Skip to main content
Top
Published in: Malaria Journal 1/2024

Open Access 01-12-2024 | Malaria | Research

Statistical design and analysis of controlled human malaria infection trials

Authors: Xiaowen Tian, Holly E. Janes, James G. Kublin

Published in: Malaria Journal | Issue 1/2024

Login to get access

Abstract

Background

Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials.

Methods

Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies.

Results

In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test.

Conclusions

Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. World Malaria Report 2021. Geneva: World Health Organization; 2021.CrossRef World Health Organization. World Malaria Report 2021. Geneva: World Health Organization; 2021.CrossRef
2.
go back to reference RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef
3.
go back to reference Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS, S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol. 2015;10:1553–78.PubMedCrossRef Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS, S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol. 2015;10:1553–78.PubMedCrossRef
4.
go back to reference Zavala F. RTS, S: the first malaria vaccine. J Clin Invest. 2022;132: 156588.CrossRef Zavala F. RTS, S: the first malaria vaccine. J Clin Invest. 2022;132: 156588.CrossRef
5.
go back to reference Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397:1809–18.PubMedPubMedCentralCrossRef Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397:1809–18.PubMedPubMedCentralCrossRef
6.
go back to reference Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33:13–23.CrossRef Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33:13–23.CrossRef
7.
go back to reference Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018;24:43–56.PubMedPubMedCentralCrossRef Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018;24:43–56.PubMedPubMedCentralCrossRef
9.
go back to reference Cooper MM, Loiseau C, McCarthy JS, Doolan DL. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines. 2019;18:241–51.PubMedCrossRef Cooper MM, Loiseau C, McCarthy JS, Doolan DL. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines. 2019;18:241–51.PubMedCrossRef
10.
go back to reference Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis. 2002;185:1155–64.PubMedCrossRef Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis. 2002;185:1155–64.PubMedCrossRef
11.
go back to reference Roestenberg M, Bijker EM, Sim BKL, Billingsley PF, James ER, Bastiaens GJH, et al. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2013;88:5–13.PubMedPubMedCentralCrossRef Roestenberg M, Bijker EM, Sim BKL, Billingsley PF, James ER, Bastiaens GJH, et al. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2013;88:5–13.PubMedPubMedCentralCrossRef
12.
go back to reference Gomez-Perez GP, Legarda A, Munoz J, Sim BK, Ballester MR, Dobano C, et al. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates. Malar J. 2015;14:306.PubMedPubMedCentralCrossRef Gomez-Perez GP, Legarda A, Munoz J, Sim BK, Ballester MR, Dobano C, et al. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates. Malar J. 2015;14:306.PubMedPubMedCentralCrossRef
13.
go back to reference McCarthy JS, Sekuloski S, Griffin PM, Elliott S, Douglas N, Peatey C, et al. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE. 2011;6:1–8.CrossRef McCarthy JS, Sekuloski S, Griffin PM, Elliott S, Douglas N, Peatey C, et al. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE. 2011;6:1–8.CrossRef
14.
