | Research Article

Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization

Authors: Lijun Lu, Wenbing Lv, Jun Jiang, Jianhua Ma, Qianjin Feng, Arman Rahmim, Wufan Chen

Published in: Molecular Imaging and Biology | Issue 6/2016

Login to get access

Abstract

Purpose

Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and [11C]methyl-choline ([11C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma.

Procedures

Forty patients underwent [18F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [11C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUVmax) threshold with background correction, Nestle’s method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features).

Results

Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [18F]FDG and [11C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [18F]FDG and [11C]choline, respectively. Six features were obtained from both [18F]FDG and [11C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness).

Conclusions

Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [11C]choline were more robust than [18F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Lee AW, Ma BB, Ng WT et al (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 33:3356–3364CrossRefPubMed Lee AW, Ma BB, Ng WT et al (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 33:3356–3364CrossRefPubMed
3.
go back to reference Krause BJ, Schwarzenbock S, Souvatzoglou M (2013) FDG PET and PET/CT. Recent Results Cancer Res 187:351–369CrossRefPubMed Krause BJ, Schwarzenbock S, Souvatzoglou M (2013) FDG PET and PET/CT. Recent Results Cancer Res 187:351–369CrossRefPubMed
4.
go back to reference Liu FY, Lin CY, Chang JT et al (2007) 18F-FDG PET can replace conventional work-up in primary M staging of nonkeratinizing nasopharyngeal carcinoma. J Nucl Med 48:1614–1619CrossRefPubMed Liu FY, Lin CY, Chang JT et al (2007) 18F-FDG PET can replace conventional work-up in primary M staging of nonkeratinizing nasopharyngeal carcinoma. J Nucl Med 48:1614–1619CrossRefPubMed
5.
go back to reference O’Donnell HE, Plowman PN, Khaira MK et al (2008) PET scanning and Gamma Knife radiosurgery in the early diagnosis and salvage “cure” of locally recurrent nasopharyngeal carcinoma. Br J Radiol 81:e26–e30CrossRefPubMed O’Donnell HE, Plowman PN, Khaira MK et al (2008) PET scanning and Gamma Knife radiosurgery in the early diagnosis and salvage “cure” of locally recurrent nasopharyngeal carcinoma. Br J Radiol 81:e26–e30CrossRefPubMed
6.
go back to reference Ng SH, Chan SC, Yen TC et al (2009) Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up. Eur J Nucl Med Mol Imaging 36:12–22CrossRefPubMed Ng SH, Chan SC, Yen TC et al (2009) Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up. Eur J Nucl Med Mol Imaging 36:12–22CrossRefPubMed
7.
go back to reference Wu H, Wang Q, Wang M et al (2011) Preliminary study of 11C-choline PET/CT for T staging of locally advanced nasopharyngeal carcinoma: comparison with 18F-FDG PET/CT. J Nucl Med 52:341–346CrossRefPubMed Wu H, Wang Q, Wang M et al (2011) Preliminary study of 11C-choline PET/CT for T staging of locally advanced nasopharyngeal carcinoma: comparison with 18F-FDG PET/CT. J Nucl Med 52:341–346CrossRefPubMed
8.
go back to reference Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892CrossRefPubMedPubMedCentral
9.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentral
10.
go back to reference Asselin M, O’Connor JP, Boellaard R et al (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48:447–455CrossRefPubMed Asselin M, O’Connor JP, Boellaard R et al (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48:447–455CrossRefPubMed
11.
go back to reference Chicklore S, Goh V, Siddique M et al (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRefPubMed Chicklore S, Goh V, Siddique M et al (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRefPubMed
12.
go back to reference Eary JF, O’Sullivan F, O’Sullivan J et al (2008) Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979CrossRefPubMedPubMedCentral Eary JF, O’Sullivan F, O’Sullivan J et al (2008) Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979CrossRefPubMedPubMedCentral
13.
go back to reference El Naqa I, Grigsby PW, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef El Naqa I, Grigsby PW, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRef
14.
go back to reference Hatt M, Majdoub M, Vallieres M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMed Hatt M, Majdoub M, Vallieres M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMed
16.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral
17.
go back to reference Rahmim A, Schmidtlein CR, Jackson A et al (2015) A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys Med Biol 61:227–242CrossRefPubMed Rahmim A, Schmidtlein CR, Jackson A et al (2015) A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys Med Biol 61:227–242CrossRefPubMed
18.
go back to reference Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral
19.
go back to reference Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53:693–700CrossRefPubMedPubMedCentral Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53:693–700CrossRefPubMedPubMedCentral
20.
go back to reference Tixier F, Hatt M, Valla C et al (2014) Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med 55:1235–1241CrossRefPubMed Tixier F, Hatt M, Valla C et al (2014) Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med 55:1235–1241CrossRefPubMed
21.
go back to reference Van Velden FH, Cheebsumon P, Yaqub M et al (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging 38:1636–1647CrossRefPubMedPubMedCentral Van Velden FH, Cheebsumon P, Yaqub M et al (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging 38:1636–1647CrossRefPubMedPubMedCentral
22.
go back to reference Vriens D, Disselhorst JA, Oyen WJ et al (2012) Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int J Radiat Oncol Biol Phys 82:e725–e731CrossRefPubMed Vriens D, Disselhorst JA, Oyen WJ et al (2012) Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int J Radiat Oncol Biol Phys 82:e725–e731CrossRefPubMed
23.
go back to reference Doumou G, Siddique M, Tsoumpas C et al (2015) The precision of textural analysis in 18F-FDG PET scans of oesophageal cancer. Eur Radiol 25:2805–2812CrossRefPubMed Doumou G, Siddique M, Tsoumpas C et al (2015) The precision of textural analysis in 18F-FDG PET scans of oesophageal cancer. Eur Radiol 25:2805–2812CrossRefPubMed
24.
go back to reference Hatt M, Tixier F, Cheze LRC et al (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40:1662–1671CrossRefPubMed Hatt M, Tixier F, Cheze LRC et al (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40:1662–1671CrossRefPubMed
25.
go back to reference Galavis PE, Hollensen C, Jallow N et al (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRefPubMedPubMedCentral Galavis PE, Hollensen C, Jallow N et al (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRefPubMedPubMedCentral
26.
go back to reference Van Velden FHP, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. doi:10.1007/s11307-016-0940-2 Van Velden FHP, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. doi:10.​1007/​s11307-016-0940-2
27.
go back to reference Vallieres M, Freeman CR, Skamene SR et al (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRefPubMed Vallieres M, Freeman CR, Skamene SR et al (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRefPubMed
28.
go back to reference Willaime J, Turkheimer FE, Kenny LM et al (2013) Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol 58:187–203CrossRefPubMed Willaime J, Turkheimer FE, Kenny LM et al (2013) Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol 58:187–203CrossRefPubMed
29.
go back to reference Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187CrossRefPubMed Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187CrossRefPubMed
30.
go back to reference Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895PubMed Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895PubMed
31.
go back to reference Jiang J, Wu H, Huang M et al (2015) Variability of gross tumor volume in nasopharyngeal carcinoma using 11C-choline and 18F-FDG PET/CT. PLoS ONE 10, e131801 Jiang J, Wu H, Huang M et al (2015) Variability of gross tumor volume in nasopharyngeal carcinoma using 11C-choline and 18F-FDG PET/CT. PLoS ONE 10, e131801
32.
go back to reference Frings V, van Velden FH, Velasquez LM et al (2014) Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology 273:539–548CrossRefPubMed Frings V, van Velden FH, Velasquez LM et al (2014) Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology 273:539–548CrossRefPubMed
33.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMed Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMed
34.
go back to reference Tian J, Xue J, Dai Y et al (2008) A novel software platform for medical image processing and analyzing. IEEE Trans Inf Technol Biomed 12:800–812CrossRefPubMed Tian J, Xue J, Dai Y et al (2008) A novel software platform for medical image processing and analyzing. IEEE Trans Inf Technol Biomed 12:800–812CrossRefPubMed
35.
go back to reference Adams R, Bishof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef Adams R, Bishof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef
36.
go back to reference Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefPubMed Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefPubMed
37.
go back to reference Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122S–150SCrossRefPubMedPubMedCentral Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122S–150SCrossRefPubMedPubMedCentral
38.
go back to reference Leijenaar RT, Nalbantov G, Carvalho S et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRefPubMedPubMedCentral Leijenaar RT, Nalbantov G, Carvalho S et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRefPubMedPubMedCentral
39.
go back to reference Thibault G, Fertil B, Navarro C et al. (2009) Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recognition Inf Process: 140–145 Thibault G, Fertil B, Navarro C et al. (2009) Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recognition Inf Process: 140–145
40.
go back to reference Galloway MM (1975) Texture analysis using grey level run lengths. Comput Graphics Image Process 4:172–179CrossRef Galloway MM (1975) Texture analysis using grey level run lengths. Comput Graphics Image Process 4:172–179CrossRef
41.
go back to reference Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–1274CrossRef Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–1274CrossRef
42.
go back to reference Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11CrossRefPubMed Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11CrossRefPubMed
43.
go back to reference Cook GJ, Yip C, Siddique M et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54:19–26CrossRefPubMed Cook GJ, Yip C, Siddique M et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54:19–26CrossRefPubMed
44.
go back to reference Bundschuh RA, Dinges J, Neumann L et al (2014) Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med 55:891–897CrossRefPubMed Bundschuh RA, Dinges J, Neumann L et al (2014) Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med 55:891–897CrossRefPubMed
45.
go back to reference Orlhac F, Soussan M, Maisonobe J et al (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422CrossRefPubMed Orlhac F, Soussan M, Maisonobe J et al (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422CrossRefPubMed
47.
go back to reference Brooks FJ (2013) On some misconceptions about tumor heterogeneity quantification. Eur J Nucl Med Mol Imaging 40:1292–1294CrossRefPubMed Brooks FJ (2013) On some misconceptions about tumor heterogeneity quantification. Eur J Nucl Med Mol Imaging 40:1292–1294CrossRefPubMed
48.
go back to reference Naqa IE (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Translat Imaging 2:305–320CrossRef Naqa IE (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Translat Imaging 2:305–320CrossRef
49.
go back to reference Cheng NM, Fang YH, Yen TC (2013) The promise and limits of PET texture analysis. Ann Nucl Med 27:867–869CrossRefPubMed Cheng NM, Fang YH, Yen TC (2013) The promise and limits of PET texture analysis. Ann Nucl Med 27:867–869CrossRefPubMed
50.
go back to reference Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42CrossRefPubMed Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42CrossRefPubMed
51.
go back to reference Ashrafinia S, Gonzalez E, Mohy-Ud-Din H et al. (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. SNMMI Annual Meeting Ashrafinia S, Gonzalez E, Mohy-Ud-Din H et al. (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. SNMMI Annual Meeting
52.
go back to reference Yu H, Caldwell C, Mah K et al (2009) Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 28:374–383CrossRefPubMed Yu H, Caldwell C, Mah K et al (2009) Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 28:374–383CrossRefPubMed
53.
go back to reference Hatt M, Rest CCL, Descourt P, Dekker A, Ruysscher DD, Oellers M, Lambin P, Pradier O, Visvikis D (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77:301–308CrossRefPubMed Hatt M, Rest CCL, Descourt P, Dekker A, Ruysscher DD, Oellers M, Lambin P, Pradier O, Visvikis D (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77:301–308CrossRefPubMed
54.
go back to reference Zaidi H, Abdoli M, Fuentes CL, EI Naga IM (2012) Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 39:881–891CrossRefPubMedPubMedCentral Zaidi H, Abdoli M, Fuentes CL, EI Naga IM (2012) Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 39:881–891CrossRefPubMedPubMedCentral
55.
go back to reference Abdoli M, Dierckx RA, Zaidi H (2013) Contourlet-based active contour model for PET image segmentation. Med Phys 40(082507):1–12 Abdoli M, Dierckx RA, Zaidi H (2013) Contourlet-based active contour model for PET image segmentation. Med Phys 40(082507):1–12
Metadata
Title
Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization
Authors
Lijun Lu
Wenbing Lv
Jun Jiang
Jianhua Ma
Qianjin Feng
Arman Rahmim
Wufan Chen
Publication date
01-12-2016
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 6/2016
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-016-0973-6

Other articles of this Issue 6/2016

Molecular Imaging and Biology 6/2016 Go to the issue