Skip to main content
Top
Published in: Seminars in Immunopathology 3/2017

01-04-2017 | Review

Anti-regulatory T cells

Author: Mads Hald Andersen

Published in: Seminars in Immunopathology | Issue 3/2017

Login to get access

Abstract

Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.
Literature
2.
go back to reference Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991CrossRefPubMedPubMedCentral Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991CrossRefPubMedPubMedCentral
3.
go back to reference Brusko TM, Putnam AL, Bluestone JA (2008) Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 223:371–390CrossRefPubMed Brusko TM, Putnam AL, Bluestone JA (2008) Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 223:371–390CrossRefPubMed
4.
go back to reference Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50CrossRefPubMed Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50CrossRefPubMed
5.
go back to reference Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMedPubMedCentral Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMedPubMedCentral
6.
go back to reference Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569CrossRefPubMed Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569CrossRefPubMed
7.
go back to reference Andersen MH (2015) Immune regulation by self-recognition: novel possibilities for anticancer immunotherapy. J Natl Cancer Inst 107:154CrossRef Andersen MH (2015) Immune regulation by self-recognition: novel possibilities for anticancer immunotherapy. J Natl Cancer Inst 107:154CrossRef
8.
go back to reference Kumar V, Sercarz EE (1993) The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med 178:909–916CrossRefPubMed Kumar V, Sercarz EE (1993) The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med 178:909–916CrossRefPubMed
9.
go back to reference Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642CrossRefPubMed Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642CrossRefPubMed
10.
go back to reference Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855CrossRefPubMed Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855CrossRefPubMed
12.
go back to reference Batabyal D, Yeh SR (2007) Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. J Am Chem Soc 19:15690–15701CrossRef Batabyal D, Yeh SR (2007) Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. J Am Chem Soc 19:15690–15701CrossRef
13.
go back to reference Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900CrossRefPubMed Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900CrossRefPubMed
14.
go back to reference Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274CrossRefPubMed Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274CrossRefPubMed
15.
go back to reference Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S et al (2006) Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108:2265–2274CrossRefPubMed Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S et al (2006) Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108:2265–2274CrossRefPubMed
16.
go back to reference Sorensen RB, Berge-Hansen L, Junker N, Hansen CA, Hadrup SR, Schumacher TN et al (2009) The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase. PLoS One 4:e6910CrossRefPubMedPubMedCentral Sorensen RB, Berge-Hansen L, Junker N, Hansen CA, Hadrup SR, Schumacher TN et al (2009) The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase. PLoS One 4:e6910CrossRefPubMedPubMedCentral
17.
go back to reference Sorensen RB, Hadrup SR, Svane IM, Hjortso MC, thor Straten P, MH A (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117:2200–2210CrossRefPubMedPubMedCentral Sorensen RB, Hadrup SR, Svane IM, Hjortso MC, thor Straten P, MH A (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117:2200–2210CrossRefPubMedPubMedCentral
18.
go back to reference Sorensen RB, Kollgaard T, Andersen RS, van den Berg JH, Svane IM, thor Straten P et al (2011) Spontaneous cytotoxic T-cell reactivity against indoleamine 2,3-dioxygenase-2. Cancer Res 71:2038–2044CrossRefPubMed Sorensen RB, Kollgaard T, Andersen RS, van den Berg JH, Svane IM, thor Straten P et al (2011) Spontaneous cytotoxic T-cell reactivity against indoleamine 2,3-dioxygenase-2. Cancer Res 71:2038–2044CrossRefPubMed
19.
go back to reference Munir S, Larsen SK, Iversen TZ, Donia M, Klausen TW, Svane IM et al (2012) Natural CD4(+) T-cell responses against indoleamine 2,3-dioxygenase. PLoS One 7:e34568CrossRefPubMedPubMedCentral Munir S, Larsen SK, Iversen TZ, Donia M, Klausen TW, Svane IM et al (2012) Natural CD4(+) T-cell responses against indoleamine 2,3-dioxygenase. PLoS One 7:e34568CrossRefPubMedPubMedCentral
20.
go back to reference Andersen MH (2012) The specific targeting of immune regulation: T-cell responses against indoleamine 2,3-dioxygenase. Cancer Immunol Immunother 61:1289–1297CrossRefPubMedPubMedCentral Andersen MH (2012) The specific targeting of immune regulation: T-cell responses against indoleamine 2,3-dioxygenase. Cancer Immunol Immunother 61:1289–1297CrossRefPubMedPubMedCentral
22.
go back to reference Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE et al (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2:722–735CrossRefPubMedPubMedCentral Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE et al (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2:722–735CrossRefPubMedPubMedCentral
23.
go back to reference Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797CrossRefPubMed Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797CrossRefPubMed
24.
go back to reference Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMed Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMed
25.
go back to reference Mussai F, De SC, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM et al (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122:749–758CrossRefPubMedPubMedCentral Mussai F, De SC, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM et al (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122:749–758CrossRefPubMedPubMedCentral
26.
go back to reference Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y et al (2009) PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 23:375–382CrossRefPubMed Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y et al (2009) PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 23:375–382CrossRefPubMed
27.
go back to reference Atanackovic D, Luetkens T, Kroger N (2013) Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. doi:10.1038/leu.2013.310 Atanackovic D, Luetkens T, Kroger N (2013) Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. doi:10.​1038/​leu.​2013.​310
28.
go back to reference Yang H, Bueso-Ramos C, Dinardo C, Estecio MR, Davanlou M, Geng QR et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288CrossRefPubMed Yang H, Bueso-Ramos C, Dinardo C, Estecio MR, Davanlou M, Geng QR et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288CrossRefPubMed
29.
go back to reference Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 26:424–432CrossRefPubMed Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 26:424–432CrossRefPubMed
30.
go back to reference Kollgaard T, Petersen SL, Hadrup SR, Masmas TN, Seremet T, Andersen MH et al (2005) Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 19:2273–2280CrossRefPubMed Kollgaard T, Petersen SL, Hadrup SR, Masmas TN, Seremet T, Andersen MH et al (2005) Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 19:2273–2280CrossRefPubMed
31.
go back to reference Ame-Thomas P, Le PJ, Yssel H, Caron G, Pangault C, Jean R et al (2012) Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia 26:1053–1063CrossRefPubMed Ame-Thomas P, Le PJ, Yssel H, Caron G, Pangault C, Jean R et al (2012) Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia 26:1053–1063CrossRefPubMed
32.
go back to reference van de Donk NW, Kamps S, Mutis T, Lokhorst HM (2012) Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 26:199–213CrossRefPubMed van de Donk NW, Kamps S, Mutis T, Lokhorst HM (2012) Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 26:199–213CrossRefPubMed
33.
go back to reference Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al (2013) Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27:464–472CrossRefPubMed Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al (2013) Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27:464–472CrossRefPubMed
35.
go back to reference Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRefPubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRefPubMedPubMedCentral
36.
go back to reference Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2453CrossRefPubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2453CrossRefPubMedPubMedCentral
37.
go back to reference Munir S, Andersen GH, Met O, Donia M, Frosig TM, Larsen SK et al (2013) HLA-restricted cytotoxic T cells that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 73:1674–1776CrossRef Munir S, Andersen GH, Met O, Donia M, Frosig TM, Larsen SK et al (2013) HLA-restricted cytotoxic T cells that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 73:1674–1776CrossRef
38.
go back to reference Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH (2013) Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia 27:2251–2253CrossRefPubMed Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH (2013) Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia 27:2251–2253CrossRefPubMed
39.
go back to reference Minami T, Minami T, Shimizu N, Yamamoto Y, De VM, Nozawa M et al (2015) Identification of programmed death ligand 1-derived peptides capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. J Immunother 38:285–291CrossRefPubMed Minami T, Minami T, Shimizu N, Yamamoto Y, De VM, Nozawa M et al (2015) Identification of programmed death ligand 1-derived peptides capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. J Immunother 38:285–291CrossRefPubMed
40.
go back to reference Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370CrossRefPubMedPubMedCentral Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370CrossRefPubMedPubMedCentral
41.
go back to reference Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380CrossRefPubMed Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380CrossRefPubMed
42.
go back to reference van Es T, van Puijvelde GH, Foks AC, Habets KL, Bot I, Gilboa E et al (2010) Vaccination against Foxp3(+) regulatory T cells aggravates atherosclerosis. Atherosclerosis 209:74–80CrossRefPubMed van Es T, van Puijvelde GH, Foks AC, Habets KL, Bot I, Gilboa E et al (2010) Vaccination against Foxp3(+) regulatory T cells aggravates atherosclerosis. Atherosclerosis 209:74–80CrossRefPubMed
43.
go back to reference Larsen SK, Munir S, Woetmann A, Froesig TM, Odum N, Svane IM et al (2013) Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 27:2332–2340CrossRefPubMed Larsen SK, Munir S, Woetmann A, Froesig TM, Odum N, Svane IM et al (2013) Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 27:2332–2340CrossRefPubMed
44.
go back to reference Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMed Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMed
45.
go back to reference Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S et al (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66:5716–5722CrossRefPubMed Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S et al (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66:5716–5722CrossRefPubMed
46.
go back to reference Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009CrossRefPubMed Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009CrossRefPubMed
48.
go back to reference Martinenaite E, Ahmad SM, Hansen M, Met O, Westergaard MW, Larsen SK, et al. (2016) CCL22-specific T cells: modulating the immunosuppressive tumor microenvironment. In Press ed. Martinenaite E, Ahmad SM, Hansen M, Met O, Westergaard MW, Larsen SK, et al. (2016) CCL22-specific T cells: modulating the immunosuppressive tumor microenvironment. In Press ed.
49.
go back to reference Munir S, Frosig TM, Hansen M, Svane IM, Andersen MH (2012) Characterization of T-cell responses against IkappaBalpha in cancer patients. Oncoimmunology 1:1290–1296CrossRefPubMedPubMedCentral Munir S, Frosig TM, Hansen M, Svane IM, Andersen MH (2012) Characterization of T-cell responses against IkappaBalpha in cancer patients. Oncoimmunology 1:1290–1296CrossRefPubMedPubMedCentral
50.
go back to reference Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ et al (2015) Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes. Immunity 42:929–941CrossRefPubMedPubMedCentral Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ et al (2015) Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes. Immunity 42:929–941CrossRefPubMedPubMedCentral
51.
go back to reference Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685CrossRefPubMedPubMedCentral Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685CrossRefPubMedPubMedCentral
52.
go back to reference Furset G, Floisand Y, Sioud M (2008) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 123:263–271PubMedPubMedCentral Furset G, Floisand Y, Sioud M (2008) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 123:263–271PubMedPubMedCentral
53.
go back to reference Lim ST, Levine AM (2005) Non-AIDS-defining cancers and HIV infection. Curr Infect Dis Rep 7:227–234CrossRefPubMed Lim ST, Levine AM (2005) Non-AIDS-defining cancers and HIV infection. Curr Infect Dis Rep 7:227–234CrossRefPubMed
54.
go back to reference Hjortso MC, Larsen SK, Kongsted P, Met O, Frosig TM, Andersen GH et al (2015) Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer. Oncoimmunology 4:e968480CrossRefPubMedPubMedCentral Hjortso MC, Larsen SK, Kongsted P, Met O, Frosig TM, Andersen GH et al (2015) Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer. Oncoimmunology 4:e968480CrossRefPubMedPubMedCentral
55.
go back to reference Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468CrossRefPubMedPubMedCentral Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468CrossRefPubMedPubMedCentral
56.
go back to reference Xu H, Oriss TB, Fei M, Henry AC, Melgert BN, Chen L et al (2008) Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci U S A 105:6690–6695CrossRefPubMedPubMedCentral Xu H, Oriss TB, Fei M, Henry AC, Melgert BN, Chen L et al (2008) Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci U S A 105:6690–6695CrossRefPubMedPubMedCentral
57.
go back to reference Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J et al (2014) Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20:221–232CrossRefPubMed Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J et al (2014) Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20:221–232CrossRefPubMed
58.
go back to reference Ahmad SM, Larsen SK, Svane IM, Andersen MH (2014) Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia 28:236–238CrossRefPubMed Ahmad SM, Larsen SK, Svane IM, Andersen MH (2014) Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia 28:236–238CrossRefPubMed
59.
go back to reference Ahmad SM, Svane IM, Andersen MH (2014) The stimulation of PD-L1-specific cytotoxic T lymphocytes can both directly and indirectly enhance antileukemic immunity. Blood Cancer J 4:230–233CrossRef Ahmad SM, Svane IM, Andersen MH (2014) The stimulation of PD-L1-specific cytotoxic T lymphocytes can both directly and indirectly enhance antileukemic immunity. Blood Cancer J 4:230–233CrossRef
60.
go back to reference Ahmad SM, Martinenaite E, Hansen M, Junker N, Borch TH, Met O, et al. (2016) PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. In press ed. Ahmad SM, Martinenaite E, Hansen M, Junker N, Borch TH, Met O, et al. (2016) PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. In press ed.
61.
go back to reference Munir S, Andersen GH, Svane IM, Andersen MH (2013) The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4+ T cells. Oncoimmunology 2:e23991CrossRefPubMedPubMedCentral Munir S, Andersen GH, Svane IM, Andersen MH (2013) The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4+ T cells. Oncoimmunology 2:e23991CrossRefPubMedPubMedCentral
62.
go back to reference Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA et al (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A 105:11903–11908CrossRefPubMedPubMedCentral Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA et al (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A 105:11903–11908CrossRefPubMedPubMedCentral
63.
go back to reference Andersen MH, Sorensen RB, Brimnes MK, Svane IM, Becker JC, thor Straten P (2009) Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients. J Clin Invest 119:2245–2256CrossRefPubMedPubMedCentral Andersen MH, Sorensen RB, Brimnes MK, Svane IM, Becker JC, thor Straten P (2009) Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients. J Clin Invest 119:2245–2256CrossRefPubMedPubMedCentral
64.
go back to reference Samy ET, Parker LA, Sharp CP, Tung KS (2005) Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med 202:771–781CrossRefPubMedPubMedCentral Samy ET, Parker LA, Sharp CP, Tung KS (2005) Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med 202:771–781CrossRefPubMedPubMedCentral
65.
go back to reference Nagata Y, Hanagiri T, Mizukami M, Kuroda K, Shigematsu Y, Baba T et al (2009) Clinical significance of HLA class I alleles on postoperative prognosis of lung cancer patients in Japan. Lung Cancer 65:91–97CrossRefPubMed Nagata Y, Hanagiri T, Mizukami M, Kuroda K, Shigematsu Y, Baba T et al (2009) Clinical significance of HLA class I alleles on postoperative prognosis of lung cancer patients in Japan. Lung Cancer 65:91–97CrossRefPubMed
Metadata
Title
Anti-regulatory T cells
Author
Mads Hald Andersen
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 3/2017
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-016-0593-x

Other articles of this Issue 3/2017

Seminars in Immunopathology 3/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.