go back to reference Murphy SC, Duke ER, Shipman KJ, Jensen RL, Fong Y, Ferguson S, et al. A randomized trial evaluating the prophylactic activity of DSM265 against preerythrocytic Plasmodium falciparum infection during controlled human malarial infection by mosquito bites and direct venous inoculation. J Infect Dis. 2018;217:693–702.PubMedCrossRef Murphy SC, Duke ER, Shipman KJ, Jensen RL, Fong Y, Ferguson S, et al. A randomized trial evaluating the prophylactic activity of DSM265 against preerythrocytic Plasmodium falciparum infection during controlled human malarial infection by mosquito bites and direct venous inoculation. J Infect Dis. 2018;217:693–702.PubMedCrossRef
15.
go back to reference Bastiaens GJH, van Meer MPA, Scholzen A, Obiero JM, Vatanshenassan M, van Grinsven T, et al. Safety, immunogenicity, and protective efficacy of intradermal immunization with aseptic, purified, cryopreserved Plasmodium falciparum sporozoites in volunteers under chloroquine prophylaxis: a randomized controlled trial. Am J Trop Med Hyg. 2016;94:663–73.PubMedPubMedCentralCrossRef Bastiaens GJH, van Meer MPA, Scholzen A, Obiero JM, Vatanshenassan M, van Grinsven T, et al. Safety, immunogenicity, and protective efficacy of intradermal immunization with aseptic, purified, cryopreserved Plasmodium falciparum sporozoites in volunteers under chloroquine prophylaxis: a randomized controlled trial. Am J Trop Med Hyg. 2016;94:663–73.PubMedPubMedCentralCrossRef
16.
go back to reference Sulyok M, Ruckle T, Roth A, Murbeth RE, Chalon S, Kerr N, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis. 2017;17:636–44.PubMedPubMedCentralCrossRef Sulyok M, Ruckle T, Roth A, Murbeth RE, Chalon S, Kerr N, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis. 2017;17:636–44.PubMedPubMedCentralCrossRef
17.
go back to reference McCarthy JS, Lotharius J, Ruckle T, Chalon S, Phillips MA, Elliott S, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis. 2017;17:626–35.PubMedPubMedCentralCrossRef McCarthy JS, Lotharius J, Ruckle T, Chalon S, Phillips MA, Elliott S, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis. 2017;17:626–35.PubMedPubMedCentralCrossRef
18.
go back to reference Regoes RR, Longini IM Jr, Feinberg MB, Staprans SI. Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges. PLoS Med. 2005;2:798–807.CrossRef Regoes RR, Longini IM Jr, Feinberg MB, Staprans SI. Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges. PLoS Med. 2005;2:798–807.CrossRef
20.
go back to reference Sheehy SH, Spencer AJ, Douglas AD, Sim BKL, Longley RJ, Edwards NJ, et al. Optimising controlled human malaria infection studies using cryopreserved P. falciparum parasites administered by needle and syringe. PLoS ONE. 2013;8:1–9.CrossRef Sheehy SH, Spencer AJ, Douglas AD, Sim BKL, Longley RJ, Edwards NJ, et al. Optimising controlled human malaria infection studies using cryopreserved P. falciparum parasites administered by needle and syringe. PLoS ONE. 2013;8:1–9.CrossRef
21.
go back to reference Lyke KE, Laurens MB, Strauss K, Adams M, Billingsley PF, James E, et al. Optimizing intradermal administration of cryopreserved Plasmodium falciparum sporozoites in controlled human malaria infection. Am J Trop Med Hyg. 2015;93:1274–84.PubMedPubMedCentralCrossRef Lyke KE, Laurens MB, Strauss K, Adams M, Billingsley PF, James E, et al. Optimizing intradermal administration of cryopreserved Plasmodium falciparum sporozoites in controlled human malaria infection. Am J Trop Med Hyg. 2015;93:1274–84.PubMedPubMedCentralCrossRef
22.
go back to reference Murphy SC, Vaughan AM, Kublin JG, Fishbauger M, Seilie AM, Cruz KP, et al. A genetically engineered Plasmodium falciparum parasite vaccine provides protection from controlled human malaria infection. Sci Transl Med. 2022;14:eabn9709.PubMedPubMedCentralCrossRef Murphy SC, Vaughan AM, Kublin JG, Fishbauger M, Seilie AM, Cruz KP, et al. A genetically engineered Plasmodium falciparum parasite vaccine provides protection from controlled human malaria infection. Sci Transl Med. 2022;14:eabn9709.PubMedPubMedCentralCrossRef
23.
go back to reference Kublin JG, Murphy SC, Maenza J, Seilie AM, Jain JP, Berger D, et al. Safety, pharmacokinetics, and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. Clin Infect Dis. 2021;73:e2407–14.PubMedCrossRef Kublin JG, Murphy SC, Maenza J, Seilie AM, Jain JP, Berger D, et al. Safety, pharmacokinetics, and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. Clin Infect Dis. 2021;73:e2407–14.PubMedCrossRef
24.
go back to reference von Borstel A, Chevour P, Arsovski D, Krol JM, Howson LJ, Berry AA, et al. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci Transl Med. 2021;13:eabe7430.CrossRef von Borstel A, Chevour P, Arsovski D, Krol JM, Howson LJ, Berry AA, et al. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci Transl Med. 2021;13:eabe7430.CrossRef
25.
go back to reference Sama W, Dietz K, Smith T. Distribution of survival times of deliberate Plasmodium falciparum infections in tertiary syphilis patients. Trans R Soc Trop Med Hyg. 2006;100:811–6.PubMedCrossRef Sama W, Dietz K, Smith T. Distribution of survival times of deliberate Plasmodium falciparum infections in tertiary syphilis patients. Trans R Soc Trop Med Hyg. 2006;100:811–6.PubMedCrossRef
26.
go back to reference Coffeng LE, Hermsen CC, Sauerwein RW, de Vlas SJ. The power of malaria vaccine trials using controlled human malaria infection. PLoS Comput Biol. 2017;13: e1005255.PubMedPubMedCentralCrossRef Coffeng LE, Hermsen CC, Sauerwein RW, de Vlas SJ. The power of malaria vaccine trials using controlled human malaria infection. PLoS Comput Biol. 2017;13: e1005255.PubMedPubMedCentralCrossRef
27.
go back to reference Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naïve subjects at a new facility for sporozoite challenge. PLoS ONE. 2014;9:1–10.CrossRef Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naïve subjects at a new facility for sporozoite challenge. PLoS ONE. 2014;9:1–10.CrossRef
28.
go back to reference Healy SA, Murphy SC, Hume JCC, Shelton L, Kuntz S, Van Voorhis WC, et al. Chemoprophylaxis vaccination: phase I study to explore stage-specific immunity to Plasmodium falciparum in US adults. Clin Infect Dis. 2019;71:1481–90.PubMedCentralCrossRef Healy SA, Murphy SC, Hume JCC, Shelton L, Kuntz S, Van Voorhis WC, et al. Chemoprophylaxis vaccination: phase I study to explore stage-specific immunity to Plasmodium falciparum in US adults. Clin Infect Dis. 2019;71:1481–90.PubMedCentralCrossRef
29.
30.
go back to reference Halloran ME, Haber M, Longini J, Ira M. Interpretation and estimation of vaccine efficacy under heterogeneity. Am J Epidemiol. 1992;136:328–43.PubMedCrossRef Halloran ME, Haber M, Longini J, Ira M. Interpretation and estimation of vaccine efficacy under heterogeneity. Am J Epidemiol. 1992;136:328–43.PubMedCrossRef
31.
go back to reference Longini IM, Halloran ME. A frailty mixture model for estimating vaccine efficacy. J R Stat Soc Ser C Appl Stat. 1996;45:165–73. Longini IM, Halloran ME. A frailty mixture model for estimating vaccine efficacy. J R Stat Soc Ser C Appl Stat. 1996;45:165–73.
32.
go back to reference Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naïve subjects at a new facility for sporozoite challenge. PLoS ONE. 2014;9: e109654.PubMedPubMedCentralCrossRef Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naïve subjects at a new facility for sporozoite challenge. PLoS ONE. 2014;9: e109654.PubMedPubMedCentralCrossRef
33.
go back to reference Gilbert PB, Bosch RJ, Hudgens MG. Sensitivity analysis for the assessment of causal vaccine effects on viral load in HIV vaccine trials. Biometrics. 2003;59:531–41.PubMedCrossRef Gilbert PB, Bosch RJ, Hudgens MG. Sensitivity analysis for the assessment of causal vaccine effects on viral load in HIV vaccine trials. Biometrics. 2003;59:531–41.PubMedCrossRef
34.
go back to reference Mehrotra DV, Li X, Gilbert PB. A comparison of eight methods for the dual-endpoint evaluation of efficacy in a proof-of-concept HIV vaccine trial. Biometrics. 2006;62:893–900.PubMedCrossRef Mehrotra DV, Li X, Gilbert PB. A comparison of eight methods for the dual-endpoint evaluation of efficacy in a proof-of-concept HIV vaccine trial. Biometrics. 2006;62:893–900.PubMedCrossRef
35.
go back to reference Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet. 2002;360:610–7.PubMedCrossRef Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet. 2002;360:610–7.PubMedCrossRef
36.
go back to reference Roestenberg M, Hoogerwerf MA, Ferreira DM, Mordmüller B, Yazdanbakhsh M. Experimental infection of human volunteers. Lancet Infect Dis. 2018;18:e312–22.PubMedCrossRef Roestenberg M, Hoogerwerf MA, Ferreira DM, Mordmüller B, Yazdanbakhsh M. Experimental infection of human volunteers. Lancet Infect Dis. 2018;18:e312–22.PubMedCrossRef
37.
go back to reference Porter C, Thura N, Ranallo R, Riddle M. The Shigella human challenge model. Epidemiol Infect. 2013;141:223–32.PubMedCrossRef Porter C, Thura N, Ranallo R, Riddle M. The Shigella human challenge model. Epidemiol Infect. 2013;141:223–32.PubMedCrossRef
38.
go back to reference Minassian AM, Satti I, Poulton ID, Meyer J, Hill AVS, McShane H. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis. 2012;205:1035–42.PubMedPubMedCentralCrossRef Minassian AM, Satti I, Poulton ID, Meyer J, Hill AVS, McShane H. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis. 2012;205:1035–42.PubMedPubMedCentralCrossRef
39.
go back to reference Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. Clinical immunity in acute gastroenteritis caused by norwalk agent. N Engl J Med. 1977;297:86–9.PubMedCrossRef Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. Clinical immunity in acute gastroenteritis caused by norwalk agent. N Engl J Med. 1977;297:86–9.PubMedCrossRef
40.
go back to reference Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AKA, et al. Controlled human infection and rechallenge with Streptococcus pneumoniae reveals the protective efficacy of carriage in healthy adults. Am J Respir Crit Care Med. 2013;187:855–64.PubMedPubMedCentralCrossRef Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AKA, et al. Controlled human infection and rechallenge with Streptococcus pneumoniae reveals the protective efficacy of carriage in healthy adults. Am J Respir Crit Care Med. 2013;187:855–64.PubMedPubMedCentralCrossRef
41.
42.
go back to reference Diggle P, Liang KY, Zeger SL. Analysis of longitudinal data, Oxford statistical science series. New York: Oxford University Press; 1994. Diggle P, Liang KY, Zeger SL. Analysis of longitudinal data, Oxford statistical science series. New York: Oxford University Press; 1994.
43.
go back to reference Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef
44.
go back to reference Bible J, Albert PS, Simons-Morton BG, Liu D. Practical issues in using generalized estimating equations for inference on transitions in longitudinal data: What is being estimated? Stat Med. 2019;38:903–16.PubMedCrossRef Bible J, Albert PS, Simons-Morton BG, Liu D. Practical issues in using generalized estimating equations for inference on transitions in longitudinal data: What is being estimated? Stat Med. 2019;38:903–16.PubMedCrossRef
45.
go back to reference Heagerty PJ. Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics. 2002;58:342–51.PubMedCrossRef Heagerty PJ. Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics. 2002;58:342–51.PubMedCrossRef
Metadata
Title
Statistical design and analysis of controlled human malaria infection trials
Authors
Xiaowen Tian
Holly E. Janes
James G. Kublin
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2024
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-024-04959-2

Other articles of this Issue 1/2024

Malaria Journal 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine