Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma

Abstract

The introduction of autologous stem cell transplantation combined with the introduction of immunomodulatory drugs (IMiDs) and proteasome inhibitors has significantly improved survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating the need for new treatment modalities. In preclinical and clinical studies, promising results have been obtained with several monoclonal antibodies (mAbs) targeting the myeloma tumor cell or the bone marrow microenvironment. The mechanisms underlying the therapeutic efficacy of these mAbs include direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). The capability of IMiDs to enhance ADCC and the modulation of various important signaling cascades in myeloma cells by both bortezomib and IMiDs forms the rationale to combine these novel agents with mAbs as new treatment strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor cells or indirectly via effects on the bone marrow microenvironment. Special focus will be on the combination of these mAbs with IMiDs or bortezomib.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    CAS  Google Scholar 

  2. Treon SP, Pilarski LM, Belch AR, Kelliher A, Preffer FI, Shima Y et al. CD20-directed serotherapy in patients with multiple myeloma: biologic considerations and therapeutic applications. J Immunother 2002; 25: 72–81.

    Article  Google Scholar 

  3. Rafiq K, Bergtold A, Clynes R . Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 2002; 110: 71–79.

    CAS  Google Scholar 

  4. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 2010; 24: 22–32.

    CAS  Google Scholar 

  5. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128: 192–203.

    CAS  Google Scholar 

  6. van de Donk NW, Lokhorst HM, Bloem AC . Growth factors and antiapoptotic signaling pathways in multiple myeloma. Leukemia 2005; 19: 2177–2185.

    CAS  Google Scholar 

  7. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008; 112: 1329–1337.

    CAS  Google Scholar 

  8. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 2008; 14: 2775–2784.

    CAS  Google Scholar 

  9. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther 2009; 8: 2616–2624.

    CAS  Google Scholar 

  10. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Leleu X et al. Elotuzumab in Combination with Lenalidomide and low-dose dexamethasone in patients with relapsed/refractory multiple myeloma: interim results of a phase 1 study. ASH Annu Meet Abstr 2010; 116: 1936.

    Google Scholar 

  11. Richardson PG, Moreau P, Jakubowiak AJ, Facon T, Jagannath S, Vij R et al. Elotuzumab in Combination with Lenalidomide and Dexamethasone in Patients with Relapsed Multiple Myeloma: Interim Results of a Phase 2 Study. ASH Annual Meeting Abstracts 2010; 116: 986.

    Google Scholar 

  12. Jakubowiak AJ, Benson Jr DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A et al. Elotuzumab in Combination with Bortezomib in Patients with Relapsed/Refractory Multiple Myeloma: Updated Results of a Phase 1 Study. ASH Annual Meeting Abstracts 2010; 116: 3023.

    Google Scholar 

  13. Wijdenes J, Vooijs WC, Clement C, Post J, Morard F, Vita N et al. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 1996; 94: 318–323.

    CAS  Google Scholar 

  14. Lutz RJ, Whiteman KR . Antibody–maytansinoid conjugates for the treatment of myeloma. MAbs 2009; 1: 548–551.

    Google Scholar 

  15. Tassone P, Goldmacher VS, Neri P, Gozzini A, Shammas MA, Whiteman KR et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 2004; 104: 3688–3696.

    CAS  Google Scholar 

  16. Dhodapkar MV, Abe E, Theus A, Lacy M, Langford JK, Barlogie B et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 1998; 91: 2679–2688.

    CAS  Google Scholar 

  17. Ikeda H, Hideshima T, Fulciniti M, Lutz RJ, Yasui H, Okawa Y et al. The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 2009; 15: 4028–4037.

    CAS  Google Scholar 

  18. Jagannath S, Chanan-Khan AA, Heffner LT, Avigan D, Lutz RJ, Uherek C et al. BT062, An Antibody–Drug Conjugate Directed Against CD138, Shows Clinical Activity in a Phase I Study in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. ASH Annual Meeting Abstracts 2010; 116: 3060.

    Google Scholar 

  19. Zuber C, Daelken B, Aigner S, Haeder T, Ab O, Whiteman K et al. BT062, A CD138-Specific Immunoconjugate, Demonstrates Superior In Vivo Anti-Myeloma Efficacy in Combination with Lenalidomide or Bortezomib. ASH Annual Meeting Abstracts 2010; 116: 3008.

    Google Scholar 

  20. Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993; 81: 2658–2663.

    CAS  Google Scholar 

  21. Sahara N, Takeshita A, Shigeno K, Fujisawa S, Takeshita K, Naito K et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol 2002; 117: 882–885.

    Google Scholar 

  22. Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 2004; 64: 4629–4636.

    CAS  Google Scholar 

  23. Whiteman K, Ab O, Bartle L, Foley K, Goldmacher V, Lutz R . Efficacy of IMGN901 (huN901-DM1) in combination with bortezomib and lenalidomide against multiple myeloma cells in preclinical studies. AACR Meeting Abstracts 2008; 2008: 2146.

    Google Scholar 

  24. Chanan-Khan A, Wolf JL, Garcia J, Gharibo M, Jagannath S, Manfredi D et al. Efficacy Analysis From Phase I Study of Lorvotuzumab Mertansine (IMGN901), Used as Monotherapy, in Patients with Heavily Pre-Treated CD56-Positive Multiple Myeloma—A Preliminary Efficacy Analysis. ASH Annual Meeting Abstracts 2010; 116: 1962.

    Google Scholar 

  25. Chanan-Khan A, Wolf J, Gharibo M, Jagannath S, Munshi NC, Anderson KC et al. Phase I Study of IMGN901, Used as Monotherapy, in Patients with Heavily Pre-Treated CD56-Positive Multiple Myeloma—A Preliminary Safety and Efficacy Analysis. ASH Annual Meeting Abstracts 2009; 114: 2883.

    Google Scholar 

  26. Berdeja JG, Ailawadhi S, Niesvizky R, Wolf JL, Zildjian SH, O′Leary J et al. Phase I Study of Lorvotuzumab Mertansine (IMGN901) in Combination with Lenalidomide and Dexamethasone in Patients with CD56-Positive Relapsed or Relapsed/Refractory Mulitple Myeloma—A Preliminary Safety and Efficacy Analysis of the Combination. ASH Annual Meeting Abstracts 2010; 116: 1934.

    Google Scholar 

  27. Deaglio S, Mehta K, Malavasi F . Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res 2001; 25: 1–12.

    CAS  Google Scholar 

  28. de Weers M, Tai YT, van der Veer M, Bakker JM, Vink T, Jacobs DC et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011; 186: 1840–1848.

    CAS  Google Scholar 

  29. Tai YT, de Weers M, Li XF, Song W, Nahar S, Bakker JM et al. Daratumumab, A Novel Potent Human Anti-CD38 Monoclonal Antibody, Induces Significant Killing of Human Multiple Myeloma Cells: Therapeutic Implication. ASH Annual Meeting Abstracts 2009; 114: 608.

    Google Scholar 

  30. Groen RW, van der Veer M, Hofhuis FM, van Kessel B, de Weers M, Parren PWHI et al. In Vitro and In Vivo Efficacy of CD38 Directed Therapy with Daratumumab in the Treatment of Multiple Myeloma. ASH Annual Meeting Abstracts 2010; 116: 3058.

    Google Scholar 

  31. van der Veer M, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PW et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011; 96: 284–290.

    CAS  Google Scholar 

  32. Kong SY, Li XF, Nahar S, Song W, de Weers M, Parren PWHI et al. Daratumumab Directly Induces Human Multiple Myeloma Cell Death and Acts Synergistically with Conventional and Novel Anti-Myeloma Drugs. ASH Annual Meeting Abstracts 2010; 116: 3013.

    Google Scholar 

  33. van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PWHI et al. Improved Myeloma Targeting by Combination of the Human Anti-CD38 Antibody Daratumumab with Lenalidomide and Bortezomib. ASH Annual Meeting Abstracts 2010; 116: 3030.

    Google Scholar 

  34. Park PU, Blanc V, Deckert J, Lejeune P, Bartle LM, Skaletskaya A et al. SAR650984: A Potent Anti-CD38 Therapeutic Antibody with Three Mechanisms of Action (Apoptosis, ADCC, CDC) for Hematological Malignancies. ASH Annual Meeting Abstracts 2008; 112: 2756.

    Google Scholar 

  35. Lejeune P, Deckert J, Mayo M, Whiteman K, Johnson S, Guyre C et al. Abstract #859: broad spectrum of antitumor activity of SAR650984, a humanized anti-CD38 antibody targeting hematological malignancies. AACR Meeting Abstracts 2009; 2009: 859.

    Google Scholar 

  36. Lejeune P, Blanc V, Courta J, Egile C, Vrignaud P, Deckert J et al. Abstract #2797: in vivo therapeutic synergy of SAR650984, a humanized anti-CD38 antibody, in combination with melphalan in a multiple myeloma xenograft. AACR Meeting Abstracts 2009; 2009: 2797.

    Google Scholar 

  37. Schmidmaier R, Morsdorf K, Baumann P, Emmerich B, Meinhardt G . Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int J Biol Markers 2006; 21: 218–222.

    CAS  Google Scholar 

  38. Veitonmaki N, Frendeus B, Danielsson L, Ljungars A . Apoptosis-inducing ICAM-1 antibody BI-505 is a potent inhibitor of multiple myeloma. Clin Lymphoma Myeloma Leuk 2009; 9 (Suppl 1): S157 (abstract B599).

    Google Scholar 

  39. Hardin J, MacLeod S, Grigorieva I, Chang R, Barlogie B, Xiao H et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 1994; 84: 3063–3070.

    CAS  Google Scholar 

  40. Bataille R, Barlogie B, Lu ZY, Rossi JF, Lavabre-Bertrand T, Beck T et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995; 86: 685–691.

    CAS  Google Scholar 

  41. Klein B, Wijdenes J, Zhang XG, Jourdan M, Boiron JM, Brochier J et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991; 78: 1198–1204.

    CAS  Google Scholar 

  42. Moreau P, Hullin C, Garban F, Yakoub-Agha I, Benboubker L, Attal M et al. Tandem autologous stem cell transplantation in high-risk de novo multiple myeloma: final results of the prospective and randomized IFM 99-04 protocol. Blood 2006; 107: 397–403.

    CAS  Google Scholar 

  43. Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007; 13: 6469–6478.

    CAS  Google Scholar 

  44. van Zaanen HC, Lokhorst HM, Aarden LA, Rensink HJ, Warnaar SO, van der LJ et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 1998; 102: 783–790.

    CAS  Google Scholar 

  45. Kurzrock R, Fayad L, Voorhees P, Furman RR, Lonial S, Borghaei H et al. A Phase I Study of CNTO 328, An Anti-Interleukin-6 Monoclonal Antibody in Patients with B-Cell Non-Hodgkin's Lymphoma, Multiple Myeloma, or Castleman's Disease. ASH Annual Meeting Abstracts 2008; 112: 1009.

    Google Scholar 

  46. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    CAS  Google Scholar 

  47. Zhang B, Gojo I, Fenton RG . Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 2002; 99: 1885–1893.

    CAS  Google Scholar 

  48. Voorhees PM, Chen Q, Small GW, Kuhn DJ, Hunsucker SA, Nemeth JA et al. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009; 145: 481–490.

    CAS  Google Scholar 

  49. Hunsucker SA, Magarotto V, Kuhn DJ, Kornblau SM, Wang M, Weber DM et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011; 152: 579–592.

    CAS  Google Scholar 

  50. Rossi JF, Manges RF, Sutherland HJ, Jagannath S, Voorhees P, Sonneveld P et al. Preliminary Results of CNTO 328, An Anti-Interleukin-6 Monoclonal Antibody, in Combination with Bortezomib in the Treatment of Relapsed or Refractory Multiple Myeloma. ASH Annual Meeting Abstracts 2008; 112: 867.

    Google Scholar 

  51. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    CAS  Google Scholar 

  52. Fulciniti M, Hideshima T, Vermot-Desroches C, Pozzi S, Nanjappa P, Shen Z et al. A high-affinity fully human anti-IL-6mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res 2009; 15: 7144–7152.

    CAS  Google Scholar 

  53. Hirata T, Shimazaki C, Sumikuma T, Ashihara E, Goto H, Inaba T et al. Humanized anti-interleukin-6 receptor monoclonal antibody induced apoptosis of fresh and cloned human myeloma cells in vitro. Leuk Res 2003; 27: 343–349.

    CAS  Google Scholar 

  54. Tsunenari T, Koishihara Y, Nakamura A, Moriya M, Ohkawa H, Goto H et al. New xenograft model of multiple myeloma and efficacy of a humanized antibody against human interleukin-6 receptor. Blood 1997; 90: 2437–2444.

    CAS  Google Scholar 

  55. Yoshio-Hoshino N, Adachi Y, Aoki C, Pereboev A, Curiel DT, Nishimoto N . Establishment of a new interleukin-6 (IL-6) receptor inhibitor applicable to the gene therapy for IL-6-dependent tumor. Cancer Res 2007; 67: 871–875.

    CAS  Google Scholar 

  56. Sakai A, Oda M, Itagaki M, Yoshida N, Arihiro K, Kimura A . Establishment of an HS23 stromal cell-dependent myeloma cell line: fibronectin and IL-6 are critical. Int J Hematol 2010; 92: 598–608.

    CAS  Google Scholar 

  57. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004; 5: 221–230.

    CAS  Google Scholar 

  58. Sprynski AC, Hose D, Caillot L, Reme T, Shaughnessy Jr JD, Barlogie B et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009; 113: 4614–4626.

    CAS  Google Scholar 

  59. Descamps G, Wuilleme-Toumi S, Trichet V, Venot C, Debussche L, Hercend T et al. CD45neg but not CD45pos human myeloma cells are sensitive to the inhibition of IGF-1 signaling by a murine anti-IGF-1R monoclonal antibody, mAVE1642. J Immunol 2006; 177: 4218–4223.

    CAS  Google Scholar 

  60. Descamps G, Gomez-Bougie P, Venot C, Moreau P, Bataille R, Amiot M . A humanised anti-IGF-1R monoclonal antibody (AVE1642) enhances Bortezomib-induced apoptosis in myeloma cells lacking CD45. Br J Cancer 2009; 100: 366–369.

    CAS  Google Scholar 

  61. Moreau P, Hulin C, Facon T, Boccadoro M, Mery-Mignard D, Deslandes A et al. Phase I Study of AVE1642 Anti IGF-1R Monoclonal Antibody in Patients with Advanced Multiple Myeloma. ASH Annual Meeting Abstracts 2007; 110: 1166.

    Google Scholar 

  62. Moreau P, Cavallo F, Leleu X, Hulin C, Amiot M, Descamps G et al. Phase I study of the anti insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as single agent and in combination with bortezomib in patients with relapsed multiple myeloma. Leukemia 2011; 25: 872–874.

    CAS  Google Scholar 

  63. Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005; 11: 2063–2073.

    CAS  Google Scholar 

  64. Lacy MQ, Alsina M, Fonseca R, Paccagnella ML, Melvin CL, Yin D et al. Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulin like growth factor type 1 receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 2008; 26: 3196–3203.

    CAS  Google Scholar 

  65. Wu KD, Zhou L, Burtrum D, Ludwig DL, Moore MA . Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunol Immunother 2007; 56: 343–357.

    CAS  Google Scholar 

  66. Jakob C, Wernecke T, Sterz J, Goerke A, Heider U, Kaiser M et al. An Angiogenic Risk Score Improves the Prognostic Information of the International Staging System in Patients with Symptomatic Multiple Myeloma. ASH Annual Meeting Abstracts 2009; 114: 2802.

    Google Scholar 

  67. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    CAS  Google Scholar 

  68. Koldehoff M, Beelen DW, Elmaagacli AH . Small-molecule inhibition of proteasome and silencing by vascular endothelial cell growth factor-specific siRNA induce additive antitumor activity in multiple myeloma. J Leukoc Biol 2008; 84: 561–576.

    CAS  Google Scholar 

  69. Ria R, Vacca A, Russo F, Cirulli T, Massaia M, Tosi P et al. A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma. Thromb Haemost 2004; 92: 1438–1445.

    CAS  Google Scholar 

  70. Callander NS, Markovina S, Juckett MB, Wagner E, Kolesar J, Longo W et al. The Addition of Bevacizumab (B) to Lenalidomide and Low Dose Dexamethasone Does Not Significantly Increase Response in Relapsed or Refractory Multiple Myeloma (NCI#7317). ASH Annual Meeting Abstracts 2009; 114: 3885.

    Google Scholar 

  71. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    CAS  Google Scholar 

  72. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

    CAS  Google Scholar 

  73. Somlo G, Lashkari A, Bellamy W, Zimmerman T, Tuscano J, O′Donnell M et al. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 2011; 154: 533–535.

    Google Scholar 

  74. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    CAS  Google Scholar 

  75. Neri P, Kumar S, Fulciniti MT, Vallet S, Chhetri S, Mukherjee S et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 2007; 13: 5903–5909.

    CAS  Google Scholar 

  76. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    CAS  Google Scholar 

  77. Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2006; 66: 6675–6682.

    CAS  Google Scholar 

  78. Roche PA, Cresswell P . Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 1990; 345: 615–618.

    CAS  Google Scholar 

  79. Roche PA, Teletski CL, Stang E, Bakke O, Long EO . Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA 1993; 90: 8581–8585.

    CAS  Google Scholar 

  80. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J et al. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197: 1467–1476.

    CAS  Google Scholar 

  81. Lantner F, Starlets D, Gore Y, Flaishon L, Yamit-Hezi A, Dikstein R et al. CD74 induces TAp63 expression leading to B-cell survival. Blood 2007; 110: 4303–4311.

    CAS  Google Scholar 

  82. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 2006; 107: 4807–4816.

    CAS  Google Scholar 

  83. Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I . CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell 2005; 16: 5061–5069.

    CAS  Google Scholar 

  84. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 2004; 10: 6606–6611.

    CAS  Google Scholar 

  85. Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM . Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res 2009; 15: 2808–2817.

    CAS  Google Scholar 

  86. Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 2004; 104: 3705–3711.

    CAS  Google Scholar 

  87. Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM et al. Anti-CD74 antibody–doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 2005; 11: 5257–5264.

    CAS  Google Scholar 

  88. Chang CH, Sapra P, Vanama SS, Hansen HJ, Horak ID, Goldenberg DM . Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005; 106: 4308–4314.

    CAS  Google Scholar 

  89. Markovina S, Callander NS, O’Connor SL, Kim J, Werndli JE, Raschko M et al. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 2008; 6: 1356–1364.

    CAS  Google Scholar 

  90. Kaufman J, Niesvizky R, Stadtmauer EA, Chanan-Khan A, Siegel D, Horne H et al. First Trial of Humanized Anti-CD74 Monoclonal Antibody (MAb), Milatuzumab, in Multiple Myeloma. ASH Annual Meeting Abstracts 2008; 112: 3697.

    Google Scholar 

  91. Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 1994; 84: 2597–2603.

    CAS  Google Scholar 

  92. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M et al. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 2002; 99: 1419–1427.

    CAS  Google Scholar 

  93. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003; 101: 2762–2769.

    CAS  Google Scholar 

  94. Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC . CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995; 85: 1903–1912.

    CAS  Google Scholar 

  95. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961.

    CAS  Google Scholar 

  96. Hayashi T, Treon SP, Hideshima T, Tai YT, Akiyama M, Richardson P et al. Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma cells. Br J Haematol 2003; 121: 592–596.

    CAS  Google Scholar 

  97. Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, Shringpaure R et al. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 2004; 64: 2846–2852.

    CAS  Google Scholar 

  98. Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 2005; 65: 11712–11720.

    CAS  Google Scholar 

  99. Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 2010; 95: 845–848.

    CAS  Google Scholar 

  100. Agura E, Niesvizky R, Matous J, Munshi N, Hussein M, Parameswaran RV et al. Dacetuzumab (SGN-40), Lenalidomide, and Weekly Dexamethasone in Relapsed or Refractory Multiple Myeloma: Multiple Responses Observed in a Phase 1b Study. ASH Annual Meeting Abstracts 2009; 114: 2870.

    Google Scholar 

  101. Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 2010; 116: 3004–3012.

    CAS  Google Scholar 

  102. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 2005; 65: 5898–5906.

    CAS  Google Scholar 

  103. Bensinger W, Jagannath S, Becker PS, Anderson KC, Stadtmauer EA, Aukerman L et al. A Phase 1 Dose Escalation Study of a Fully Human, Antagonist Anti-CD40 Antibody, HCD122 (Formerly CHIR-12.12) in Patients with Relapsed and Refractory Multiple Myeloma. ASH Annual Meeting Abstracts 2006; 108: 3575.

    Google Scholar 

  104. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001; 98: 795–804.

    CAS  Google Scholar 

  105. Gazitt Y . TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 1999; 13: 1817–1824.

    CAS  Google Scholar 

  106. Menoret E, Gomez-Bougie P, Geffroy-Luseau A, Daniels S, Moreau P, Le GS et al. Mcl-1L cleavage is involved in TRAIL-R1- and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells. Blood 2006; 108: 1346–1352.

    CAS  Google Scholar 

  107. Locklin RM, Croucher PI, Russell RG, Edwards CM . Agonists of TRAIL death receptors induce myeloma cell apoptosis that is not prevented by cells of the bone marrow microenvironment. Leukemia 2007; 21: 805–812.

    CAS  Google Scholar 

  108. Kabore AF, Sun J, Hu X, McCrea K, Johnston JB, Gibson SB . The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis 2006; 11: 1175–1193.

    CAS  Google Scholar 

  109. Ghoshal P, Chitta K, Vujcic S, Gaddy J, Miles KM, Stein L et al. Mapatumumab, A TRAIL Receptor 1 Agonist Antibody, Induces Apoptosis in Bortezomib Resistant Multiple Myeloma. ASH Annual Meeting Abstracts 2009; 114: 2832.

    Google Scholar 

  110. Belch A, Sharma A, Spencer A, Tarantolo S, Bahlis NJ, Doval D et al. A Multicenter Randomized Phase II Trial of Mapatumumab, A TRAIL-R1 Agonist Monoclonal Antibody, in Combination with Bortezomib in Patients with Relapsed/Refractory Multiple Myeloma (MM). ASH Annual Meeting Abstracts 2010; 116: 5031.

    Google Scholar 

  111. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210–216.

    CAS  Google Scholar 

  112. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S . Functions of natural killer cells. Nat Immunol 2008; 9: 503–510.

    CAS  Google Scholar 

  113. Benson Jr DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    CAS  Google Scholar 

  114. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J et al. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 2008; 105: 1285–1290.

    CAS  Google Scholar 

  115. Wu L, Parton A, Lu L, Adams M, Schafer P, Bartlett JB . Lenalidomide enhances antibody-dependent cellular cytotoxicity of solid tumor cells in vitro: influence of host immune and tumor markers. Cancer Immunol Immunother 2011; 60: 61–73.

    CAS  Google Scholar 

  116. Gluck WL, Hurst D, Yuen A, Levine AM, Dayton MA, Gockerman JP et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-hodgkin′s lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin Cancer Res 2004; 10: 2253–2264.

    CAS  Google Scholar 

  117. Romagne F, Andre P, Spee P, Zahn S, Anfossi N, Gauthier L et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114: 2667–2677.

    CAS  Google Scholar 

  118. Zhang S, Liang J, Chen L, Homsi Y, Wang X, Feng H et al. Abstract #3245: enhanced NK cell mediated cytotoxicity against multiple myeloma (MM) cells by the combination of anti-KIR (1-7F9) monoclonal antibody (mAb) and lenalidomide. AACR Meeting Abstracts 2009; 2009: 3245.

    Google Scholar 

  119. Benson D, Bakan C, Zhang S, Alghothani L, Liang J, Hofmeister C et al. IPH2101, A Novel Anti-Inhibitory KIR Monoclonal Antibody, and Lenalidomide Combine to Enhance the Natural Killer (NK) Cell Versus Multiple Myeloma (MM) Effect. ASH Annual Meeting Abstracts 2009; 114: 3870.

    Google Scholar 

  120. Benson Jr DM, Bakan C, Padmanaban S, Abonour R, Suvannasankha A, Jagannath S et al. IPH2101, A Novel Anti-Inhibitory KIR Monoclonal Antibody for Multiple Myeloma: Interm Phase 1 Trial Results and Correlative Biologic and Safety Data. ASH Annual Meeting Abstracts 2010; 116: 1966.

    Google Scholar 

  121. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 2002; 32: 634–643.

    CAS  Google Scholar 

  122. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110: 296–304.

    CAS  Google Scholar 

  123. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N . Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99: 12293–12297.

    CAS  Google Scholar 

  124. Rosenblatt J, Glotzbecker B, Mills H, Keefe W, Wellenstein K, Vasir B et al. CT-011, Anti-PD-1 Antibody, Enhances Ex-Vivo T Cell Responses to Autologous Dendritic/Myeloma Fusion Vaccine Developed for the Treatment of Multiple Myeloma. ASH Annual Meeting Abstracts 2009; 114: 781.

    Google Scholar 

  125. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14: 3044–3051.

    CAS  Google Scholar 

  126. Olteanu H, Harrington AM, Hari P, Kroft SH . CD200 expression in plasma cell myeloma. Br J Haematol 2011; 153: 408–411.

    Google Scholar 

  127. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E et al. CD200 is a new prognostic factor in multiple myeloma. Blood 2006; 108: 4194–4197.

    CAS  Google Scholar 

  128. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS . Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 2008; 180: 699–705.

    CAS  Google Scholar 

  129. Mahadevan D, Lanasa MC, Whelden M, Faas SJ, Ulery TL, Kukreja A et al. First-In-Human Phase I Dose Escalation Study of a Humanized Anti-CD200 Antibody (Samalizumab) in Patients with Advanced Stage B Cell Chronic Lymphocytic Leukemia (B-CLL) or Multiple Myeloma (MM). ASH Annual Meeting Abstracts 2010; 116: 2465.

    Google Scholar 

  130. Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B et al. Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 2004; 64: 2016–2023.

    CAS  Google Scholar 

  131. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 2006; 91: 192–199.

    CAS  Google Scholar 

  132. Li X, Pennisi A, Yaccoby S . Role of decorin in the antimyeloma effects of osteoblasts. Blood 2008; 112: 159–168.

    CAS  Google Scholar 

  133. Yaccoby S, Pearse RN, Johnson CL, Barlogie B, Choi Y, Epstein J . Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 2002; 116: 278–290.

    Google Scholar 

  134. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001; 98: 3534–3540.

    CAS  Google Scholar 

  135. Vanderkerken K, De LE, Shipman C, Asosingh K, Willems A, Van CB et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003; 63: 287–289.

    CAS  Google Scholar 

  136. Vij R, Horvath N, Spencer A, Taylor K, Vadhan-Raj S, Vescio R et al. An open-label, phase 2 trial of denosumab in the treatment of relapsed or plateau-phase multiple myeloma. Am J Hematol 2009; 84: 650–656.

    CAS  Google Scholar 

  137. Henry D, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011; 29: 1125–1132.

    CAS  Google Scholar 

  138. Qiang YW, Barlogie B, Rudikoff S, Shaughnessy Jr JD . Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 2008; 42: 669–680.

    CAS  Google Scholar 

  139. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    CAS  Google Scholar 

  140. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA et al. Anti-DKK1mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009; 114: 371–379.

    CAS  Google Scholar 

  141. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessyz JD, Evans HR et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 2009; 24: 425–436.

    CAS  Google Scholar 

  142. Padmanabhan S, Beck J, Kelly K, Munshi N, Dzik-Jurasz A, Gangolli E et al. A Phase I/II study of BHQ880, a novel osteoblast activating, anti-DKK1 human monoclonal antibody, in relapsed and refractory multiple myeloma (MM) patients treated with zoledronic acid (Zol) and anti-myeloma therapy (MM Tx). ASH Annual Meeting Abstracts 2009; 114: 750.

    Google Scholar 

  143. Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 2003; 111: 1771–1782.

    CAS  Google Scholar 

  144. von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007s; 21: 2025–2034.

    CAS  Google Scholar 

  145. Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA 2010; 107: 5124–5129.

    CAS  Google Scholar 

  146. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106: 3160–3165.

    CAS  Google Scholar 

  147. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000; 96: 671–675.

    CAS  Google Scholar 

  148. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003; 102: 311–319.

    CAS  Google Scholar 

  149. Kumar S, Blade J, Crowley J, Goldschmidt H, Hoering A, Jagannath S et al. Natural History of Multiple Myeloma Relapsing after Therapy with IMiDs and Bortezomib: A Multicenter International Myeloma Working Group Study. ASH Annual Meeting Abstracts 2009; 114: 2878.

    Google Scholar 

  150. Hadari Y, Schlessinger J . FGFR3-targeted mAb therapy for bladder cancer and multiple myeloma. J Clin Invest 2009; 119: 1077–1079.

    CAS  Google Scholar 

  151. Qing J, Du X, Chen Y, Chan P, Li H, Wu P et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 2009; 119: 1216–1229.

    CAS  Google Scholar 

  152. Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006; 107: 4039–4046.

    CAS  Google Scholar 

  153. Tai YT, Muchhal U, Li XF, Nahar S, Song W, Horton H et al. XmAb(R)5592 Fc-Engineered Humanized Anti-HM1.24 Monoclonal Antibody has Potent in Vitro and In Vivo Efficacy against Multiple Myeloma. ASH Annual Meeting Abstracts 2009; 114: 609.

    Google Scholar 

  154. Kong SY, Nahar S, Li XF, Song W, Hu Y, Muchhal U et al. Lenalidomide Enhances Multiple Myeloma Cytotoxicity Induced by A Novel Fc Domain-Engineered Anti-HM1.24 Monoclonal Antibody with Augmented NK Cell Degranulation. ASH Annual Meeting Abstracts 2010; 116: 4064.

    Google Scholar 

  155. Yang J, Qian J, Wezeman M, Wang S, Lin P, Wang M et al. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell 2006; 10: 295–307.

    CAS  Google Scholar 

  156. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2009; 28: 231–242.

    CAS  Google Scholar 

  157. Tripodo C, Florena AM, Macor P, Di BA, Porcasi R, Guarnotta C et al. P-selectin glycoprotein ligand-1 as a potential target for humoral immunotherapy of multiple myeloma. Curr Cancer Drug Targets 2009; 9: 617–625.

    CAS  Google Scholar 

  158. Wong M, Asvadi P, Dunn R, Jones D, Campbell D, Spencer A . MDX-1097 Binds Specifically to Kappa Myeloma Cells and Anti-Tumour Activity is Mediated by Multiple Effector Cells. ASH Annual Meeting Abstracts 2009; 114: 1846.

    Google Scholar 

  159. Spencer A, Walker P, Asvadi P, Wong M, Campbell D, Reed K et al. A phase 1 study of the anti-kappa monoclonal antibody, MDX-1097, in previously treated multiple myeloma patients. ASCO Annual Meeting Abstracts 2010; 28: 8143.

    Google Scholar 

  160. Polson AG, Zheng B, Elkins K, Lau J, Go MA, Scales SJ et al. FcRL5 as a Target of Antibody–Drug Conjugates for the Treatment of Multiple Myeloma. ASH Annual Meeting Abstracts 2009; 114: 3836.

    Google Scholar 

  161. Prabhala RH, Fulciniti M, Pelluru D, Nanjappa P, Pai C, Lee S et al. Human Monoclonal Antibody Targeting IL-17A (AIN457) Down-Regulates MM Cell-Growth and Survival and Inhibits Osteoclast Development In Vitro and In Vivo: A Potential Novel Therapeutic Application In Myeloma. ASH Annual Meeting Abstracts 2010; 116: 456.

    Google Scholar 

  162. Weidner KM, Scheuer W, Thomas M, Baehner M, Seeber S, Kettenberger H et al. Anti-Angiogenic Activity of a Tetravalent Bispecific Antibody (TAvi6) Targeting VEGF and Angiopoietin-2. ASH Annual Meeting Abstracts 2010; 116: 4304.

    Google Scholar 

  163. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754–758.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Constantine S Mitsiades (Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA) for useful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N W C J van de Donk.

Ethics declarations

Competing interests

ND: research funding/contracted research—Celgene. HL: research funding/contracted research—Celgene, Genmab and Ortho-Biotech. SK and TM: none.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Donk, N., Kamps, S., Mutis, T. et al. Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 26, 199–213 (2012). https://doi.org/10.1038/leu.2011.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.214

Keywords

This article is cited by

Search

Quick links