Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 8/2015

Open Access 01-08-2015 | Knee

In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model

Authors: Katharina Gruchenberg, Anita Ignatius, Benedikt Friemert, Falk von Lübken, Nick Skaer, Kris Gellynck, Oliver Kessler, Lutz Dürselen

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 8/2015

Login to get access

Abstract

Purpose

Due to the negative effects of meniscectomy, there is a need for an adequate material to replace damaged meniscal tissue. To date, no material tested has been able to replace the meniscus sufficiently. Therefore, a new silk fibroin scaffold was investigated in an in vivo sheep model.

Methods

Partial meniscectomy was carried out to the medial meniscus of 28 sheep, and a scaffold was implanted in 19 menisci (3-month scaffold group, n = 9; 6-month scaffold group, n = 10). In 9 sheep, the defect remained empty (partial meniscectomy group). Sham operation was performed in 9 animals.

Results

The silk scaffold was able to withstand the loads experienced during the implantation period. It caused no inflammatory reaction in the joint 6 months postoperatively, and there were no significant differences in cartilage degeneration between the scaffold and sham groups. The compressive properties of the scaffold approached those of meniscal tissue. However, the scaffolds were not always stably fixed in the defect, leading to gapping between implant and host tissue or to total loss of the implant in 3 of 9 cases in each scaffold group. Hence, the fixation technique needs to be improved to achieve a better integration into the host tissue, and the long-term performance of the scaffolds should be further investigated.

Conclusion

These first in vivo results on a new silk fibroin scaffold provide the basis for further meniscal implant development. Whilst more data are required, there is preliminary evidence of chondroprotective properties, and the compressive properties and biocompatibility are promising.
Literature
1.
go back to reference Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416CrossRefPubMed Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416CrossRefPubMed
2.
go back to reference Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–4141CrossRefPubMed Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–4141CrossRefPubMed
3.
go back to reference Andersson-Molina H, Karlsson H, Rockborn P (2002) Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy 18(2):183–189CrossRefPubMed Andersson-Molina H, Karlsson H, Rockborn P (2002) Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy 18(2):183–189CrossRefPubMed
4.
go back to reference Buma P, van Tienen T, Veth R (2007) The collagen meniscus implant. Expert Rev Med Devices 4(4):507–516CrossRefPubMed Buma P, van Tienen T, Veth R (2007) The collagen meniscus implant. Expert Rev Med Devices 4(4):507–516CrossRefPubMed
5.
go back to reference Burger C, Mueller M, Wlodarczyk P, Goost H, Tolba RH, Rangger C, Kabir K, Weber O (2007) The sheep as a knee osteoarthritis model: early cartilage changes after meniscus injury and repair. Lab Anim 41(4):420–431CrossRefPubMed Burger C, Mueller M, Wlodarczyk P, Goost H, Tolba RH, Rangger C, Kabir K, Weber O (2007) The sheep as a knee osteoarthritis model: early cartilage changes after meniscus injury and repair. Lab Anim 41(4):420–431CrossRefPubMed
6.
go back to reference Chia HN, Hull ML (2008) Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J Orthop Res 26(7):951–956CrossRefPubMed Chia HN, Hull ML (2008) Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J Orthop Res 26(7):951–956CrossRefPubMed
7.
go back to reference Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil 14(10):1056–1065CrossRefPubMed Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil 14(10):1056–1065CrossRefPubMed
8.
go back to reference Cox JS, Nye CE, Schaefer WW, Woodstein IJ (1975) The degenerative effects of partial and total resection of the medial meniscus in dogs’ knees. Clin Orthop Relat Res 109:178–183CrossRef Cox JS, Nye CE, Schaefer WW, Woodstein IJ (1975) The degenerative effects of partial and total resection of the medial meniscus in dogs’ knees. Clin Orthop Relat Res 109:178–183CrossRef
9.
go back to reference Dürselen L, Hebisch A, Claes LE, Bauer G (2003) Gapping phenomenon of longitudinal meniscal tears. Clin Biomech 18(6):505–510CrossRef Dürselen L, Hebisch A, Claes LE, Bauer G (2003) Gapping phenomenon of longitudinal meniscal tears. Clin Biomech 18(6):505–510CrossRef
10.
go back to reference Efe T, Getgood A, Schofer MD, Fuchs-Winkelmann S, Mann D, Paletta JR, Heyse TJ (2011) The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 20(9):1822–1830CrossRefPubMed Efe T, Getgood A, Schofer MD, Fuchs-Winkelmann S, Mann D, Paletta JR, Heyse TJ (2011) The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 20(9):1822–1830CrossRefPubMed
11.
go back to reference Haddad B, Haddad B, Konan S, Adesida A, Khan WS (2013) A systematic review of tissue engineered meniscus and replacement strategies: preclinical models. Curr Stem Cell Res Ther 8(3):232–242CrossRefPubMed Haddad B, Haddad B, Konan S, Adesida A, Khan WS (2013) A systematic review of tissue engineered meniscus and replacement strategies: preclinical models. Curr Stem Cell Res Ther 8(3):232–242CrossRefPubMed
12.
go back to reference Hakimi O, Gheysens T, Vollrath F, Grahn MF, Knight DP, Vadgama P (2010) Modulation of cell growth on exposure to silkworm and spider silk fibers. J Biomed Mater Res A 92(4):1366–1372PubMed Hakimi O, Gheysens T, Vollrath F, Grahn MF, Knight DP, Vadgama P (2010) Modulation of cell growth on exposure to silkworm and spider silk fibers. J Biomed Mater Res A 92(4):1366–1372PubMed
13.
go back to reference Hannink G, van Tienen TG, Schouten AJ, Buma P (2010) Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc 19(3):441–451CrossRefPubMedPubMedCentral Hannink G, van Tienen TG, Schouten AJ, Buma P (2010) Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc 19(3):441–451CrossRefPubMedPubMedCentral
14.
go back to reference Hansen R, Bryk E, Vigorita V (2013) Collagen scaffold meniscus implant integration in a canine model: a histological analysis. J Orthop Res 31(12):1914–1919CrossRefPubMed Hansen R, Bryk E, Vigorita V (2013) Collagen scaffold meniscus implant integration in a canine model: a histological analysis. J Orthop Res 31(12):1914–1919CrossRefPubMed
15.
go back to reference Hasan J, Fisher J, Ingham E (2014) Current strategies in meniscal regeneration. J Biomed Mater Res B Appl Biomater 102(3):619–634CrossRefPubMed Hasan J, Fisher J, Ingham E (2014) Current strategies in meniscal regeneration. J Biomed Mater Res B Appl Biomater 102(3):619–634CrossRefPubMed
16.
go back to reference Hirschmann MT, Keller L, Hirschmann A, Schenk L, Berbig R, Luthi U, Amsler F, Friederich NF, Arnold MP (2013) One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports Traumatol Arthrosc 21(3):740–747CrossRefPubMed Hirschmann MT, Keller L, Hirschmann A, Schenk L, Berbig R, Luthi U, Amsler F, Friederich NF, Arnold MP (2013) One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports Traumatol Arthrosc 21(3):740–747CrossRefPubMed
17.
go back to reference Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1(1):4–12CrossRefPubMed Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1(1):4–12CrossRefPubMed
18.
go back to reference Kelly BT, Robertson W, Potter HG, Deng XH, Turner AS, Lyman S, Warren RF, Rodeo SA (2007) Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med 35(1):43–52CrossRefPubMed Kelly BT, Robertson W, Potter HG, Deng XH, Turner AS, Lyman S, Warren RF, Rodeo SA (2007) Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med 35(1):43–52CrossRefPubMed
19.
go back to reference Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, Chiari C, Nehrer S, Martin I, Salter DM, Ambrosio L, Marcacci M (2012) Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A 18(15–16):1573–1582CrossRefPubMed Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, Chiari C, Nehrer S, Martin I, Salter DM, Ambrosio L, Marcacci M (2012) Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A 18(15–16):1573–1582CrossRefPubMed
20.
go back to reference Kurosawa H, Fukubayashi T, Nakajima H (1980) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 149:283–290 Kurosawa H, Fukubayashi T, Nakajima H (1980) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 149:283–290
21.
go back to reference Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173CrossRefPubMed Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173CrossRefPubMed
22.
go back to reference Linke RD, Ulmer M, Imhoff AB (2006) Replacement of the meniscus with a collagen implant (CMI). Oper Orthop Traumatol 18(5–6):453–462CrossRefPubMed Linke RD, Ulmer M, Imhoff AB (2006) Replacement of the meniscus with a collagen implant (CMI). Oper Orthop Traumatol 18(5–6):453–462CrossRefPubMed
23.
go back to reference MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2(2–3):71–80CrossRefPubMed MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2(2–3):71–80CrossRefPubMed
24.
go back to reference Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, Rosenblatt L, Deng XH, Turner AS, Wright TM, Warren RF (2010) Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 26(11):1510–1519CrossRefPubMed Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, Rosenblatt L, Deng XH, Turner AS, Wright TM, Warren RF (2010) Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 26(11):1510–1519CrossRefPubMed
25.
go back to reference Maher SA, Rodeo SA, Potter HG, Bonassar LJ, Wright TM, Warren RF (2011) A pre-clinical test platform for the functional evaluation of scaffolds for musculoskeletal defects: the meniscus. Hss J 7(2):157–163CrossRefPubMedPubMedCentral Maher SA, Rodeo SA, Potter HG, Bonassar LJ, Wright TM, Warren RF (2011) A pre-clinical test platform for the functional evaluation of scaffolds for musculoskeletal defects: the meniscus. Hss J 7(2):157–163CrossRefPubMedPubMedCentral
26.
go back to reference Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32(30):7411–7431CrossRefPubMedPubMedCentral Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32(30):7411–7431CrossRefPubMedPubMedCentral
27.
go back to reference Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53(3):523–537CrossRefPubMed Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53(3):523–537CrossRefPubMed
28.
go back to reference Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234CrossRefPubMed Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234CrossRefPubMed
29.
go back to reference Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155CrossRefPubMed Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155CrossRefPubMed
30.
go back to reference Pastoureau P, Chomel A (2004) Methods for cartilage and subchondral bone histomorphometry. Methods Mol Med 101:79–91PubMed Pastoureau P, Chomel A (2004) Methods for cartilage and subchondral bone histomorphometry. Methods Mol Med 101:79–91PubMed
31.
go back to reference Rodkey WG, DeHaven KE, Montgomery WH, 3rd, Baker CL Jr., Beck CL Jr., Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426 Rodkey WG, DeHaven KE, Montgomery WH, 3rd, Baker CL Jr., Beck CL Jr., Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426
32.
go back to reference Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res (367 Suppl):S281–S292 Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res (367 Suppl):S281–S292
33.
go back to reference Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P (2014) Biomaterials in search of a meniscus substitute. Biomaterials 35(11):3527–3540CrossRefPubMed Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P (2014) Biomaterials in search of a meniscus substitute. Biomaterials 35(11):3527–3540CrossRefPubMed
34.
go back to reference Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM (2013) Meniscus repair and regeneration: review on current methods and research potential. Euro Cells Mater 26:150–170CrossRef Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM (2013) Meniscus repair and regeneration: review on current methods and research potential. Euro Cells Mater 26:150–170CrossRef
35.
go back to reference Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park YS, Park JK (2009) Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res 27(4):495–503CrossRefPubMed Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park YS, Park JK (2009) Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res 27(4):495–503CrossRefPubMed
36.
go back to reference Shrive NG, O’Connor JJ, Goodfellow JW (1978) Load-bearing in the knee joint. Clin Orthop Relat Res 131:279–287 Shrive NG, O’Connor JJ, Goodfellow JW (1978) Load-bearing in the knee joint. Clin Orthop Relat Res 131:279–287
37.
go back to reference Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T (2012) Meniscal scaffolds: early experience and review of the literature. Knee 19(6):760–765CrossRefPubMed Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T (2012) Meniscal scaffolds: early experience and review of the literature. Knee 19(6):760–765CrossRefPubMed
38.
go back to reference Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, Buma P (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76(2):389–396CrossRefPubMed Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, Buma P (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76(2):389–396CrossRefPubMed
39.
go back to reference Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, Laprell H, Siebold R, Verdonk R (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40(4):844–853CrossRefPubMed Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, Laprell H, Siebold R, Verdonk R (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40(4):844–853CrossRefPubMed
40.
go back to reference Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39(4):774–782CrossRefPubMed Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39(4):774–782CrossRefPubMed
41.
go back to reference Vrancken AC, Buma P, van Tienen TG (2013) Synthetic meniscus replacement: a review. Int Orthop 37(2):291–299CrossRefPubMed Vrancken AC, Buma P, van Tienen TG (2013) Synthetic meniscus replacement: a review. Int Orthop 37(2):291–299CrossRefPubMed
42.
go back to reference Zaffagnini S, Marcheggiani Muccioli GM, Bulgheroni P, Bulgheroni E, Grassi A, Bonanzinga T, Kon E, Filardo G, Busacca M, Marcacci M (2012) Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med 40(10):2281–2288CrossRefPubMed Zaffagnini S, Marcheggiani Muccioli GM, Bulgheroni P, Bulgheroni E, Grassi A, Bonanzinga T, Kon E, Filardo G, Busacca M, Marcacci M (2012) Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med 40(10):2281–2288CrossRefPubMed
43.
go back to reference Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, Hershman EB, Arnoczky SP, Guilak F, Shterling A (2010) Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 19(2):255–263CrossRefPubMed Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, Hershman EB, Arnoczky SP, Guilak F, Shterling A (2010) Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 19(2):255–263CrossRefPubMed
Metadata
Title
In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model
Authors
Katharina Gruchenberg
Anita Ignatius
Benedikt Friemert
Falk von Lübken
Nick Skaer
Kris Gellynck
Oliver Kessler
Lutz Dürselen
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 8/2015
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-3009-2

Other articles of this Issue 8/2015

Knee Surgery, Sports Traumatology, Arthroscopy 8/2015 Go to the issue