Skip to main content
Top
Published in: Malaria Journal 1/2024

Open Access 01-12-2024 | Plasmodium Vivax | Research

Genetic differentiation of Plasmodium vivax duffy binding protein in Ethiopia and comparison with other geographical isolates

Authors: Abnet Abebe, Cheikh Cambel Dieng, Sisay Dugassa, Deriba Abera, Tassew T. Shenkutie, Ashenafi Assefa, Didier Menard, Eugenia Lo, Lemu Golassa

Published in: Malaria Journal | Issue 1/2024

Login to get access

Abstract

Background

Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria.

Methods

A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7.

Results

The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe.

Conclusions

PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2023. Geneva: World Health Organization; 2023. WHO. World malaria report 2023. Geneva: World Health Organization; 2023.
2.
go back to reference Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, et al. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis. 2009;48:1704–12.PubMedCrossRef Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, et al. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis. 2009;48:1704–12.PubMedCrossRef
5.
go back to reference Ford A, Kepple D, Williams J, Kolesar G, Ford CT, Abebe A, et al. Gene polymorphisms among Plasmodium vivax geographical isolates and the potential as new biomarkers for gametocyte detection. Front Cell Infect Microbiol. 2022;11: 789417.PubMedPubMedCentralCrossRef Ford A, Kepple D, Williams J, Kolesar G, Ford CT, Abebe A, et al. Gene polymorphisms among Plasmodium vivax geographical isolates and the potential as new biomarkers for gametocyte detection. Front Cell Infect Microbiol. 2022;11: 789417.PubMedPubMedCentralCrossRef
6.
go back to reference Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ, Malenke JA, et al. African origin of the malaria parasite Plasmodium vivax. Nat Commun. 2014;5:3346.ADSPubMedCrossRef Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ, Malenke JA, et al. African origin of the malaria parasite Plasmodium vivax. Nat Commun. 2014;5:3346.ADSPubMedCrossRef
7.
go back to reference Ketema T, Bacha K, Getahun K, Del Portillo HA, Bassat Q. Plasmodium vivax epidemiology in Ethiopia 2000–2020: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15: e0009781.PubMedPubMedCentralCrossRef Ketema T, Bacha K, Getahun K, Del Portillo HA, Bassat Q. Plasmodium vivax epidemiology in Ethiopia 2000–2020: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15: e0009781.PubMedPubMedCentralCrossRef
8.
go back to reference Chaudhuri A, Polyakova J, Zbrzenat V, Williams K, Gulati S, Pogo AO. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci USA. 1993;90:10793–7.ADSPubMedPubMedCentralCrossRef Chaudhuri A, Polyakova J, Zbrzenat V, Williams K, Gulati S, Pogo AO. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci USA. 1993;90:10793–7.ADSPubMedPubMedCentralCrossRef
9.
go back to reference Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.PubMedCrossRef Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.PubMedCrossRef
10.
go back to reference Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, et al. The global distribution of the Duffy blood group. Nat Commun. 2011;2:266.ADSPubMedCrossRef Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, et al. The global distribution of the Duffy blood group. Nat Commun. 2011;2:266.ADSPubMedCrossRef
11.
go back to reference de Sousa TN, Kano FS, de Brito CFA, Carvalho LH. The duffy binding protein as a key target for a Plasmodium vivax vaccine: Lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2014;109:608–17.PubMedPubMedCentralCrossRef de Sousa TN, Kano FS, de Brito CFA, Carvalho LH. The duffy binding protein as a key target for a Plasmodium vivax vaccine: Lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2014;109:608–17.PubMedPubMedCentralCrossRef
12.
go back to reference Grimberg BT, Udomsangpetch R, Xainli J, McHenry A, Panichakul T, Sattabongkot J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 2007;4: e337.PubMedPubMedCentralCrossRef Grimberg BT, Udomsangpetch R, Xainli J, McHenry A, Panichakul T, Sattabongkot J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 2007;4: e337.PubMedPubMedCentralCrossRef
13.
go back to reference Hoque MR, Elfaki MMA, Ahmed MA, Lee SK, Muh F, Ali Albsheer MM, et al. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan. Malar J. 2018;17:297.PubMedPubMedCentralCrossRef Hoque MR, Elfaki MMA, Ahmed MA, Lee SK, Muh F, Ali Albsheer MM, et al. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan. Malar J. 2018;17:297.PubMedPubMedCentralCrossRef
14.
go back to reference Singh AP, Ozwara H, Kocken CH, Puri SK, Thomas AW, Chitnis C. Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion. Mol Microbiol. 2005;55:1925–34.PubMedCrossRef Singh AP, Ozwara H, Kocken CH, Puri SK, Thomas AW, Chitnis C. Targeted deletion of Plasmodium knowlesi Duffy binding protein confirms its role in junction formation during invasion. Mol Microbiol. 2005;55:1925–34.PubMedCrossRef
15.
go back to reference Ranjan A, Chitnis C. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc Natl Acad Sci USA. 1999;96:14067–72.ADSPubMedPubMedCentralCrossRef Ranjan A, Chitnis C. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc Natl Acad Sci USA. 1999;96:14067–72.ADSPubMedPubMedCentralCrossRef
16.
go back to reference Siddiqui AA, Xainli J, Schloegel J, Carias L, Ntumngia F, Shoham M, et al. Fine specificity of Plasmodium vivax Duffy Binding Protein binding engagement of the Duffy antigen on human erythrocytes. Infect Immun. 2012;80:2920–8.PubMedPubMedCentralCrossRef Siddiqui AA, Xainli J, Schloegel J, Carias L, Ntumngia F, Shoham M, et al. Fine specificity of Plasmodium vivax Duffy Binding Protein binding engagement of the Duffy antigen on human erythrocytes. Infect Immun. 2012;80:2920–8.PubMedPubMedCentralCrossRef
17.
go back to reference Chen E, Salinas ND, Ntumngia FB, Adams JH, Tolia NH. Structural analysis of the synthetic Duffy binding protein (DBP) antigen DEKnull relevant for Plasmodium vivax malaria vaccine design. PLoS Negl Trop Dis. 2015;9: e0003644.PubMedPubMedCentralCrossRef Chen E, Salinas ND, Ntumngia FB, Adams JH, Tolia NH. Structural analysis of the synthetic Duffy binding protein (DBP) antigen DEKnull relevant for Plasmodium vivax malaria vaccine design. PLoS Negl Trop Dis. 2015;9: e0003644.PubMedPubMedCentralCrossRef
18.
go back to reference Nateghpour M, Haghi AM, Naderi B, Sepehrizadeh Z. Genetic polymorphism of Plasmodium vivax Duffy binding protein in malarious areas in southeastern of Iran. J Parasit Dis. 2017;41:1132–8.PubMedPubMedCentralCrossRef Nateghpour M, Haghi AM, Naderi B, Sepehrizadeh Z. Genetic polymorphism of Plasmodium vivax Duffy binding protein in malarious areas in southeastern of Iran. J Parasit Dis. 2017;41:1132–8.PubMedPubMedCentralCrossRef
19.
go back to reference Cole-Tobian J, King C. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127:121–32.PubMedCrossRef Cole-Tobian J, King C. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127:121–32.PubMedCrossRef
20.
go back to reference Xainli J, Adams J, King C. The erythrocyte binding motif of Plasmodium vivax Duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol. 2000;111:253–60.PubMedCrossRef Xainli J, Adams J, King C. The erythrocyte binding motif of Plasmodium vivax Duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol. 2000;111:253–60.PubMedCrossRef
21.
go back to reference Stanisic DI, Javati S, Kiniboro B, Lin E, Jiang J, Singh B, et al. Naturally acquired immune responses to P. vivax Merozoite Surface Protein 3α and Merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in Young Papua New Guinean children. PLoS Negl Trop Dis. 2013;7: e2498.PubMedPubMedCentralCrossRef Stanisic DI, Javati S, Kiniboro B, Lin E, Jiang J, Singh B, et al. Naturally acquired immune responses to P. vivax Merozoite Surface Protein 3α and Merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in Young Papua New Guinean children. PLoS Negl Trop Dis. 2013;7: e2498.PubMedPubMedCentralCrossRef
22.
go back to reference Abebe A, Bouyssou I, Mabilotte S, Dugassa S, Assefa A, Juliano JJ, et al. Potential hidden Plasmodium vivax malaria reservoirs from low parasitemia Duffy-negative Ethiopians: molecular evidence. PLoS Negl Trop Dis. 2023;17: e0011326.PubMedPubMedCentralCrossRef Abebe A, Bouyssou I, Mabilotte S, Dugassa S, Assefa A, Juliano JJ, et al. Potential hidden Plasmodium vivax malaria reservoirs from low parasitemia Duffy-negative Ethiopians: molecular evidence. PLoS Negl Trop Dis. 2023;17: e0011326.PubMedPubMedCentralCrossRef
23.
go back to reference Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci USA. 2016;113:6271–6.ADSPubMedPubMedCentralCrossRef Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci USA. 2016;113:6271–6.ADSPubMedPubMedCentralCrossRef
24.
go back to reference Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMedPubMedCentralCrossRef Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMedPubMedCentralCrossRef
25.
go back to reference Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.PubMedPubMedCentralCrossRef Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.PubMedPubMedCentralCrossRef
26.
go back to reference Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.PubMedPubMedCentralCrossRef Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.PubMedPubMedCentralCrossRef
27.
go back to reference Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.PubMedCrossRef Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.PubMedCrossRef
28.
go back to reference Leigh JW, Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.CrossRef Leigh JW, Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.CrossRef
29.
go back to reference Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol. 2002;11:155–65.PubMedCrossRef Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol. 2002;11:155–65.PubMedCrossRef
30.
go back to reference Sousa TN, Tarazona-Santos EM, Wilson DJ, Madureira AP, Falco PR, Fontes CJ, et al. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations. Malar J. 2010;9:344.CrossRef Sousa TN, Tarazona-Santos EM, Wilson DJ, Madureira AP, Falco PR, Fontes CJ, et al. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations. Malar J. 2010;9:344.CrossRef
31.
go back to reference Babaeekho L, Zakeri S, Djadid N. Genetic mapping of the Duffy binding protein (DBP) ligand domain of Plasmodium vivax from unstable malaria region in the Middle East. Am J Trop Med Hyg. 2009;80:112–8.CrossRef Babaeekho L, Zakeri S, Djadid N. Genetic mapping of the Duffy binding protein (DBP) ligand domain of Plasmodium vivax from unstable malaria region in the Middle East. Am J Trop Med Hyg. 2009;80:112–8.CrossRef
32.
go back to reference González-Cerón L, Cerritos R, Corzo-Mancilla J, Santillán F. Diversity and evolutionary genetics of the three major Plasmodium vivax merozoite genes participating in reticulocyte invasion in southern Mexico. Parasit Vectors. 2015;8:651.PubMedPubMedCentralCrossRef González-Cerón L, Cerritos R, Corzo-Mancilla J, Santillán F. Diversity and evolutionary genetics of the three major Plasmodium vivax merozoite genes participating in reticulocyte invasion in southern Mexico. Parasit Vectors. 2015;8:651.PubMedPubMedCentralCrossRef
33.
go back to reference Cole-Tobian JL, Cortés A, Baisor M, Kastens W, Xainli J, Bockarie M, et al. Age-acquired immunity to a Plasmodium vivax invasion ligand, the duffy binding protein. J Infect Dis. 2002;186:531–9.PubMedCrossRef Cole-Tobian JL, Cortés A, Baisor M, Kastens W, Xainli J, Bockarie M, et al. Age-acquired immunity to a Plasmodium vivax invasion ligand, the duffy binding protein. J Infect Dis. 2002;186:531–9.PubMedCrossRef
34.
go back to reference Premaratne PH, Aravinda BR, Escalante AA, Udagama PV. Genetic diversity of Plasmodium vivax Duffy Binding Protein II (PvDBPII) under unstable transmission and low intensity malaria in Sri Lanka. Infect Genet Evol. 2011;11:1327–39.PubMedCrossRef Premaratne PH, Aravinda BR, Escalante AA, Udagama PV. Genetic diversity of Plasmodium vivax Duffy Binding Protein II (PvDBPII) under unstable transmission and low intensity malaria in Sri Lanka. Infect Genet Evol. 2011;11:1327–39.PubMedCrossRef
35.
go back to reference Tapaopong P, da Silva G, Chainarin S, Suansomjit C, Manopwisedjaroen K, Cui L, et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy binding protein and merozoite surface protein-1 in northwestern Thailand. Infect Genet Evol. 2023;113: 105467.PubMedPubMedCentralCrossRef Tapaopong P, da Silva G, Chainarin S, Suansomjit C, Manopwisedjaroen K, Cui L, et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy binding protein and merozoite surface protein-1 in northwestern Thailand. Infect Genet Evol. 2023;113: 105467.PubMedPubMedCentralCrossRef
36.
go back to reference Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar J. 2021;20:96.PubMedPubMedCentralCrossRef Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar J. 2021;20:96.PubMedPubMedCentralCrossRef
37.
go back to reference Shi TQ, Shen HM, Chen SB, Kassegne K, Cui YB, Xu B, et al. Genetic diversity and natural selection of Plasmodium vivax Duffy binding protein-II from China-Myanmar border of Yunnan Province, China. Front Microbiol. 2021;12: 758061.PubMedPubMedCentralCrossRef Shi TQ, Shen HM, Chen SB, Kassegne K, Cui YB, Xu B, et al. Genetic diversity and natural selection of Plasmodium vivax Duffy binding protein-II from China-Myanmar border of Yunnan Province, China. Front Microbiol. 2021;12: 758061.PubMedPubMedCentralCrossRef
38.
go back to reference Golassa L, Messele A, Oriero EC, Amambua-Ngwa A. Sequence analysis of Plasmodium vivax Duffy binding proteins reveals the presence of unique haplotypes and diversifying selection in Ethiopian isolates. Malar J. 2021;20:312.PubMedPubMedCentralCrossRef Golassa L, Messele A, Oriero EC, Amambua-Ngwa A. Sequence analysis of Plasmodium vivax Duffy binding proteins reveals the presence of unique haplotypes and diversifying selection in Ethiopian isolates. Malar J. 2021;20:312.PubMedPubMedCentralCrossRef
39.
go back to reference Núñez A, Ntumngia FB, Guerra Y, Adams JH, Sáenz FE. Genetic diversity and natural selection of Plasmodium vivax reticulocyte invasion genes in Ecuador. Malar J. 2023;22:225.PubMedPubMedCentralCrossRef Núñez A, Ntumngia FB, Guerra Y, Adams JH, Sáenz FE. Genetic diversity and natural selection of Plasmodium vivax reticulocyte invasion genes in Ecuador. Malar J. 2023;22:225.PubMedPubMedCentralCrossRef
40.
go back to reference Kano FS, Sanchez BAM, Sousa TN, Tang ML, Saliba J, Oliveira FM, et al. Plasmodium vivax Duffy binding protein: baseline antibody responses and parasite polymorphisms in a well-consolidated settlement of the Amazon Region. Trop Med Int Health. 2012;17:989–1000.PubMedCrossRef Kano FS, Sanchez BAM, Sousa TN, Tang ML, Saliba J, Oliveira FM, et al. Plasmodium vivax Duffy binding protein: baseline antibody responses and parasite polymorphisms in a well-consolidated settlement of the Amazon Region. Trop Med Int Health. 2012;17:989–1000.PubMedCrossRef
41.
go back to reference Hu Y, Wang L, Mbenda HGN, Soe MT, Yu C, Feng H, et al. Genetic diversity, natural selection and haplotype grouping of Plasmodium vivax Duffy-binding protein genes from eastern and western Myanmar borders. Parasit Vectors. 2019;12:542.CrossRef Hu Y, Wang L, Mbenda HGN, Soe MT, Yu C, Feng H, et al. Genetic diversity, natural selection and haplotype grouping of Plasmodium vivax Duffy-binding protein genes from eastern and western Myanmar borders. Parasit Vectors. 2019;12:542.CrossRef
42.
go back to reference Almeida-De-Oliveira NK, Lima-Cury L, De Abreu-Fernandes R, De Rosa LA, De Pina-Costa A, De Souza P-D-S, et al. Extensive genetic diversity of Plasmodium vivax dbp-II in Rio de Janeiro Atlantic Forest and Brazilian Amazon Basin: evidence of positive selection. Malar J. 2020;19:81.PubMedPubMedCentralCrossRef Almeida-De-Oliveira NK, Lima-Cury L, De Abreu-Fernandes R, De Rosa LA, De Pina-Costa A, De Souza P-D-S, et al. Extensive genetic diversity of Plasmodium vivax dbp-II in Rio de Janeiro Atlantic Forest and Brazilian Amazon Basin: evidence of positive selection. Malar J. 2020;19:81.PubMedPubMedCentralCrossRef
Metadata
Title
Genetic differentiation of Plasmodium vivax duffy binding protein in Ethiopia and comparison with other geographical isolates
Authors
Abnet Abebe
Cheikh Cambel Dieng
Sisay Dugassa
Deriba Abera
Tassew T. Shenkutie
Ashenafi Assefa
Didier Menard
Eugenia Lo
Lemu Golassa
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2024
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-024-04887-1

Other articles of this Issue 1/2024

Malaria Journal 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.