Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2017

01-06-2017

Platelet “first responders” in wound response, cancer, and metastasis

Authors: David G. Menter, Scott Kopetz, Ernest Hawk, Anil K. Sood, Jonathan M. Loree, Paolo Gresele, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 2/2017

Login to get access

Abstract

Platelets serve as “first responders” during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the “first responder” role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Literature
1.
go back to reference Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.PubMedPubMedCentralCrossRef
2.
go back to reference Menter, D., Davis, J., Tucker, S., Hawk, E., Crissman, J., Sood, A., et al. (2017). Platelets “First Responders” in cancer progression and metastasis. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1111–1132). Switzerland: Springer International Publishing.CrossRef Menter, D., Davis, J., Tucker, S., Hawk, E., Crissman, J., Sood, A., et al. (2017). Platelets “First Responders” in cancer progression and metastasis. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1111–1132). Switzerland: Springer International Publishing.CrossRef
3.
go back to reference Leunissen, T. C., Wisman, P. P., van Holten, T. C., de Groot, P. G., Korporaal, S. J., Koekman, A. C., et al. (2016). The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays. Platelets, 1–9. Leunissen, T. C., Wisman, P. P., van Holten, T. C., de Groot, P. G., Korporaal, S. J., Koekman, A. C., et al. (2016). The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays. Platelets, 1–9.
4.
go back to reference Liu, X., Li, Y., Zhu, H., Zhao, Z., Zhou, Y., Zaske, A. M., et al. (2015). Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets, 26(5), 480–485.PubMedCrossRef Liu, X., Li, Y., Zhu, H., Zhao, Z., Zhou, Y., Zaske, A. M., et al. (2015). Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets, 26(5), 480–485.PubMedCrossRef
5.
go back to reference Lof, A., Muller, J. P., Benoit, M., & Brehm, M. A. (2017). Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Advances in Biological Regulation, 63, 81–91.PubMedCrossRef Lof, A., Muller, J. P., Benoit, M., & Brehm, M. A. (2017). Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Advances in Biological Regulation, 63, 81–91.PubMedCrossRef
6.
go back to reference Heijnen, H., & Korporaal, S. (2017). Platelet morphology and ultrastructure. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 21–37). Switzerland: Springer International Publishing.CrossRef Heijnen, H., & Korporaal, S. (2017). Platelet morphology and ultrastructure. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 21–37). Switzerland: Springer International Publishing.CrossRef
7.
go back to reference O'Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., et al. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.PubMedCrossRef O'Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., et al. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.PubMedCrossRef
8.
go back to reference Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.PubMedCrossRef Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.PubMedCrossRef
9.
go back to reference Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophysical Journal, 56(6), 1121–1141.PubMedPubMedCentralCrossRef Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophysical Journal, 56(6), 1121–1141.PubMedPubMedCentralCrossRef
10.
go back to reference Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.PubMedCrossRef Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.PubMedCrossRef
11.
go back to reference Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Physical Review Letters, 109(10), 108102.PubMedCrossRef Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Physical Review Letters, 109(10), 108102.PubMedCrossRef
12.
go back to reference Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.PubMedPubMedCentralCrossRef Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.PubMedPubMedCentralCrossRef
13.
go back to reference Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.PubMedPubMedCentralCrossRef Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.PubMedPubMedCentralCrossRef
14.
go back to reference Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.PubMedCrossRef Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.PubMedCrossRef
15.
go back to reference Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.PubMedCrossRef Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.PubMedCrossRef
16.
go back to reference De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.PubMedCrossRef De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.PubMedCrossRef
17.
go back to reference Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., et al. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.PubMedCrossRef Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., et al. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.PubMedCrossRef
18.
go back to reference Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O'Gara, C. Y., Marnett, L. J., et al. (1987). Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Research, 47(24 Pt 1), 6751–6762.PubMed Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O'Gara, C. Y., Marnett, L. J., et al. (1987). Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Research, 47(24 Pt 1), 6751–6762.PubMed
19.
go back to reference Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed
20.
go back to reference Walsh, T. G., Metharom, P., & Berndt, M. C. (2015). The functional role of platelets in the regulation of angiogenesis. Platelets, 26(3), 199–211.PubMedCrossRef Walsh, T. G., Metharom, P., & Berndt, M. C. (2015). The functional role of platelets in the regulation of angiogenesis. Platelets, 26(3), 199–211.PubMedCrossRef
21.
go back to reference Kim, K. H., Barazia, A., & Cho, J. (2013). Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus formation in live mice. Journal of Visualized Experiments, 74. Kim, K. H., Barazia, A., & Cho, J. (2013). Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus formation in live mice. Journal of Visualized Experiments, 74.
22.
go back to reference Spectre, G., Zhu, L., Ersoy, M., Hjemdahl, P., Savion, N., Varon, D., et al. (2012). Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thrombosis and Haemostasis, 108(2), 328–337.PubMedCrossRef Spectre, G., Zhu, L., Ersoy, M., Hjemdahl, P., Savion, N., Varon, D., et al. (2012). Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thrombosis and Haemostasis, 108(2), 328–337.PubMedCrossRef
23.
go back to reference Gardiner, E., & Andrews, R. (2017). Platelet adhesion. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 309–319). Switzerland: Springer International Publishing.CrossRef Gardiner, E., & Andrews, R. (2017). Platelet adhesion. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 309–319). Switzerland: Springer International Publishing.CrossRef
24.
go back to reference Pothapragada, S., Zhang, P., Sheriff, J., Livelli, M., Slepian, M. J., Deng, Y., et al. (2015). A phenomenological particle-based platelet model for simulating filopodia formation during early activation. International Journal of Numerical Methods in Biomedical Engineering, 31(3), e02702.CrossRef Pothapragada, S., Zhang, P., Sheriff, J., Livelli, M., Slepian, M. J., Deng, Y., et al. (2015). A phenomenological particle-based platelet model for simulating filopodia formation during early activation. International Journal of Numerical Methods in Biomedical Engineering, 31(3), e02702.CrossRef
25.
go back to reference Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.PubMedCrossRef Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.PubMedCrossRef
26.
go back to reference Jackson, S. P., Nesbitt, W. S., & Westein, E. (2009). Dynamics of platelet thrombus formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 17–20.PubMedCrossRef Jackson, S. P., Nesbitt, W. S., & Westein, E. (2009). Dynamics of platelet thrombus formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 17–20.PubMedCrossRef
27.
go back to reference Italiano Jr., J. E., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.PubMedCrossRef Italiano Jr., J. E., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.PubMedCrossRef
28.
go back to reference Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.PubMed Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.PubMed
29.
go back to reference White, J. G., & Rao, G. H. (1998). Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. The American Journal of Pathology, 152(2), 597–609.PubMedPubMedCentral White, J. G., & Rao, G. H. (1998). Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. The American Journal of Pathology, 152(2), 597–609.PubMedPubMedCentral
30.
go back to reference Polanowska-Grabowska, R., Geanacopoulos, M., & Gear, A. R. (1993). Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. Biochemical Journal, 296(Pt 3), 543–547.PubMedPubMedCentralCrossRef Polanowska-Grabowska, R., Geanacopoulos, M., & Gear, A. R. (1993). Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. Biochemical Journal, 296(Pt 3), 543–547.PubMedPubMedCentralCrossRef
31.
go back to reference Falet, H. (2017). Anatomy of the platelet cytoskeleton. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 139–156). Switzerland: Springer International Publishing.CrossRef Falet, H. (2017). Anatomy of the platelet cytoskeleton. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 139–156). Switzerland: Springer International Publishing.CrossRef
32.
go back to reference Nurden, A. T., & Nurden, P. (2014). Congenital platelet disorders and understanding of platelet function. British Journal of Haematology, 165(2), 165–178.PubMedCrossRef Nurden, A. T., & Nurden, P. (2014). Congenital platelet disorders and understanding of platelet function. British Journal of Haematology, 165(2), 165–178.PubMedCrossRef
33.
go back to reference Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.PubMedPubMedCentralCrossRef Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.PubMedPubMedCentralCrossRef
34.
go back to reference Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.PubMedCrossRef Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.PubMedCrossRef
35.
go back to reference Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.PubMed Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.PubMed
36.
go back to reference Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action”: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.PubMedCrossRef Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action”: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.PubMedCrossRef
37.
go back to reference Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.PubMedPubMedCentral Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.PubMedPubMedCentral
38.
go back to reference Clemetson, K. J. (2007). A short history of platelet glycoprotein Ib complex. Thrombosis and Haemostasis, 98(1), 63–68.PubMed Clemetson, K. J. (2007). A short history of platelet glycoprotein Ib complex. Thrombosis and Haemostasis, 98(1), 63–68.PubMed
39.
go back to reference Li, R., & Emsley, J. (2013). The organizing principle of the platelet glycoprotein Ib-IX-V complex. Journal of Thrombosis and Haemostasis, 11(4), 605–614.PubMedPubMedCentralCrossRef Li, R., & Emsley, J. (2013). The organizing principle of the platelet glycoprotein Ib-IX-V complex. Journal of Thrombosis and Haemostasis, 11(4), 605–614.PubMedPubMedCentralCrossRef
40.
go back to reference Bernard, J., & Soulier, J. (1948). Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Semin Hôp Paris, 24, 3217–3223. Bernard, J., & Soulier, J. (1948). Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Semin Hôp Paris, 24, 3217–3223.
41.
go back to reference Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.PubMedCrossRef Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.PubMedCrossRef
42.
go back to reference Bernardo, A., Ball, C., Nolasco, L., Choi, H., Moake, J. L., & Dong, J. F. (2005). Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis, 3(3), 562–570.PubMedCrossRef Bernardo, A., Ball, C., Nolasco, L., Choi, H., Moake, J. L., & Dong, J. F. (2005). Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis, 3(3), 562–570.PubMedCrossRef
43.
go back to reference De Ceunynck, K., De Meyer, S. F., & Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood, 121(2), 270–277.PubMedCrossRef De Ceunynck, K., De Meyer, S. F., & Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood, 121(2), 270–277.PubMedCrossRef
44.
go back to reference Desch, A., Strozyk, E. A., Bauer, A. T., Huck, V., Niemeyer, V., Wieland, T., et al. (2012). Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. The American Journal of Pathology, 181(2), 693–705.PubMedCrossRef Desch, A., Strozyk, E. A., Bauer, A. T., Huck, V., Niemeyer, V., Wieland, T., et al. (2012). Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. The American Journal of Pathology, 181(2), 693–705.PubMedCrossRef
45.
go back to reference Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.PubMedPubMedCentralCrossRef Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.PubMedPubMedCentralCrossRef
46.
go back to reference Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.PubMedCrossRef Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.PubMedCrossRef
47.
go back to reference Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.PubMedPubMedCentralCrossRef Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.PubMedPubMedCentralCrossRef
48.
go back to reference Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.PubMedCrossRef Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.PubMedCrossRef
49.
go back to reference Nurden, A. T., & Caen, J. P. (1974). An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. British Journal of Haematology, 28(2), 253–260.PubMedCrossRef Nurden, A. T., & Caen, J. P. (1974). An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. British Journal of Haematology, 28(2), 253–260.PubMedCrossRef
50.
go back to reference Phillips, D. R., Jenkins, C. S., Luscher, E. F., & Larrieu, M. (1975). Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature, 257(5527), 599–600.PubMedCrossRef Phillips, D. R., Jenkins, C. S., Luscher, E. F., & Larrieu, M. (1975). Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature, 257(5527), 599–600.PubMedCrossRef
51.
go back to reference Glanzmann, E. (1918). Hereditare hammorhagische thrombastehnie. Beitr Pathologie Bluplatchen J Kinderkt, 88, 113–141. Glanzmann, E. (1918). Hereditare hammorhagische thrombastehnie. Beitr Pathologie Bluplatchen J Kinderkt, 88, 113–141.
52.
go back to reference Zhang, C., Zhang, L., Zhang, Y., Sun, N., Jiang, S., Fujihara, T. J., et al. (2016). Development of antithrombotic nanoconjugate blocking integrin alpha2beta1-collagen interactions. Scientific Reports, 6, 26292.PubMedPubMedCentralCrossRef Zhang, C., Zhang, L., Zhang, Y., Sun, N., Jiang, S., Fujihara, T. J., et al. (2016). Development of antithrombotic nanoconjugate blocking integrin alpha2beta1-collagen interactions. Scientific Reports, 6, 26292.PubMedPubMedCentralCrossRef
53.
go back to reference Szanto, T., Joutsi-Korhonen, L., Deckmyn, H., & Lassila, R. (2012). New insights into von Willebrand disease and platelet function. Seminars in Thrombosis and Hemostasis, 38(1), 55–63.PubMedCrossRef Szanto, T., Joutsi-Korhonen, L., Deckmyn, H., & Lassila, R. (2012). New insights into von Willebrand disease and platelet function. Seminars in Thrombosis and Hemostasis, 38(1), 55–63.PubMedCrossRef
54.
go back to reference Maurer, E., Schaff, M., Receveur, N., Bourdon, C., Mercier, L., Nieswandt, B., et al. (2015). Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 114(6), 1175–1188.PubMedCrossRef Maurer, E., Schaff, M., Receveur, N., Bourdon, C., Mercier, L., Nieswandt, B., et al. (2015). Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 114(6), 1175–1188.PubMedCrossRef
55.
go back to reference McCarty, O. J., Zhao, Y., Andrew, N., Machesky, L. M., Staunton, D., Frampton, J., et al. (2004). Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. Journal of Thrombosis and Haemostasis, 2(10), 1823–1833.PubMedCrossRef McCarty, O. J., Zhao, Y., Andrew, N., Machesky, L. M., Staunton, D., Frampton, J., et al. (2004). Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. Journal of Thrombosis and Haemostasis, 2(10), 1823–1833.PubMedCrossRef
56.
go back to reference Schaff, M., Tang, C., Maurer, E., Bourdon, C., Receveur, N., Eckly, A., et al. (2013). Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation, 128(5), 541–552.PubMedCrossRef Schaff, M., Tang, C., Maurer, E., Bourdon, C., Receveur, N., Eckly, A., et al. (2013). Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation, 128(5), 541–552.PubMedCrossRef
57.
go back to reference Inoue, O., Suzuki-Inoue, K., McCarty, O. J., Moroi, M., Ruggeri, Z. M., Kunicki, T. J., et al. (2006). Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood, 107(4), 1405–1412.PubMedPubMedCentralCrossRef Inoue, O., Suzuki-Inoue, K., McCarty, O. J., Moroi, M., Ruggeri, Z. M., Kunicki, T. J., et al. (2006). Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood, 107(4), 1405–1412.PubMedPubMedCentralCrossRef
58.
go back to reference Clemetson, K. J. (1995). Platelet activation: signal transduction via membrane receptors. Thrombosis and Haemostasis, 74(1), 111–116.PubMed Clemetson, K. J. (1995). Platelet activation: signal transduction via membrane receptors. Thrombosis and Haemostasis, 74(1), 111–116.PubMed
59.
go back to reference Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. The Journal of Clinical Investigation, 84(5), 1440–1445.PubMedPubMedCentralCrossRef Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. The Journal of Clinical Investigation, 84(5), 1440–1445.PubMedPubMedCentralCrossRef
60.
go back to reference Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Watson, S. P. (1999). Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. Biochemical Journal, 339(Pt 2), 413–418.PubMedPubMedCentralCrossRef Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Watson, S. P. (1999). Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. Biochemical Journal, 339(Pt 2), 413–418.PubMedPubMedCentralCrossRef
61.
go back to reference Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998). Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood, 91(2), 491–499.PubMed Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998). Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood, 91(2), 491–499.PubMed
62.
go back to reference Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.PubMedCrossRef Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.PubMedCrossRef
63.
go back to reference Li, P., Qiao, J. L., & Xu, K. L. (2017). Advances of studies on platelet GPVI as antithrombotic target—review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 25(1), 264–269.PubMed Li, P., Qiao, J. L., & Xu, K. L. (2017). Advances of studies on platelet GPVI as antithrombotic target—review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 25(1), 264–269.PubMed
64.
go back to reference Poulter, N. S., Pollitt, A. Y., Owen, D. M., Gardiner, E. E., Andrews, R. K., Shimizu, H., et al. (2017). Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. Journal of Thrombosis and Haemostasis, 15(3), 549–564.PubMedPubMedCentralCrossRef Poulter, N. S., Pollitt, A. Y., Owen, D. M., Gardiner, E. E., Andrews, R. K., Shimizu, H., et al. (2017). Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. Journal of Thrombosis and Haemostasis, 15(3), 549–564.PubMedPubMedCentralCrossRef
65.
go back to reference Pierre, S., Linke, B., Suo, J., Tarighi, N., Del Turco, D., Thomas, D., et al. (2017). GPVI and thromboxane receptor on platelets promote proinflammatory macrophage phenotypes during cutaneous inflammation. The Journal of Investigative Dermatology, 137(3), 686–695.PubMedCrossRef Pierre, S., Linke, B., Suo, J., Tarighi, N., Del Turco, D., Thomas, D., et al. (2017). GPVI and thromboxane receptor on platelets promote proinflammatory macrophage phenotypes during cutaneous inflammation. The Journal of Investigative Dermatology, 137(3), 686–695.PubMedCrossRef
66.
go back to reference Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.PubMedCrossRef Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.PubMedCrossRef
67.
go back to reference Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 7, 42186.PubMedPubMedCentralCrossRef Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 7, 42186.PubMedPubMedCentralCrossRef
68.
go back to reference Nakazawa, Y., Sato, S., Naito, M., Kato, Y., Mishima, K., Arai, H., et al. (2008). Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 112(5), 1730–1739.PubMedCrossRef Nakazawa, Y., Sato, S., Naito, M., Kato, Y., Mishima, K., Arai, H., et al. (2008). Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 112(5), 1730–1739.PubMedCrossRef
69.
go back to reference Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.PubMedPubMedCentralCrossRef Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.PubMedPubMedCentralCrossRef
70.
go back to reference Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.PubMedCrossRef Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.PubMedCrossRef
71.
go back to reference Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.PubMedCrossRef Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.PubMedCrossRef
72.
go back to reference Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. International Journal of Oncology, 42(6), 1849–1857.PubMed Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. International Journal of Oncology, 42(6), 1849–1857.PubMed
73.
go back to reference Watson, A. A., Brown, J., Harlos, K., Eble, J. A., Walter, T. S., & O'Callaghan, C. A. (2007). The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. The Journal of Biological Chemistry, 282(5), 3165–3172.PubMedCrossRef Watson, A. A., Brown, J., Harlos, K., Eble, J. A., Walter, T. S., & O'Callaghan, C. A. (2007). The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. The Journal of Biological Chemistry, 282(5), 3165–3172.PubMedCrossRef
74.
go back to reference Watson, A. A., & O'Callaghan, C. A. (2005). Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 61(Pt 12), 1094–1096.PubMedPubMedCentralCrossRef Watson, A. A., & O'Callaghan, C. A. (2005). Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 61(Pt 12), 1094–1096.PubMedPubMedCentralCrossRef
75.
go back to reference Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). Novel platelet activation receptor CLEC-2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 44–55.PubMedCrossRef Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). Novel platelet activation receptor CLEC-2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 44–55.PubMedCrossRef
76.
go back to reference Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.PubMedCrossRef Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.PubMedCrossRef
77.
go back to reference Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. The Journal of Cell Biology, 101(3), 880–886.PubMedCrossRef Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. The Journal of Cell Biology, 101(3), 880–886.PubMedCrossRef
78.
go back to reference Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.PubMedCrossRef Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.PubMedCrossRef
79.
go back to reference Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.PubMedCrossRef Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.PubMedCrossRef
80.
go back to reference Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6224–6228.PubMedPubMedCentralCrossRef Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6224–6228.PubMedPubMedCentralCrossRef
81.
go back to reference Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. The Journal of Cell Biology, 117(4), 895–902.PubMedCrossRef Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. The Journal of Cell Biology, 117(4), 895–902.PubMedCrossRef
82.
go back to reference Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.PubMedCrossRef Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.PubMedCrossRef
83.
go back to reference Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.PubMedCrossRef Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.PubMedCrossRef
84.
go back to reference Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13–S33.PubMedCrossRef Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13–S33.PubMedCrossRef
85.
go back to reference Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.PubMedCrossRef Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.PubMedCrossRef
86.
go back to reference Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau's syndrome): review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.PubMedCrossRef Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau's syndrome): review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.PubMedCrossRef
87.
go back to reference Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef
88.
go back to reference Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.PubMedCrossRef Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.PubMedCrossRef
89.
go back to reference Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell, 20(5), 553–554.PubMedCrossRef Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell, 20(5), 553–554.PubMedCrossRef
90.
go back to reference Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology & Laboratory Medicine, 137(9), 1286–1295.CrossRef Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology & Laboratory Medicine, 137(9), 1286–1295.CrossRef
91.
go back to reference McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.PubMedCrossRef McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.PubMedCrossRef
92.
go back to reference Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.PubMedCrossRef Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.PubMedCrossRef
93.
go back to reference Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.PubMed Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.PubMed
94.
go back to reference Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.PubMedCrossRef Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.PubMedCrossRef
95.
go back to reference Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: the roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.PubMedCrossRef Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: the roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.PubMedCrossRef
96.
go back to reference Zimmermann, H. (1999). Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.PubMedCrossRef Zimmermann, H. (1999). Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.PubMedCrossRef
97.
go back to reference Aleman, M. M., Gardiner, C., Harrison, P., & Wolberg, A. S. (2011). Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. Journal of Thrombosis and Haemostasis, 9(11), 2251–2261.PubMedPubMedCentralCrossRef Aleman, M. M., Gardiner, C., Harrison, P., & Wolberg, A. S. (2011). Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. Journal of Thrombosis and Haemostasis, 9(11), 2251–2261.PubMedPubMedCentralCrossRef
98.
go back to reference Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.PubMedCrossRef Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.PubMedCrossRef
99.
go back to reference Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.PubMedCrossRef Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.PubMedCrossRef
100.
go back to reference Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. The Journal of Laboratory and Clinical Medicine, 90(1), 37–45.PubMed Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. The Journal of Laboratory and Clinical Medicine, 90(1), 37–45.PubMed
101.
go back to reference Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.PubMed Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.PubMed
102.
go back to reference Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.PubMedCrossRef Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.PubMedCrossRef
103.
go back to reference Banerjee, D., Mazumder, S., & Kumar Sinha, A. (2016). Involvement of nitric oxide on calcium mobilization and arachidonic acid pathway activation during platelet aggregation with different aggregating agonists. International Journal of Biomedical Sciences, 12(1), 25–35. Banerjee, D., Mazumder, S., & Kumar Sinha, A. (2016). Involvement of nitric oxide on calcium mobilization and arachidonic acid pathway activation during platelet aggregation with different aggregating agonists. International Journal of Biomedical Sciences, 12(1), 25–35.
104.
go back to reference Philipose, S., Konya, V., Lazarevic, M., Pasterk, L. M., Marsche, G., Frank, S., et al. (2012). Laropiprant attenuates EP3 and TP prostanoid receptor-mediated thrombus formation. PloS One, 7(8), e40222.PubMedPubMedCentralCrossRef Philipose, S., Konya, V., Lazarevic, M., Pasterk, L. M., Marsche, G., Frank, S., et al. (2012). Laropiprant attenuates EP3 and TP prostanoid receptor-mediated thrombus formation. PloS One, 7(8), e40222.PubMedPubMedCentralCrossRef
105.
go back to reference Feletou, M., Huang, Y., & Vanhoutte, P. M. (2010). Vasoconstrictor prostanoids. Pflügers Archiv, 459(6), 941–950.PubMedCrossRef Feletou, M., Huang, Y., & Vanhoutte, P. M. (2010). Vasoconstrictor prostanoids. Pflügers Archiv, 459(6), 941–950.PubMedCrossRef
106.
go back to reference Kandhi, S., Zhang, B., Froogh, G., Qin, J., Alruwali, N., Le, Y., et al. (2017). EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. American Journal of Physiology. Lung Cellular and Molecular Physiology ajplung 00038 02017. Kandhi, S., Zhang, B., Froogh, G., Qin, J., Alruwali, N., Le, Y., et al. (2017). EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. American Journal of Physiology. Lung Cellular and Molecular Physiology ajplung 00038 02017.
107.
go back to reference Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., & Fitzpatrick, F. A. (1985). Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature, 315(6019), 511–513.CrossRef Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., & Fitzpatrick, F. A. (1985). Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature, 315(6019), 511–513.CrossRef
108.
go back to reference Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMedPubMedCentralCrossRef Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMedPubMedCentralCrossRef
109.
go back to reference Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thrombosis and Haemostasis, 38(4), 963–970.PubMed Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thrombosis and Haemostasis, 38(4), 963–970.PubMed
110.
go back to reference Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef
111.
go back to reference Wihlborg, A. K., Wang, L., Braun, O. O., Eyjolfsson, A., Gustafsson, R., Gudbjartsson, T., et al. (2004). ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1810–1815.PubMedCrossRef Wihlborg, A. K., Wang, L., Braun, O. O., Eyjolfsson, A., Gustafsson, R., Gudbjartsson, T., et al. (2004). ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1810–1815.PubMedCrossRef
112.
go back to reference Goschnick, M. W., & Jackson, D. E. (2007). Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Reviews in Medicinal Chemistry, 7(12), 1248–1254.PubMedCrossRef Goschnick, M. W., & Jackson, D. E. (2007). Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Reviews in Medicinal Chemistry, 7(12), 1248–1254.PubMedCrossRef
113.
go back to reference Haining, E. J., Yang, J., & Tomlinson, M. G. (2011). Tetraspanin microdomains: fine-tuning platelet function. Biochemical Society Transactions, 39(2), 518–523.PubMedCrossRef Haining, E. J., Yang, J., & Tomlinson, M. G. (2011). Tetraspanin microdomains: fine-tuning platelet function. Biochemical Society Transactions, 39(2), 518–523.PubMedCrossRef
114.
go back to reference Protty, M. B., Watkins, N. A., Colombo, D., Thomas, S. G., Heath, V. L., Herbert, J. M., et al. (2009). Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochemical Journal, 417(1), 391–400.PubMedCrossRef Protty, M. B., Watkins, N. A., Colombo, D., Thomas, S. G., Heath, V. L., Herbert, J. M., et al. (2009). Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochemical Journal, 417(1), 391–400.PubMedCrossRef
115.
go back to reference Israels, S. J., McMillan, E. M., Robertson, C., Singhory, S., & McNicol, A. (1996). The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thrombosis and Haemostasis, 75(4), 623–629.PubMed Israels, S. J., McMillan, E. M., Robertson, C., Singhory, S., & McNicol, A. (1996). The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thrombosis and Haemostasis, 75(4), 623–629.PubMed
116.
go back to reference Xu, L., Harada, H., & Taniguchi, A. (2008). The effects of LAMP1 and LAMP3 on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein. Journal of Biochemistry, 144(4), 531–537.PubMedCrossRef Xu, L., Harada, H., & Taniguchi, A. (2008). The effects of LAMP1 and LAMP3 on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein. Journal of Biochemistry, 144(4), 531–537.PubMedCrossRef
117.
go back to reference Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.PubMedPubMedCentralCrossRef Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.PubMedPubMedCentralCrossRef
118.
go back to reference Petito, E., Momi, S., & Gresele, P. (2017). The migration of platelets and their interaction with other migrating cells. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 337–351). Switzerland: Springer International Publishing.CrossRef Petito, E., Momi, S., & Gresele, P. (2017). The migration of platelets and their interaction with other migrating cells. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 337–351). Switzerland: Springer International Publishing.CrossRef
119.
go back to reference Sandri, G., Bonferoni, M. C., Rossi, S., Ferrari, F., Mori, M., Cervio, M., et al. (2015). Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 12(4), 525–545.PubMedCrossRef Sandri, G., Bonferoni, M. C., Rossi, S., Ferrari, F., Mori, M., Cervio, M., et al. (2015). Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 12(4), 525–545.PubMedCrossRef
120.
121.
go back to reference Mancuso, M. E., & Santagostino, E. (2017). Platelets: much more than bricks in a breached wall. British Journal of Haematology, 4, 1–10. Mancuso, M. E., & Santagostino, E. (2017). Platelets: much more than bricks in a breached wall. British Journal of Haematology, 4, 1–10.
122.
go back to reference Anitua, E., Troya, M., Zalduendo, M., & Orive, G. (2017). Personalized plasma-based medicine to treat age-related diseases. Materials Science & Engineering. C, Materials for Biological Applications, 74, 459–464.CrossRef Anitua, E., Troya, M., Zalduendo, M., & Orive, G. (2017). Personalized plasma-based medicine to treat age-related diseases. Materials Science & Engineering. C, Materials for Biological Applications, 74, 459–464.CrossRef
123.
go back to reference Meschi, N., Castro, A. B., Vandamme, K., Quirynen, M., & Lambrechts, P. (2016). The impact of autologous platelet concentrates on endodontic healing: a systematic review. Platelets, 27(7), 613–633.PubMedCrossRef Meschi, N., Castro, A. B., Vandamme, K., Quirynen, M., & Lambrechts, P. (2016). The impact of autologous platelet concentrates on endodontic healing: a systematic review. Platelets, 27(7), 613–633.PubMedCrossRef
124.
go back to reference Mlynarek, R. A., Kuhn, A. W., & Bedi, A. (2016). Platelet-rich plasma (PRP) in orthopedic sports medicine. American Journal of Orthopedics (Belle Mead, N.J.), 45(5), 290–326. Mlynarek, R. A., Kuhn, A. W., & Bedi, A. (2016). Platelet-rich plasma (PRP) in orthopedic sports medicine. American Journal of Orthopedics (Belle Mead, N.J.), 45(5), 290–326.
125.
go back to reference Goubran, H. A., Stakiw, J., Radosevic, M., & Burnouf, T. (2014). Platelets effects on tumor growth. Seminars in Oncology, 41(3), 359–369.PubMedCrossRef Goubran, H. A., Stakiw, J., Radosevic, M., & Burnouf, T. (2014). Platelets effects on tumor growth. Seminars in Oncology, 41(3), 359–369.PubMedCrossRef
126.
go back to reference Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.PubMedCrossRef Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.PubMedCrossRef
127.
go back to reference Schmidt, E. M., Kraemer, B. F., Borst, O., Munzer, P., Schonberger, T., Schmidt, C., et al. (2012). SGK1 sensitivity of platelet migration. Cellular Physiology and Biochemistry, 30(1), 259–268.PubMedCrossRef Schmidt, E. M., Kraemer, B. F., Borst, O., Munzer, P., Schonberger, T., Schmidt, C., et al. (2012). SGK1 sensitivity of platelet migration. Cellular Physiology and Biochemistry, 30(1), 259–268.PubMedCrossRef
128.
go back to reference Kraemer, B. F., Borst, O., Gehring, E. M., Schoenberger, T., Urban, B., Ninci, E., et al. (2010). PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). Journal of Molecular Medicine (Berlin), 88(12), 1277–1288.CrossRef Kraemer, B. F., Borst, O., Gehring, E. M., Schoenberger, T., Urban, B., Ninci, E., et al. (2010). PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). Journal of Molecular Medicine (Berlin), 88(12), 1277–1288.CrossRef
129.
go back to reference Brandt, E., Ludwig, A., Petersen, F., & Flad, H. D. (2000). Platelet-derived CXC chemokines: old players in new games. Immunological Reviews, 177, 204–216.PubMedCrossRef Brandt, E., Ludwig, A., Petersen, F., & Flad, H. D. (2000). Platelet-derived CXC chemokines: old players in new games. Immunological Reviews, 177, 204–216.PubMedCrossRef
130.
go back to reference Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366(7), 610–618.PubMedPubMedCentralCrossRef Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366(7), 610–618.PubMedPubMedCentralCrossRef
131.
go back to reference Kraemer, B. F., Schmidt, C., Urban, B., Bigalke, B., Schwanitz, L., Koch, M., et al. (2011). High shear flow induces migration of adherent human platelets. Platelets, 22(6), 415–421.PubMedCrossRef Kraemer, B. F., Schmidt, C., Urban, B., Bigalke, B., Schwanitz, L., Koch, M., et al. (2011). High shear flow induces migration of adherent human platelets. Platelets, 22(6), 415–421.PubMedCrossRef
132.
go back to reference Chatterjee, M., Huang, Z., Zhang, W., Jiang, L., Hultenby, K., Zhu, L., et al. (2011). Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 117(14), 3907–3911.PubMedCrossRef Chatterjee, M., Huang, Z., Zhang, W., Jiang, L., Hultenby, K., Zhu, L., et al. (2011). Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 117(14), 3907–3911.PubMedCrossRef
133.
go back to reference Shenkman, B., Brill, A., Brill, G., Lider, O., Savion, N., & Varon, D. (2004). Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha. Journal of Thrombosis and Haemostasis, 2(1), 154–160.PubMedCrossRef Shenkman, B., Brill, A., Brill, G., Lider, O., Savion, N., & Varon, D. (2004). Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha. Journal of Thrombosis and Haemostasis, 2(1), 154–160.PubMedCrossRef
134.
go back to reference Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.PubMedPubMedCentralCrossRef Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.PubMedPubMedCentralCrossRef
135.
go back to reference Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovascular Research, 107(3):386–95. Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovascular Research, 107(3):386–95.
136.
go back to reference Garraud, O., Berthet, J., Hamzeh-Cognasse, H., & Cognasse, F. (2011). Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thrombosis Research, 127(4), 283–286.PubMedCrossRef Garraud, O., Berthet, J., Hamzeh-Cognasse, H., & Cognasse, F. (2011). Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thrombosis Research, 127(4), 283–286.PubMedCrossRef
137.
go back to reference von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.CrossRef von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.CrossRef
138.
go back to reference Rath, D., Chatterjee, M., Borst, O., Muller, K., Langer, H., Mack, A. F., et al. (2015). Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. Journal of Thrombosis and Haemostasis, 13(5), 719–728.PubMedCrossRef Rath, D., Chatterjee, M., Borst, O., Muller, K., Langer, H., Mack, A. F., et al. (2015). Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. Journal of Thrombosis and Haemostasis, 13(5), 719–728.PubMedCrossRef
139.
go back to reference Rafii, S., Cao, Z., Lis, R., Siempos, I. I., Chavez, D., Shido, K., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17(2), 123–136.PubMedPubMedCentralCrossRef Rafii, S., Cao, Z., Lis, R., Siempos, I. I., Chavez, D., Shido, K., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17(2), 123–136.PubMedPubMedCentralCrossRef
140.
go back to reference Chatterjee, M., Seizer, P., Borst, O., Schonberger, T., Mack, A., Geisler, T., et al. (2014). SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. The FASEB Journal, 28(7), 2864–2878.PubMedCrossRef Chatterjee, M., Seizer, P., Borst, O., Schonberger, T., Mack, A., Geisler, T., et al. (2014). SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. The FASEB Journal, 28(7), 2864–2878.PubMedCrossRef
141.
go back to reference Rath, D., Chatterjee, M., Borst, O., Muller, K., Stellos, K., Mack, A. F., et al. (2014). Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 35(6), 386–394.PubMedCrossRef Rath, D., Chatterjee, M., Borst, O., Muller, K., Stellos, K., Mack, A. F., et al. (2014). Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 35(6), 386–394.PubMedCrossRef
142.
go back to reference Iannacone, M. (2016). Platelet-mediated modulation of adaptive immunity. Seminars in Immunology, 28(6), 555–560.PubMedCrossRef Iannacone, M. (2016). Platelet-mediated modulation of adaptive immunity. Seminars in Immunology, 28(6), 555–560.PubMedCrossRef
143.
go back to reference Danese, S., & Fiocchi, C. (2016). Endothelial cell-immune cell interaction in IBD. Digestive Diseases, 34(1–2), 43–50.PubMedCrossRef Danese, S., & Fiocchi, C. (2016). Endothelial cell-immune cell interaction in IBD. Digestive Diseases, 34(1–2), 43–50.PubMedCrossRef
144.
go back to reference Chatterjee, M., & Geisler, T. (2016). Inflammatory contribution of platelets revisited: new players in the arena of inflammation. Seminars in Thrombosis and Hemostasis, 42(3), 205–214.PubMedCrossRef Chatterjee, M., & Geisler, T. (2016). Inflammatory contribution of platelets revisited: new players in the arena of inflammation. Seminars in Thrombosis and Hemostasis, 42(3), 205–214.PubMedCrossRef
145.
go back to reference Carestia, A., Kaufman, T., & Schattner, M. (2016). Platelets: new bricks in the building of neutrophil extracellular traps. Frontiers in Immunology, 7, 271.PubMedPubMedCentralCrossRef Carestia, A., Kaufman, T., & Schattner, M. (2016). Platelets: new bricks in the building of neutrophil extracellular traps. Frontiers in Immunology, 7, 271.PubMedPubMedCentralCrossRef
146.
go back to reference Lam, F. W., Vijayan, K. V., & Rumbaut, R. E. (2015). Platelets and their interactions with other immune cells. Comprehensive Physiology, 5(3), 1265–1280.PubMedPubMedCentralCrossRef Lam, F. W., Vijayan, K. V., & Rumbaut, R. E. (2015). Platelets and their interactions with other immune cells. Comprehensive Physiology, 5(3), 1265–1280.PubMedPubMedCentralCrossRef
147.
go back to reference Kapur, R., Zufferey, A., Boilard, E., & Semple, J. W. (2015). Nouvelle cuisine: platelets served with inflammation. Journal of Immunology, 194(12), 5579–5587.CrossRef Kapur, R., Zufferey, A., Boilard, E., & Semple, J. W. (2015). Nouvelle cuisine: platelets served with inflammation. Journal of Immunology, 194(12), 5579–5587.CrossRef
148.
go back to reference Cognasse, F., Nguyen, K. A., Damien, P., McNicol, A., Pozzetto, B., Hamzeh-Cognasse, H., et al. (2015). The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 6, 83.PubMedPubMedCentralCrossRef Cognasse, F., Nguyen, K. A., Damien, P., McNicol, A., Pozzetto, B., Hamzeh-Cognasse, H., et al. (2015). The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 6, 83.PubMedPubMedCentralCrossRef
149.
go back to reference Chatterjee, M., Rath, D., & Gawaz, M. (2015). Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions, 43(4), 720–726.PubMedCrossRef Chatterjee, M., Rath, D., & Gawaz, M. (2015). Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions, 43(4), 720–726.PubMedCrossRef
150.
go back to reference Varki, A. (2011). Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology, 21(9), 1121–1124.PubMedPubMedCentralCrossRef Varki, A. (2011). Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology, 21(9), 1121–1124.PubMedPubMedCentralCrossRef
151.
go back to reference Menter, D. G., Steinert, B. W., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). A new in vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Research, 47(9), 2425–2432.PubMed Menter, D. G., Steinert, B. W., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). A new in vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Research, 47(9), 2425–2432.PubMed
152.
go back to reference Chopra, H., Timar, J., Rong, X., Grossi, I. M., Hatfield, J. S., Fligiel, S. E., et al. (1992). Is there a role for the tumor cell integrin alpha IIb beta 3 and cytoskeleton in tumor cell-platelet interaction? Clinical & Experimental Metastasis, 10(2), 125–137.CrossRef Chopra, H., Timar, J., Rong, X., Grossi, I. M., Hatfield, J. S., Fligiel, S. E., et al. (1992). Is there a role for the tumor cell integrin alpha IIb beta 3 and cytoskeleton in tumor cell-platelet interaction? Clinical & Experimental Metastasis, 10(2), 125–137.CrossRef
153.
go back to reference Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E., & Bednar, B. (1999). The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. The Journal of Biological Chemistry, 274(36), 25301–25307.PubMedCrossRef Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E., & Bednar, B. (1999). The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. The Journal of Biological Chemistry, 274(36), 25301–25307.PubMedCrossRef
154.
go back to reference Breckenridge, M. T., Egelhoff, T. T., & Baskaran, H. (2010). A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomedical Microdevices, 12(3), 543–553.PubMedPubMedCentralCrossRef Breckenridge, M. T., Egelhoff, T. T., & Baskaran, H. (2010). A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomedical Microdevices, 12(3), 543–553.PubMedPubMedCentralCrossRef
155.
go back to reference Ellingsen, T., Storgaard, M., Moller, B. K., Buus, A., Andersen, P. L., Obel, N., et al. (2000). Migration of mononuclear cells in the modified Boyden chamber as evaluated by DNA quantification and flow cytometry. Scandinavian Journal of Immunology, 52(3), 257–263.PubMedCrossRef Ellingsen, T., Storgaard, M., Moller, B. K., Buus, A., Andersen, P. L., Obel, N., et al. (2000). Migration of mononuclear cells in the modified Boyden chamber as evaluated by DNA quantification and flow cytometry. Scandinavian Journal of Immunology, 52(3), 257–263.PubMedCrossRef
156.
go back to reference Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. Current Opinion in Cell Biology, 23(1), 55–64.PubMedCrossRef Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. Current Opinion in Cell Biology, 23(1), 55–64.PubMedCrossRef
157.
go back to reference Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., et al. (2017). Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270.PubMed Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., et al. (2017). Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270.PubMed
158.
go back to reference Bruce, I. J., & Kerry, R. (1987). The effect of chloramphenicol and cycloheximide on platelet aggregation and protein synthesis. Biochemical Pharmacology, 36(11), 1769–1773.PubMedCrossRef Bruce, I. J., & Kerry, R. (1987). The effect of chloramphenicol and cycloheximide on platelet aggregation and protein synthesis. Biochemical Pharmacology, 36(11), 1769–1773.PubMedCrossRef
159.
go back to reference Borisova, T. A., & Markosian, R. A. (1977). Age and biosynthesis and breakdown of thrombocyte proteins. Biulleten' Eksperimental'noĭ Biologii i Meditsiny, 83(1), 20–21.PubMed Borisova, T. A., & Markosian, R. A. (1977). Age and biosynthesis and breakdown of thrombocyte proteins. Biulleten' Eksperimental'noĭ Biologii i Meditsiny, 83(1), 20–21.PubMed
160.
go back to reference Pagel, O., Walter, E., Jurk, K., & Zahedi, R. P. (2017). Taking the stock of granule cargo: platelet releasate proteomics. Platelets, 28(2), 119–128.PubMedCrossRef Pagel, O., Walter, E., Jurk, K., & Zahedi, R. P. (2017). Taking the stock of granule cargo: platelet releasate proteomics. Platelets, 28(2), 119–128.PubMedCrossRef
161.
go back to reference Melki, I., Tessandier, N., Zufferey, A., & Boilard, E. (2017). Platelet microvesicles in health and disease. Platelets, 28(3), 214–221.PubMedCrossRef Melki, I., Tessandier, N., Zufferey, A., & Boilard, E. (2017). Platelet microvesicles in health and disease. Platelets, 28(3), 214–221.PubMedCrossRef
162.
go back to reference Wang, Z. T., Wang, Z., & Hu, Y. W. (2016). Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 248, 10–16.PubMedCrossRef Wang, Z. T., Wang, Z., & Hu, Y. W. (2016). Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 248, 10–16.PubMedCrossRef
163.
164.
go back to reference Cointe, S., Lacroix, R., & Dignat-George, F. (2017). Platelet-derived microparticles. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 379–392). Switzerland: Springer International Publishing.CrossRef Cointe, S., Lacroix, R., & Dignat-George, F. (2017). Platelet-derived microparticles. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 379–392). Switzerland: Springer International Publishing.CrossRef
165.
go back to reference Zilberman-Rudenko, J., Sylman, J. L., Lakshmanan, H. H. S., McCarty, O. J. T., & Maddala, J. (2017). Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cellular and Molecular Bioengineering, 10(1), 16–29.PubMedCrossRef Zilberman-Rudenko, J., Sylman, J. L., Lakshmanan, H. H. S., McCarty, O. J. T., & Maddala, J. (2017). Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cellular and Molecular Bioengineering, 10(1), 16–29.PubMedCrossRef
166.
go back to reference Whyte, C. S., Mitchell, J. L., & Mutch, N. J. (2017). Platelet-mediated modulation of fibrinolysis. Seminars in Thrombosis and Hemostasis, 43(2), 115–128.PubMedCrossRef Whyte, C. S., Mitchell, J. L., & Mutch, N. J. (2017). Platelet-mediated modulation of fibrinolysis. Seminars in Thrombosis and Hemostasis, 43(2), 115–128.PubMedCrossRef
167.
go back to reference Biolik, G., Kokot, M., Sznapka, M., Swieszek, A., Ziaja, D., Pawlicki, K., et al. (2017). Platelet reactivity in thromboelastometry. Revision of the FIBTEM test: a basic study. Scandinavian Journal of Clinical and Laboratory Investigation, 77(3), 216–222.PubMedCrossRef Biolik, G., Kokot, M., Sznapka, M., Swieszek, A., Ziaja, D., Pawlicki, K., et al. (2017). Platelet reactivity in thromboelastometry. Revision of the FIBTEM test: a basic study. Scandinavian Journal of Clinical and Laboratory Investigation, 77(3), 216–222.PubMedCrossRef
168.
go back to reference Mammadova-Bach, E., Ollivier, V., Loyau, S., Schaff, M., Dumont, B., Favier, R., et al. (2015). Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 126(5), 683–691.PubMedCrossRef Mammadova-Bach, E., Ollivier, V., Loyau, S., Schaff, M., Dumont, B., Favier, R., et al. (2015). Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 126(5), 683–691.PubMedCrossRef
169.
go back to reference Kral, J. B., Schrottmaier, W. C., Salzmann, M., & Assinger, A. (2016). Platelet interaction with innate immune cells. Transfusion Medicine and Hemotherapy, 43(2), 78–88.PubMedPubMedCentralCrossRef Kral, J. B., Schrottmaier, W. C., Salzmann, M., & Assinger, A. (2016). Platelet interaction with innate immune cells. Transfusion Medicine and Hemotherapy, 43(2), 78–88.PubMedPubMedCentralCrossRef
170.
go back to reference Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469.PubMedCrossRef Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469.PubMedCrossRef
171.
go back to reference Joshi, S., & Whiteheart, S. W. (2017). The nuts and bolts of the platelet release reaction. Platelets, 28(2), 129–137.PubMedCrossRef Joshi, S., & Whiteheart, S. W. (2017). The nuts and bolts of the platelet release reaction. Platelets, 28(2), 129–137.PubMedCrossRef
172.
go back to reference Suades, R., Padro, T., & Badimon, L. (2015). The role of blood-borne microparticles in inflammation and hemostasis. Seminars in Thrombosis and Hemostasis, 41(6), 590–606.PubMedCrossRef Suades, R., Padro, T., & Badimon, L. (2015). The role of blood-borne microparticles in inflammation and hemostasis. Seminars in Thrombosis and Hemostasis, 41(6), 590–606.PubMedCrossRef
173.
go back to reference Gill, P., Jindal, N. L., Jagdis, A., & Vadas, P. (2015). Platelets in the immune response: revisiting platelet-activating factor in anaphylaxis. The Journal of Allergy and Clinical Immunology, 135(6), 1424–1432.PubMedCrossRef Gill, P., Jindal, N. L., Jagdis, A., & Vadas, P. (2015). Platelets in the immune response: revisiting platelet-activating factor in anaphylaxis. The Journal of Allergy and Clinical Immunology, 135(6), 1424–1432.PubMedCrossRef
174.
go back to reference Momi, S., & Wiwanitkit, V. (2017). Phylogeny of blood platelets. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 11–19). Switzerland: Springer International Publishing.CrossRef Momi, S., & Wiwanitkit, V. (2017). Phylogeny of blood platelets. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 11–19). Switzerland: Springer International Publishing.CrossRef
175.
go back to reference Roch, G. J., & Sherwood, N. M. (2014). Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biology and Evolution, 6(6), 1466–1479.PubMedPubMedCentralCrossRef Roch, G. J., & Sherwood, N. M. (2014). Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biology and Evolution, 6(6), 1466–1479.PubMedPubMedCentralCrossRef
176.
go back to reference He, W., Tang, Y., Qi, B., Lu, C., Qin, C., Wei, Y., et al. (2014). Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates. Gene, 535(2), 345–352.PubMedCrossRef He, W., Tang, Y., Qi, B., Lu, C., Qin, C., Wei, Y., et al. (2014). Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates. Gene, 535(2), 345–352.PubMedCrossRef
177.
go back to reference Mercer, P. F., & Chambers, R. C. (2013). Coagulation and coagulation signalling in fibrosis. Biochimica et Biophysica Acta, 1832(7), 1018–1027.PubMedCrossRef Mercer, P. F., & Chambers, R. C. (2013). Coagulation and coagulation signalling in fibrosis. Biochimica et Biophysica Acta, 1832(7), 1018–1027.PubMedCrossRef
178.
go back to reference Yamaguchi, Y., & Yoshikawa, K. (2001). Cutaneous wound healing: an update. The Journal of Dermatology, 28(10), 521–534.PubMedCrossRef Yamaguchi, Y., & Yoshikawa, K. (2001). Cutaneous wound healing: an update. The Journal of Dermatology, 28(10), 521–534.PubMedCrossRef
179.
go back to reference Gerarduzzi, C., & Di Battista, J. A. (2017). Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflammation Research, 66(6), 451–465.PubMedCrossRef Gerarduzzi, C., & Di Battista, J. A. (2017). Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflammation Research, 66(6), 451–465.PubMedCrossRef
180.
go back to reference Greaves, N. S., Ashcroft, K. J., Baguneid, M., & Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3), 206–217.PubMedCrossRef Greaves, N. S., Ashcroft, K. J., Baguneid, M., & Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3), 206–217.PubMedCrossRef
181.
go back to reference Carthy, J. M. (2017). TGFbeta signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. Journal of Cellular Physiology. doi:10.1002/jcp.25879. Carthy, J. M. (2017). TGFbeta signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. Journal of Cellular Physiology. doi:10.​1002/​jcp.​25879.
182.
go back to reference Ghosh, D., McGrail, D. J., & Dawson, M. R. (2017). TGF-beta1 pretreatment improves the function of mesenchymal stem cells in the wound bed. Frontiers in Cell and Development Biology, 5, 28.CrossRef Ghosh, D., McGrail, D. J., & Dawson, M. R. (2017). TGF-beta1 pretreatment improves the function of mesenchymal stem cells in the wound bed. Frontiers in Cell and Development Biology, 5, 28.CrossRef
183.
go back to reference Valcourt, U., Carthy, J., Okita, Y., Alcaraz, L., Kato, M., Thuault, S., et al. (2016). Analysis of epithelial-mesenchymal transition induced by transforming growth factor beta. Methods in Molecular Biology, 1344, 147–181.PubMedCrossRef Valcourt, U., Carthy, J., Okita, Y., Alcaraz, L., Kato, M., Thuault, S., et al. (2016). Analysis of epithelial-mesenchymal transition induced by transforming growth factor beta. Methods in Molecular Biology, 1344, 147–181.PubMedCrossRef
184.
go back to reference Das, U. N. (2016). Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. Lipids in Health and Disease, 15, 11.PubMedPubMedCentralCrossRef Das, U. N. (2016). Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. Lipids in Health and Disease, 15, 11.PubMedPubMedCentralCrossRef
185.
go back to reference Gensel, J. C., & Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 1619, 1–11.PubMedCrossRef Gensel, J. C., & Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 1619, 1–11.PubMedCrossRef
186.
go back to reference Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70, 74–82.PubMedCrossRef Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70, 74–82.PubMedCrossRef
187.
go back to reference Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews. Cancer, 12(3), 170–180.PubMedCrossRef Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews. Cancer, 12(3), 170–180.PubMedCrossRef
188.
go back to reference Dovizio, M., Sacco, A., & Patrignani, P. (2017). Curbing tumorigenesis and malignant progression through the pharmacological control of the wound healing process. Vascular Pharmacology, 89, 1–11.PubMedCrossRef Dovizio, M., Sacco, A., & Patrignani, P. (2017). Curbing tumorigenesis and malignant progression through the pharmacological control of the wound healing process. Vascular Pharmacology, 89, 1–11.PubMedCrossRef
190.
go back to reference Lichtenberger, L., Fang, D., Bick, R., Poindexter, B., Phan, T., Bergeron, A., et al. (2017). Unlocking aspirin's chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Reseach, 10, 142–152.CrossRef Lichtenberger, L., Fang, D., Bick, R., Poindexter, B., Phan, T., Bergeron, A., et al. (2017). Unlocking aspirin's chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Reseach, 10, 142–152.CrossRef
191.
go back to reference Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical & Experimental Metastasis, 5(1), 65–78.CrossRef Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical & Experimental Metastasis, 5(1), 65–78.CrossRef
192.
go back to reference Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128. Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.
193.
go back to reference Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.PubMedCrossRef Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.PubMedCrossRef
194.
go back to reference Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.PubMedCrossRef Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.PubMedCrossRef
195.
go back to reference Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390.PubMedPubMedCentralCrossRef Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390.PubMedPubMedCentralCrossRef
196.
go back to reference Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., et al. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.PubMedCrossRef Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., et al. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.PubMedCrossRef
197.
go back to reference Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.PubMedCrossRef Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.PubMedCrossRef
198.
go back to reference Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.PubMedCrossRef Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.PubMedCrossRef
199.
go back to reference Ratnasinghe, L. D., Graubard, B. I., Kahle, L., Tangrea, J. A., Taylor, P. R., & Hawk, E. (2004). Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Research, 24(5B), 3177–3184.PubMed Ratnasinghe, L. D., Graubard, B. I., Kahle, L., Tangrea, J. A., Taylor, P. R., & Hawk, E. (2004). Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Research, 24(5B), 3177–3184.PubMed
200.
go back to reference Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedCrossRef
201.
go back to reference Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedCrossRef
202.
go back to reference Burn, J., Gerdes, A. M., Macrae, F., Mecklin, J. P., Moeslein, G., Olschwang, S., et al. (2011). Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet, 378(9809), 2081–2087.PubMedPubMedCentralCrossRef Burn, J., Gerdes, A. M., Macrae, F., Mecklin, J. P., Moeslein, G., Olschwang, S., et al. (2011). Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet, 378(9809), 2081–2087.PubMedPubMedCentralCrossRef
203.
go back to reference Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50.PubMedPubMedCentralCrossRef Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50.PubMedPubMedCentralCrossRef
204.
go back to reference Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedCrossRef Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedCrossRef
205.
go back to reference Honn, K. V., Menter, D., Cavanaugh, P. G., Neagos, G., Moilanen, D., Taylor, J. D., et al. (1983). A review of prostaglandins and the treatment of tumor metastasis. Acta Clinica Belgica, 38(1), 53–67.PubMedCrossRef Honn, K. V., Menter, D., Cavanaugh, P. G., Neagos, G., Moilanen, D., Taylor, J. D., et al. (1983). A review of prostaglandins and the treatment of tumor metastasis. Acta Clinica Belgica, 38(1), 53–67.PubMedCrossRef
206.
go back to reference Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.PubMedPubMedCentralCrossRef Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.PubMedPubMedCentralCrossRef
207.
go back to reference Woods, J. R. (1964). Experimental studies of the intravascular dissemination of Ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften, 20, 92–121.PubMed Woods, J. R. (1964). Experimental studies of the intravascular dissemination of Ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften, 20, 92–121.PubMed
208.
go back to reference Horejsova, M., Pavlickova, V., Koukolik, F., & Strritesky, J. (1995). Morphologic verification of neoplastic portal vein obstruction. Casopís Lékar̆ů C̆eských, 134(20), 655–657.PubMed Horejsova, M., Pavlickova, V., Koukolik, F., & Strritesky, J. (1995). Morphologic verification of neoplastic portal vein obstruction. Casopís Lékar̆ů C̆eských, 134(20), 655–657.PubMed
209.
go back to reference Benazzi, C., Al-Dissi, A., Chau, C. H., Figg, W. D., Sarli, G., de Oliveira, J. T., et al. (2014). Angiogenesis in spontaneous tumors and implications for comparative tumor biology. ScientificWorldJournal, 2014, 919570.PubMedPubMedCentralCrossRef Benazzi, C., Al-Dissi, A., Chau, C. H., Figg, W. D., Sarli, G., de Oliveira, J. T., et al. (2014). Angiogenesis in spontaneous tumors and implications for comparative tumor biology. ScientificWorldJournal, 2014, 919570.PubMedPubMedCentralCrossRef
210.
go back to reference Fein, M. R., & Egeblad, M. (2013). Caught in the act: revealing the metastatic process by live imaging. Disease Models & Mechanisms, 6(3), 580–593.CrossRef Fein, M. R., & Egeblad, M. (2013). Caught in the act: revealing the metastatic process by live imaging. Disease Models & Mechanisms, 6(3), 580–593.CrossRef
211.
go back to reference Starke, J., Wehrle-Haller, B., & Friedl, P. (2014). Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochemical Society Transactions, 42(5), 1356–1366.PubMedCrossRef Starke, J., Wehrle-Haller, B., & Friedl, P. (2014). Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochemical Society Transactions, 42(5), 1356–1366.PubMedCrossRef
212.
go back to reference Gritsenko, P. G., Ilina, O., & Friedl, P. (2012). Interstitial guidance of cancer invasion. The Journal of Pathology, 226(2), 185–199.PubMedCrossRef Gritsenko, P. G., Ilina, O., & Friedl, P. (2012). Interstitial guidance of cancer invasion. The Journal of Pathology, 226(2), 185–199.PubMedCrossRef
213.
go back to reference Friedl, P., Sahai, E., Weiss, S., & Yamada, K. M. (2012). New dimensions in cell migration. Nature Reviews. Molecular Cell Biology, 13(11), 743–747.PubMedCrossRef Friedl, P., Sahai, E., Weiss, S., & Yamada, K. M. (2012). New dimensions in cell migration. Nature Reviews. Molecular Cell Biology, 13(11), 743–747.PubMedCrossRef
214.
go back to reference Friedl, P., Wolf, K., & Zegers, M. M. (2014). Rho-directed forces in collective migration. Nature Cell Biology, 16(3), 208–210.PubMedCrossRef Friedl, P., Wolf, K., & Zegers, M. M. (2014). Rho-directed forces in collective migration. Nature Cell Biology, 16(3), 208–210.PubMedCrossRef
215.
go back to reference Haeger, A., Krause, M., Wolf, K., & Friedl, P. (2014). Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochimica et Biophysica Acta, 1840(8), 2386–2395.PubMedCrossRef Haeger, A., Krause, M., Wolf, K., & Friedl, P. (2014). Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochimica et Biophysica Acta, 1840(8), 2386–2395.PubMedCrossRef
216.
go back to reference Deng, G., Krishnakumar, S., Powell, A. A., Zhang, H., Mindrinos, M. N., Telli, M. L., et al. (2014). Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer, 14, 456.PubMedPubMedCentralCrossRef Deng, G., Krishnakumar, S., Powell, A. A., Zhang, H., Mindrinos, M. N., Telli, M. L., et al. (2014). Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer, 14, 456.PubMedPubMedCentralCrossRef
217.
go back to reference Powell, A. A., Talasaz, A. H., Zhang, H., Coram, M. A., Reddy, A., Deng, G., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS One, 7(5), e33788.PubMedPubMedCentralCrossRef Powell, A. A., Talasaz, A. H., Zhang, H., Coram, M. A., Reddy, A., Deng, G., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS One, 7(5), e33788.PubMedPubMedCentralCrossRef
218.
go back to reference Tang, J., Gao, X., Zhi, M., Zhou, H. M., Zhang, M., Chen, H. W., et al. (2015). Plateletcrit: a sensitive biomarker for evaluating disease activity in Crohn's disease with low hs-CRP. Journal of Digestive Diseases, 16(3), 118–124.PubMedCrossRef Tang, J., Gao, X., Zhi, M., Zhou, H. M., Zhang, M., Chen, H. W., et al. (2015). Plateletcrit: a sensitive biomarker for evaluating disease activity in Crohn's disease with low hs-CRP. Journal of Digestive Diseases, 16(3), 118–124.PubMedCrossRef
219.
go back to reference Pasula, S., Cai, X., Dong, Y., Messa, M., McManus, J., Chang, B., et al. (2012). Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. The Journal of Clinical Investigation, 122(12), 4424–4438.PubMedPubMedCentralCrossRef Pasula, S., Cai, X., Dong, Y., Messa, M., McManus, J., Chang, B., et al. (2012). Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. The Journal of Clinical Investigation, 122(12), 4424–4438.PubMedPubMedCentralCrossRef
220.
go back to reference Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef
221.
go back to reference Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.PubMedCrossRef Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.PubMedCrossRef
222.
go back to reference Keskin, D., Kim, J., Cooke, V. G., Wu, C. C., Sugimoto, H., Gu, C., et al. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Reports, 10(7), 1066–1081.PubMedPubMedCentralCrossRef Keskin, D., Kim, J., Cooke, V. G., Wu, C. C., Sugimoto, H., Gu, C., et al. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Reports, 10(7), 1066–1081.PubMedPubMedCentralCrossRef
223.
go back to reference Nagy, J. A., Dvorak, A. M., & Dvorak, H. F. (2012). Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspectives in Medicine, 2(2), a006544.PubMedPubMedCentralCrossRef Nagy, J. A., Dvorak, A. M., & Dvorak, H. F. (2012). Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspectives in Medicine, 2(2), a006544.PubMedPubMedCentralCrossRef
225.
go back to reference Kisucka, J., Butterfield, C. E., Duda, D. G., Eichenberger, S. C., Saffaripour, S., Ware, J., et al. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 855–860.PubMedPubMedCentralCrossRef Kisucka, J., Butterfield, C. E., Duda, D. G., Eichenberger, S. C., Saffaripour, S., Ware, J., et al. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 855–860.PubMedPubMedCentralCrossRef
226.
go back to reference Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.PubMedCrossRef
227.
go back to reference O'Byrne, K. J., & Steward, W. P. (2001). Tumour angiogenesis: a novel therapeutic target in patients with malignant disease. Expert Opinion on Emerging Drugs, 6(1), 155–174.PubMed O'Byrne, K. J., & Steward, W. P. (2001). Tumour angiogenesis: a novel therapeutic target in patients with malignant disease. Expert Opinion on Emerging Drugs, 6(1), 155–174.PubMed
228.
go back to reference Satelli, A., Mitra, A., Brownlee, Z., Xia, X., Bellister, S., Overman, M. J., et al. (2015). Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clinical Cancer Research, 21(4), 899–906.PubMedCrossRef Satelli, A., Mitra, A., Brownlee, Z., Xia, X., Bellister, S., Overman, M. J., et al. (2015). Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clinical Cancer Research, 21(4), 899–906.PubMedCrossRef
229.
go back to reference Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2(12), 1091–1099.PubMedPubMedCentralCrossRef Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2(12), 1091–1099.PubMedPubMedCentralCrossRef
230.
go back to reference Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.PubMedPubMedCentralCrossRef Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.PubMedPubMedCentralCrossRef
231.
go back to reference van Es, N., Sturk, A., Middeldorp, S., & Nieuwland, R. (2014). Effects of cancer on platelets. Seminars in Oncology, 41(3), 311–318.PubMedCrossRef van Es, N., Sturk, A., Middeldorp, S., & Nieuwland, R. (2014). Effects of cancer on platelets. Seminars in Oncology, 41(3), 311–318.PubMedCrossRef
232.
go back to reference Nistico, P., Bissell, M. J., & Radisky, D. C. (2012). Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harbor Perspectives in Biology, 4(2), 1–10. Nistico, P., Bissell, M. J., & Radisky, D. C. (2012). Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harbor Perspectives in Biology, 4(2), 1–10.
233.
go back to reference Gresele, P., Falcinelli, E., Sebastiano, M., & Momi, S. (2017). Matrix metalloproteinases and platelet function. Progress in Molecular Biology and Translational Science, 147, 133–165.PubMedCrossRef Gresele, P., Falcinelli, E., Sebastiano, M., & Momi, S. (2017). Matrix metalloproteinases and platelet function. Progress in Molecular Biology and Translational Science, 147, 133–165.PubMedCrossRef
234.
go back to reference Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38(9), 2651–2660.PubMed Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38(9), 2651–2660.PubMed
235.
go back to reference Billroth, T. (1878). Lectures on surgical pathology and therapeutics, a handbook for students and practitioners (Vol. II). London: The New Sydenham Society. Billroth, T. (1878). Lectures on surgical pathology and therapeutics, a handbook for students and practitioners (Vol. II). London: The New Sydenham Society.
236.
go back to reference Johnson, J. H., & Woods, J. R. (1963). An in vitro study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bulletin of the Johns Hopkins Hospital, 113, 335–346.PubMed Johnson, J. H., & Woods, J. R. (1963). An in vitro study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bulletin of the Johns Hopkins Hospital, 113, 335–346.PubMed
237.
go back to reference Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. A.M.A. Archives of Pathology, 59(1), 26–34.PubMed Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. A.M.A. Archives of Pathology, 59(1), 26–34.PubMed
238.
go back to reference Jones, D. S., Wallace, A. C., & Fraser, E. E. (1971). Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. Journal of the National Cancer Institute, 46(3), 493–504.PubMed Jones, D. S., Wallace, A. C., & Fraser, E. E. (1971). Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. Journal of the National Cancer Institute, 46(3), 493–504.PubMed
239.
go back to reference Chew, E. C., & Wallace, A. C. (1976). Demonstration of fibrin in early stages of experimental metastases. Cancer Research, 36(6), 1904–1909.PubMed Chew, E. C., & Wallace, A. C. (1976). Demonstration of fibrin in early stages of experimental metastases. Cancer Research, 36(6), 1904–1909.PubMed
240.
go back to reference Warren, B. A., & Vales, O. (1972). The adhesion of thromboplastic tumour emboli to vessel walls in vivo. British Journal of Experimental Pathology, 53(3), 301–313.PubMedPubMedCentral Warren, B. A., & Vales, O. (1972). The adhesion of thromboplastic tumour emboli to vessel walls in vivo. British Journal of Experimental Pathology, 53(3), 301–313.PubMedPubMedCentral
241.
go back to reference Warren, B. A., & Vales, O. (1972). The release of vesicles from platelets following adhesion to vessel walls in vitro. British Journal of Experimental Pathology, 53(2), 206–215.PubMedPubMedCentral Warren, B. A., & Vales, O. (1972). The release of vesicles from platelets following adhesion to vessel walls in vitro. British Journal of Experimental Pathology, 53(2), 206–215.PubMedPubMedCentral
242.
go back to reference Warren, B. A. (1976). Some aspects of blood borne tumour emboli associated with thrombosis. Zeitschrift für Krebsforschung und Klinische Onkologie. Cancer Research and Clinical Oncology, 87(1), 1–15.PubMed Warren, B. A. (1976). Some aspects of blood borne tumour emboli associated with thrombosis. Zeitschrift für Krebsforschung und Klinische Onkologie. Cancer Research and Clinical Oncology, 87(1), 1–15.PubMed
243.
go back to reference Kinjo, M. (1978). Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. British Journal of Cancer, 38(2), 293–301.PubMedPubMedCentralCrossRef Kinjo, M. (1978). Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. British Journal of Cancer, 38(2), 293–301.PubMedPubMedCentralCrossRef
244.
go back to reference Gastpar, H. (1978). Inhibition of cancer cell stickiness, a model for the testing of in vivo thrombocyte aggregation inhibitors. IV. Effect of sulfinpyrazone. Fortschritte der Medizin, 96(36), 1823–1827.PubMed Gastpar, H. (1978). Inhibition of cancer cell stickiness, a model for the testing of in vivo thrombocyte aggregation inhibitors. IV. Effect of sulfinpyrazone. Fortschritte der Medizin, 96(36), 1823–1827.PubMed
245.
go back to reference Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: lessons from migration in confined spaces. Nature Reviews. Cancer, 17(2), 131–140.PubMedCrossRef Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: lessons from migration in confined spaces. Nature Reviews. Cancer, 17(2), 131–140.PubMedCrossRef
246.
go back to reference Tonisen, F., Perrin, L., Bayarmagnai, B., van den Dries, K., Cambi, A., & Gligorijevic, B. (2017). EP4 receptor promotes invadopodia and invasion in human breast cancer. European Journal of Cell Biology, 96(2), 218–226.PubMedCrossRef Tonisen, F., Perrin, L., Bayarmagnai, B., van den Dries, K., Cambi, A., & Gligorijevic, B. (2017). EP4 receptor promotes invadopodia and invasion in human breast cancer. European Journal of Cell Biology, 96(2), 218–226.PubMedCrossRef
247.
go back to reference Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedCrossRef
248.
go back to reference Lichtenberger, L. M., Fang, D., Bick, R. J., Poindexter, B. J., Phan, T., Bergeron, A. L., et al. (2017). Unlocking aspirin’s chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Research (Philadelphia, Pa.), 10(2), 142–152.CrossRef Lichtenberger, L. M., Fang, D., Bick, R. J., Poindexter, B. J., Phan, T., Bergeron, A. L., et al. (2017). Unlocking aspirin’s chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Research (Philadelphia, Pa.), 10(2), 142–152.CrossRef
249.
go back to reference Hu, Q., Wang, M., Cho, M. S., Wang, C., Nick, A. M., Thiagarajan, P., et al. (2016). Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin, 6, 76–81.PubMedPubMedCentralCrossRef Hu, Q., Wang, M., Cho, M. S., Wang, C., Nick, A. M., Thiagarajan, P., et al. (2016). Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin, 6, 76–81.PubMedPubMedCentralCrossRef
250.
go back to reference Haemmerle, M., Bottsford-Miller, J., Pradeep, S., Taylor, M. L., Choi, H. J., Hansen, J. M., et al. (2016). FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. The Journal of Clinical Investigation, 126(5), 1885–1896.PubMedPubMedCentralCrossRef Haemmerle, M., Bottsford-Miller, J., Pradeep, S., Taylor, M. L., Choi, H. J., Hansen, J. M., et al. (2016). FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. The Journal of Clinical Investigation, 126(5), 1885–1896.PubMedPubMedCentralCrossRef
251.
go back to reference Qi, C., Li, B., Guo, S., Wei, B., Shao, C., Li, J., et al. (2015). P-selectin-mediated adhesion between platelets and tumor cells promotes intestinal tumorigenesis in Apc(min/+) mice. International Journal of Biological Sciences, 11(6), 679–687.PubMedPubMedCentralCrossRef Qi, C., Li, B., Guo, S., Wei, B., Shao, C., Li, J., et al. (2015). P-selectin-mediated adhesion between platelets and tumor cells promotes intestinal tumorigenesis in Apc(min/+) mice. International Journal of Biological Sciences, 11(6), 679–687.PubMedPubMedCentralCrossRef
252.
go back to reference Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed
253.
go back to reference Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.PubMedCrossRef Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.PubMedCrossRef
254.
go back to reference Bouvenot, G., Escande, M., Xeridat, B., Simonin, G., Boucoiran, J., & Delboy, C. (1977). Thrombocytosis and cancer. Apropos of a chronological series of 100 patients. La Semaine des Hôpitaux, 53(36), 1921–1925.PubMed Bouvenot, G., Escande, M., Xeridat, B., Simonin, G., Boucoiran, J., & Delboy, C. (1977). Thrombocytosis and cancer. Apropos of a chronological series of 100 patients. La Semaine des Hôpitaux, 53(36), 1921–1925.PubMed
255.
go back to reference Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Reviews, 11(3–4), 325–351.PubMedCrossRef Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Reviews, 11(3–4), 325–351.PubMedCrossRef
256.
go back to reference Levin, J., & Conley, C. L. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114, 497–500.PubMedCrossRef Levin, J., & Conley, C. L. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114, 497–500.PubMedCrossRef
257.
go back to reference Rank, A., Liebhardt, S., Zwirner, J., Burges, A., Nieuwland, R., & Toth, B. (2012). Circulating microparticles in patients with benign and malignant ovarian tumors. Anticancer Research, 32(5), 2009–2014.PubMed Rank, A., Liebhardt, S., Zwirner, J., Burges, A., Nieuwland, R., & Toth, B. (2012). Circulating microparticles in patients with benign and malignant ovarian tumors. Anticancer Research, 32(5), 2009–2014.PubMed
258.
go back to reference Nieuwland, R., Berckmans, R. J., Rotteveel-Eijkman, R. C., Maquelin, K. N., Roozendaal, K. J., Jansen, P. G., et al. (1997). Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation, 96(10), 3534–3541.PubMedCrossRef Nieuwland, R., Berckmans, R. J., Rotteveel-Eijkman, R. C., Maquelin, K. N., Roozendaal, K. J., Jansen, P. G., et al. (1997). Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation, 96(10), 3534–3541.PubMedCrossRef
259.
go back to reference van Doormaal, F., Kleinjan, A., Berckmans, R. J., Mackman, N., Manly, D., Kamphuisen, P. W., et al. (2012). Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thrombosis and Haemostasis, 108(1), 160–165.PubMedCrossRef van Doormaal, F., Kleinjan, A., Berckmans, R. J., Mackman, N., Manly, D., Kamphuisen, P. W., et al. (2012). Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thrombosis and Haemostasis, 108(1), 160–165.PubMedCrossRef
260.
go back to reference Cokic, V. P., Mitrovic-Ajtic, O., Beleslin-Cokic, B. B., Markovic, D., Buac, M., Diklic, M., et al. (2015). Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediators of Inflammation, 2015, 453020.PubMedPubMedCentralCrossRef Cokic, V. P., Mitrovic-Ajtic, O., Beleslin-Cokic, B. B., Markovic, D., Buac, M., Diklic, M., et al. (2015). Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediators of Inflammation, 2015, 453020.PubMedPubMedCentralCrossRef
261.
go back to reference Matsuo, K., Hasegawa, K., Yoshino, K., Murakami, R., Hisamatsu, T., Stone, R. L., et al. (2015). Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. European Journal of Cancer, 51(14), 1978–1988.PubMedCrossRef Matsuo, K., Hasegawa, K., Yoshino, K., Murakami, R., Hisamatsu, T., Stone, R. L., et al. (2015). Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. European Journal of Cancer, 51(14), 1978–1988.PubMedCrossRef
Metadata
Title
Platelet “first responders” in wound response, cancer, and metastasis
Authors
David G. Menter
Scott Kopetz
Ernest Hawk
Anil K. Sood
Jonathan M. Loree
Paolo Gresele
Kenneth V. Honn
Publication date
01-06-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9682-0

Other articles of this Issue 2/2017

Cancer and Metastasis Reviews 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine