Skip to main content
Top
Published in: Diabetologia 9/2010

01-09-2010 | Article

The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion

Authors: P. Lebrun, E. Cognard, P. Gontard, R. Bellon-Paul, C. Filloux, M. F. Berthault, C. Magnan, J. Ruberte, M. Luppo, A. Pujol, N. Pachera, A. Herchuelz, F. Bosch, E. Van Obberghen

Published in: Diabetologia | Issue 9/2010

Login to get access

Abstract

Aims/hypothesis

Suppressor of cytokine signalling (SOCS) proteins are powerful inhibitors of pathways involved in survival and function of pancreatic beta cells. Whereas SOCS1 and SOCS3 have been involved in immune and inflammatory processes, respectively, in beta cells, nothing is known about SOCS2 implication in the pancreas.

Methods

Transgenic (tg) mice were generated that constitutively produced SOCS2 in beta cells (βSOCS2) to define whether this protein is implicated in beta cell functioning and/or survival.

Results

Constitutive production of SOCS2 in beta cells leads to hyperglycaemia and glucose intolerance. This phenotype is not a consequence of decreased beta cell mass or inhibition of insulin synthesis. However, insulin secretion to various secretagogues is profoundly altered in intact animals and isolated islets. Interestingly, constitutive SOCS2 production dampens the rise in cytosolic free calcium concentration induced by glucose, while glucose metabolism is unchanged. Moreover, tg islets have a depletion in endoplasmic reticulum Ca2+ stores, suggesting that SOCS2 interferes with calcium fluxes. Finally, in βSOCS2 mice proinsulin maturation is impaired, leading to an altered structure of insulin secretory granules and augmented levels of proinsulin. The latter is likely to be due to decreased production of prohormone convertase 1 (PC1/3), which plays a key role in proinsulin cleavage.

Conclusions/Interpretations

SOCS2 was shown to be a potent regulator of proinsulin processing and insulin secretion in beta cells. While its constitutive production is insufficient to induce overt diabetes in this mouse model, it causes glucose intolerance. Thus, increased SOCS2 production could be an important event predisposing to beta cell failure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feng DD, Zhao YF, Luo ZQ, Keating DJ, Chen C (2008) Linoleic acid induces Ca2+-induced inactivation of voltage-dependent Ca2+ currents in rat pancreatic beta-cells. J Endocrinol 196:377–384CrossRefPubMed Feng DD, Zhao YF, Luo ZQ, Keating DJ, Chen C (2008) Linoleic acid induces Ca2+-induced inactivation of voltage-dependent Ca2+ currents in rat pancreatic beta-cells. J Endocrinol 196:377–384CrossRefPubMed
2.
go back to reference Ling Z, Kiekens R, Mahler T et al (1996) Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes 45:1774–1782CrossRefPubMed Ling Z, Kiekens R, Mahler T et al (1996) Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes 45:1774–1782CrossRefPubMed
3.
go back to reference Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMed Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMed
4.
go back to reference Zhao YF, Feng DD, Hernandez M, Chen C (2007) 3T3-L1 adipocytes induce dysfunction of MIN6 insulin-secreting cells via multiple pathways mediated by secretory factors in a co-culture system. Endocrine 31:52–60CrossRefPubMed Zhao YF, Feng DD, Hernandez M, Chen C (2007) 3T3-L1 adipocytes induce dysfunction of MIN6 insulin-secreting cells via multiple pathways mediated by secretory factors in a co-culture system. Endocrine 31:52–60CrossRefPubMed
5.
go back to reference Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465CrossRefPubMed Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465CrossRefPubMed
6.
go back to reference Emanuelli B, Peraldi P, Filloux C et al (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMed Emanuelli B, Peraldi P, Filloux C et al (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMed
7.
go back to reference Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed
8.
go back to reference Greenhalgh CJ, Rico-Bautista E, Lorentzon M et al (2005) SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 115:397–406PubMed Greenhalgh CJ, Rico-Bautista E, Lorentzon M et al (2005) SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 115:397–406PubMed
9.
go back to reference Lindberg K, Ronn SG, Tornehave D et al (2005) Regulation of pancreatic beta-cell mass and proliferation by SOCS-3. J Mol Endocrinol 35:231–243CrossRefPubMed Lindberg K, Ronn SG, Tornehave D et al (2005) Regulation of pancreatic beta-cell mass and proliferation by SOCS-3. J Mol Endocrinol 35:231–243CrossRefPubMed
10.
go back to reference Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446CrossRefPubMed Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446CrossRefPubMed
11.
go back to reference Chong MM, Thomas HE, Kay TW (2001) gamma-Interferon signaling in pancreatic beta-cells is persistent but can be terminated by overexpression of suppressor of cytokine signaling-1. Diabetes 50:2744–2751CrossRefPubMed Chong MM, Thomas HE, Kay TW (2001) gamma-Interferon signaling in pancreatic beta-cells is persistent but can be terminated by overexpression of suppressor of cytokine signaling-1. Diabetes 50:2744–2751CrossRefPubMed
12.
go back to reference Chong MM, Thomas HE, Kay TW (2002) Suppressor of cytokine signaling-1 regulates the sensitivity of pancreatic beta cells to tumor necrosis factor. J Biol Chem 277:27945–27952CrossRefPubMed Chong MM, Thomas HE, Kay TW (2002) Suppressor of cytokine signaling-1 regulates the sensitivity of pancreatic beta cells to tumor necrosis factor. J Biol Chem 277:27945–27952CrossRefPubMed
13.
go back to reference Karlsen AE, Ronn SG, Lindberg K et al (2001) Suppressor of cytokine signaling 3 (SOCS-3) protects beta-cells against interleukin-1beta- and interferon-gamma-mediated toxicity. Proc Natl Acad Sci USA 98:12191–12196CrossRefPubMed Karlsen AE, Ronn SG, Lindberg K et al (2001) Suppressor of cytokine signaling 3 (SOCS-3) protects beta-cells against interleukin-1beta- and interferon-gamma-mediated toxicity. Proc Natl Acad Sci USA 98:12191–12196CrossRefPubMed
14.
go back to reference Emanuelli B, Glondu M, Filloux C, Peraldi P, van Obberghen E (2004) The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes 53(Suppl 3):S97–S103CrossRefPubMed Emanuelli B, Glondu M, Filloux C, Peraldi P, van Obberghen E (2004) The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes 53(Suppl 3):S97–S103CrossRefPubMed
15.
go back to reference Bruun C, Heding PE, Ronn SG et al (2009) Suppressor of cytokine signalling-3 inhibits tumor necrosis factor-alpha induced apoptosis and signalling in beta cells. Mol Cell Endocrinol 311:32–38CrossRefPubMed Bruun C, Heding PE, Ronn SG et al (2009) Suppressor of cytokine signalling-3 inhibits tumor necrosis factor-alpha induced apoptosis and signalling in beta cells. Mol Cell Endocrinol 311:32–38CrossRefPubMed
16.
go back to reference Jacobsen ML, Ronn SG, Bruun C et al (2009) IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells. Diabetologia 52:281–288CrossRefPubMed Jacobsen ML, Ronn SG, Bruun C et al (2009) IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells. Diabetologia 52:281–288CrossRefPubMed
17.
go back to reference Ronn SG, Hansen JA, Lindberg K, Karlsen AE, Billestrup N (2002) The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells. Mol Endocrinol 16:2124–2134CrossRefPubMed Ronn SG, Hansen JA, Lindberg K, Karlsen AE, Billestrup N (2002) The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells. Mol Endocrinol 16:2124–2134CrossRefPubMed
18.
go back to reference Lorentzon M, Greenhalgh CJ, Mohan S, Alexander WS, Ohlsson C (2005) Reduced bone mineral density in SOCS-2-deficient mice. Pediatr Res 57:223–226CrossRefPubMed Lorentzon M, Greenhalgh CJ, Mohan S, Alexander WS, Ohlsson C (2005) Reduced bone mineral density in SOCS-2-deficient mice. Pediatr Res 57:223–226CrossRefPubMed
19.
go back to reference Michaylira CZ, Simmons JG, Ramocki NM et al (2006) Suppressor of cytokine signaling-2 limits intestinal growth and enterotrophic actions of IGF-I in vivo. Am J Physiol Gastrointest Liver Physiol 291:G472–G481CrossRefPubMed Michaylira CZ, Simmons JG, Ramocki NM et al (2006) Suppressor of cytokine signaling-2 limits intestinal growth and enterotrophic actions of IGF-I in vivo. Am J Physiol Gastrointest Liver Physiol 291:G472–G481CrossRefPubMed
20.
go back to reference Goldshmit Y, Greenhalgh CJ, Turnley AM (2004) Suppressor of cytokine signalling-2 and epidermal growth factor regulate neurite outgrowth of cortical neurons. Eur J Neurosci 20:2260–2266CrossRefPubMed Goldshmit Y, Greenhalgh CJ, Turnley AM (2004) Suppressor of cytokine signalling-2 and epidermal growth factor regulate neurite outgrowth of cortical neurons. Eur J Neurosci 20:2260–2266CrossRefPubMed
21.
go back to reference Ransome MI, Goldshmit Y, Bartlett PF, Waters MJ, Turnley AM (2004) Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness. Eur J Neurosci 19:2069–2079CrossRefPubMed Ransome MI, Goldshmit Y, Bartlett PF, Waters MJ, Turnley AM (2004) Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness. Eur J Neurosci 19:2069–2079CrossRefPubMed
22.
go back to reference Turnley AM, Faux CH, Rietze RL, Coonan JR, Bartlett PF (2002) Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci 5:1155–1162CrossRefPubMed Turnley AM, Faux CH, Rietze RL, Coonan JR, Bartlett PF (2002) Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci 5:1155–1162CrossRefPubMed
23.
go back to reference Machado FS, Johndrow JE, Esper L et al (2006) Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 12:330–334CrossRefPubMed Machado FS, Johndrow JE, Esper L et al (2006) Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 12:330–334CrossRefPubMed
24.
go back to reference Schultheis B, Carapeti-Marootian M, Hochhaus A, Weisser A, Goldman JM, Melo JV (2002) Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism. Blood 99:1766–1775CrossRefPubMed Schultheis B, Carapeti-Marootian M, Hochhaus A, Weisser A, Goldman JM, Melo JV (2002) Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism. Blood 99:1766–1775CrossRefPubMed
25.
go back to reference Sutherland KD, Lindeman GJ, Choong DY et al (2004) Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene 23:7726–7733CrossRefPubMed Sutherland KD, Lindeman GJ, Choong DY et al (2004) Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene 23:7726–7733CrossRefPubMed
26.
go back to reference Wikman H, Kettunen E, Seppanen JK et al (2002) Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 21:5804–5813CrossRefPubMed Wikman H, Kettunen E, Seppanen JK et al (2002) Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 21:5804–5813CrossRefPubMed
27.
go back to reference Kato H, Nomura K, Osabe D et al (2006) Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese. Genomics 87:446–458CrossRefPubMed Kato H, Nomura K, Osabe D et al (2006) Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese. Genomics 87:446–458CrossRefPubMed
28.
go back to reference Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed
29.
go back to reference Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341CrossRefPubMed Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341CrossRefPubMed
30.
go back to reference Thorens B, Guillam MT, Beermann F, Burcelin R, Jaquet M (2000) Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 275:23751–23758CrossRefPubMed Thorens B, Guillam MT, Beermann F, Burcelin R, Jaquet M (2000) Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 275:23751–23758CrossRefPubMed
31.
go back to reference Nicholson SE, Willson TA, Farley A et al (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. Embo J 18:375–385CrossRefPubMed Nicholson SE, Willson TA, Farley A et al (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. Embo J 18:375–385CrossRefPubMed
32.
go back to reference Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225–11232CrossRefPubMed Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225–11232CrossRefPubMed
33.
go back to reference Kulkarni RN, Wang ZL, Wang RM et al (1997) Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest 100:2729–2736CrossRefPubMed Kulkarni RN, Wang ZL, Wang RM et al (1997) Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest 100:2729–2736CrossRefPubMed
34.
go back to reference Van Eylen F, Lebeau C, Albuquerque-Silva J, Herchuelz A (1998) Contribution of Na/Ca exchange to Ca2+ outflow and entry in the rat pancreatic beta-cell: studies with antisense oligonucleotides. Diabetes 47:1873–1880CrossRefPubMed Van Eylen F, Lebeau C, Albuquerque-Silva J, Herchuelz A (1998) Contribution of Na/Ca exchange to Ca2+ outflow and entry in the rat pancreatic beta-cell: studies with antisense oligonucleotides. Diabetes 47:1873–1880CrossRefPubMed
35.
go back to reference Hutton JC, Sener A, Malaisse WJ (1979) The stimulus–secretion coupling 4-methyl-2-oxopentanoate-induced insulin release. Biochem J 184:303–311PubMed Hutton JC, Sener A, Malaisse WJ (1979) The stimulus–secretion coupling 4-methyl-2-oxopentanoate-induced insulin release. Biochem J 184:303–311PubMed
36.
go back to reference Malaisse WJ, Garcia-Morales P, Gomis R et al (1986) The coupling of metabolic to secretory events in pancreatic islets: inhibition by 2-cyclohexene-1-one of the secretory response to cyclic AMP and cytochalasin B. Biochem Pharmacol 35:3709–3717CrossRefPubMed Malaisse WJ, Garcia-Morales P, Gomis R et al (1986) The coupling of metabolic to secretory events in pancreatic islets: inhibition by 2-cyclohexene-1-one of the secretory response to cyclic AMP and cytochalasin B. Biochem Pharmacol 35:3709–3717CrossRefPubMed
37.
go back to reference Malaisse WJ, Rasschaert J, Zahner D, Sener A (1988) Hexose metabolism in pancreatic islets: the Pasteur effect. Diabetes Res 7:53–58PubMed Malaisse WJ, Rasschaert J, Zahner D, Sener A (1988) Hexose metabolism in pancreatic islets: the Pasteur effect. Diabetes Res 7:53–58PubMed
38.
go back to reference Paris M, Bernard-Kargar C, Berthault MF, Bouwens L, Ktorza A (2003) Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144:2717–2727CrossRefPubMed Paris M, Bernard-Kargar C, Berthault MF, Bouwens L, Ktorza A (2003) Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144:2717–2727CrossRefPubMed
39.
go back to reference Nielsen JH, Galsgaard ED, Moldrup A et al (2001) Regulation of beta-cell mass by hormones and growth factors. Diabetes 50(Suppl 1):S25–S29CrossRefPubMed Nielsen JH, Galsgaard ED, Moldrup A et al (2001) Regulation of beta-cell mass by hormones and growth factors. Diabetes 50(Suppl 1):S25–S29CrossRefPubMed
40.
go back to reference Metcalf D, Greenhalgh CJ, Viney E et al (2000) Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405:1069–1073CrossRefPubMed Metcalf D, Greenhalgh CJ, Viney E et al (2000) Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405:1069–1073CrossRefPubMed
41.
go back to reference Greenhalgh CJ, Metcalf D, Thaus AL et al (2002) Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. J Biol Chem 277:40181–40184CrossRefPubMed Greenhalgh CJ, Metcalf D, Thaus AL et al (2002) Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. J Biol Chem 277:40181–40184CrossRefPubMed
42.
go back to reference Okada T, Liew CW, Hu J et al (2007) Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104:8977–8982CrossRefPubMed Okada T, Liew CW, Hu J et al (2007) Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104:8977–8982CrossRefPubMed
43.
go back to reference Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751CrossRefPubMed Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751CrossRefPubMed
44.
go back to reference Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed
45.
go back to reference Rutter GA, Tsuboi T, Ravier MA (2006) Ca2+ microdomains and the control of insulin secretion. Cell Calcium 40:539–551CrossRefPubMed Rutter GA, Tsuboi T, Ravier MA (2006) Ca2+ microdomains and the control of insulin secretion. Cell Calcium 40:539–551CrossRefPubMed
46.
go back to reference Guest PC, Bailyes EM, Hutton JC (1997) Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell. Biochem J 323(Pt 2):445–450PubMed Guest PC, Bailyes EM, Hutton JC (1997) Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell. Biochem J 323(Pt 2):445–450PubMed
47.
go back to reference Hoppa MB, Collins S, Ramracheya R et al (2009) Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab 10:455–465CrossRefPubMed Hoppa MB, Collins S, Ramracheya R et al (2009) Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab 10:455–465CrossRefPubMed
48.
go back to reference Assmann A, Hinault C, Kulkarni RN (2009) Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes 10:14–32CrossRefPubMed Assmann A, Hinault C, Kulkarni RN (2009) Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes 10:14–32CrossRefPubMed
49.
go back to reference Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64, 65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99:10299–10304CrossRefPubMed Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64, 65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99:10299–10304CrossRefPubMed
50.
go back to reference Zhu X, Zhou A, Dey A et al (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298CrossRefPubMed Zhu X, Zhou A, Dey A et al (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298CrossRefPubMed
51.
go back to reference Li QL, Jansen E, Friedman TC (1999) Regulation of prohormone convertase 1 (PC1) by gp130-related cytokines. Mol Cell Endocrinol 158:143–152CrossRefPubMed Li QL, Jansen E, Friedman TC (1999) Regulation of prohormone convertase 1 (PC1) by gp130-related cytokines. Mol Cell Endocrinol 158:143–152CrossRefPubMed
52.
go back to reference Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed
53.
go back to reference Stancakova A, Kuulasmaa T, Paananen J et al (2009) Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58:2129–2136CrossRefPubMed Stancakova A, Kuulasmaa T, Paananen J et al (2009) Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58:2129–2136CrossRefPubMed
Metadata
Title
The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion
Authors
P. Lebrun
E. Cognard
P. Gontard
R. Bellon-Paul
C. Filloux
M. F. Berthault
C. Magnan
J. Ruberte
M. Luppo
A. Pujol
N. Pachera
A. Herchuelz
F. Bosch
E. Van Obberghen
Publication date
01-09-2010
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 9/2010
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1786-9

Other articles of this Issue 9/2010

Diabetologia 9/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.