Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2024

Open Access 01-12-2024 | Idiopathic Pulmonary Fibrosis | Research

Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study

Authors: Quou Kang, Jing Ren, Jinpeng Cong, Wencheng Yu

Published in: BMC Pulmonary Medicine | Issue 1/2024

Login to get access

Abstract

Background

The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis (IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis.

Methods

We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms (SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity analyses were visualized using forest, scatter, leave-one-out, and funnel plots.

Results

Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021–1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% CI = 0.796–1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 95% CI = 1.011–1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790–1.288, P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings.

Conclusion

Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients with T1D should undergo lung imaging for early detection of IPF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18–47.CrossRefPubMedPubMedCentral Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18–47.CrossRefPubMedPubMedCentral
2.
go back to reference Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22(1):197.CrossRefPubMedPubMedCentral Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22(1):197.CrossRefPubMedPubMedCentral
3.
go back to reference Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Reviews Disease Primers. 2017;3:17074.CrossRefPubMed Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Reviews Disease Primers. 2017;3:17074.CrossRefPubMed
4.
go back to reference Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.CrossRefPubMedPubMedCentral Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.CrossRefPubMedPubMedCentral
5.
go back to reference Caminati A, Madotto F, Conti S, Cesana G, Mantovani L, Harari S. The natural history of idiopathic pulmonary fibrosis in a large European population: the role of age, sex and comorbidities. Intern Emerg Med. 2021;16(7):1793–802.CrossRefPubMed Caminati A, Madotto F, Conti S, Cesana G, Mantovani L, Harari S. The natural history of idiopathic pulmonary fibrosis in a large European population: the role of age, sex and comorbidities. Intern Emerg Med. 2021;16(7):1793–802.CrossRefPubMed
6.
go back to reference ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and diagnosis of diabetes: standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–40.CrossRefPubMed ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and diagnosis of diabetes: standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–40.CrossRefPubMed
7.
go back to reference Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur J Prev Cardiol. 2019;26(2suppl):7–14.CrossRefPubMed Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur J Prev Cardiol. 2019;26(2suppl):7–14.CrossRefPubMed
8.
go back to reference 2. Classification and diagnosis of diabetes: standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–28. 2. Classification and diagnosis of diabetes: standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–28.
9.
go back to reference Li C, Xiao Y, Hu J, Hu Z, Yan J, Zhou Z, et al. Associations between Diabetes and Idiopathic Pulmonary Fibrosis: a study-level pooled analysis of 26 million people. J Clin Endocrinol Metab. 2021;106(11):3367–80.CrossRefPubMed Li C, Xiao Y, Hu J, Hu Z, Yan J, Zhou Z, et al. Associations between Diabetes and Idiopathic Pulmonary Fibrosis: a study-level pooled analysis of 26 million people. J Clin Endocrinol Metab. 2021;106(11):3367–80.CrossRefPubMed
10.
go back to reference Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical Res ed). 2018;362:k601.CrossRef Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical Res ed). 2018;362:k601.CrossRef
11.
go back to reference Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.CrossRefPubMedPubMedCentral Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.CrossRefPubMedPubMedCentral
12.
go back to reference Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ (Clinical Res ed). 2021;375:n2233. Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ (Clinical Res ed). 2021;375:n2233.
13.
go back to reference Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47(4):381–6.CrossRefPubMedPubMedCentral Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47(4):381–6.CrossRefPubMedPubMedCentral
14.
go back to reference Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941.ADSCrossRefPubMedPubMedCentral Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941.ADSCrossRefPubMedPubMedCentral
15.
16.
go back to reference Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.CrossRefPubMed Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.CrossRefPubMed
17.
go back to reference Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest. 2003;123(6):2007–11.CrossRefPubMed Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest. 2003;123(6):2007–11.CrossRefPubMed
18.
go back to reference García-Sancho Figueroa MC, Carrillo G, Pérez-Padilla R, Fernández-Plata MR, Buendía-Roldán I, Vargas MH, et al. Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med. 2010;104(2):305–9.CrossRefPubMed García-Sancho Figueroa MC, Carrillo G, Pérez-Padilla R, Fernández-Plata MR, Buendía-Roldán I, Vargas MH, et al. Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med. 2010;104(2):305–9.CrossRefPubMed
19.
go back to reference Gribbin J, Hubbard R, Smith C. Role of diabetes mellitus and gastro-oesophageal reflux in the aetiology of idiopathic pulmonary fibrosis. Respir Med. 2009;103(6):927–31.CrossRefPubMed Gribbin J, Hubbard R, Smith C. Role of diabetes mellitus and gastro-oesophageal reflux in the aetiology of idiopathic pulmonary fibrosis. Respir Med. 2009;103(6):927–31.CrossRefPubMed
20.
go back to reference Collard HR, Chen SY, Yeh WS, Li Q, Lee YC, Wang A, et al. Health care utilization and costs of idiopathic pulmonary fibrosis in U.S. Medicare beneficiaries aged 65 years and older. Annals Am Thorac Soc. 2015;12(7):981–7.CrossRef Collard HR, Chen SY, Yeh WS, Li Q, Lee YC, Wang A, et al. Health care utilization and costs of idiopathic pulmonary fibrosis in U.S. Medicare beneficiaries aged 65 years and older. Annals Am Thorac Soc. 2015;12(7):981–7.CrossRef
21.
go back to reference García-Sancho C, Buendía-Roldán I, Fernández-Plata MR, Navarro C, Pérez-Padilla R, Vargas MH, et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med. 2011;105(12):1902–7.CrossRefPubMed García-Sancho C, Buendía-Roldán I, Fernández-Plata MR, Navarro C, Pérez-Padilla R, Vargas MH, et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med. 2011;105(12):1902–7.CrossRefPubMed
22.
go back to reference George C, Ducatman AM, Conway BN. Increased risk of respiratory diseases in adults with type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2018;142:46–55.CrossRefPubMed George C, Ducatman AM, Conway BN. Increased risk of respiratory diseases in adults with type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2018;142:46–55.CrossRefPubMed
23.
go back to reference Jeganathan N, Miot C, Sathananthan A, Sathananthan M. The association of pulmonary fibrosis with diabetes mellitus. ERJ open Res. 2020;6(4). Jeganathan N, Miot C, Sathananthan A, Sathananthan M. The association of pulmonary fibrosis with diabetes mellitus. ERJ open Res. 2020;6(4).
24.
go back to reference Navaratnam V, Davis TME, Hubbard R, Davis WA. Incidence and predictors of idiopathic pulmonary fibrosis complicating type 2 diabetes: the Fremantle Diabetes Study Phase I. Intern Med J. 2021;51(2):276–9.CrossRefPubMed Navaratnam V, Davis TME, Hubbard R, Davis WA. Incidence and predictors of idiopathic pulmonary fibrosis complicating type 2 diabetes: the Fremantle Diabetes Study Phase I. Intern Med J. 2021;51(2):276–9.CrossRefPubMed
25.
go back to reference Shum AK, Alimohammadi M, Tan CL, Cheng MH, Metzger TC, Law CS, et al. BPIFB1 is a lung-specific autoantigen associated with interstitial lung disease. Sci Transl Med. 2013;5(206):206ra139.CrossRefPubMed Shum AK, Alimohammadi M, Tan CL, Cheng MH, Metzger TC, Law CS, et al. BPIFB1 is a lung-specific autoantigen associated with interstitial lung disease. Sci Transl Med. 2013;5(206):206ra139.CrossRefPubMed
26.
go back to reference Maher TM, Wells AU, Laurent GJ. Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J. 2007;30(5):835–9.CrossRefPubMed Maher TM, Wells AU, Laurent GJ. Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J. 2007;30(5):835–9.CrossRefPubMed
27.
28.
go back to reference Kalafatis D, Joshua V, Hansson M, Mathsson-Alm L, Hensvold A, Sköld M. Presence of anti-modified protein antibodies in idiopathic pulmonary fibrosis. Respirol (Carlton Vic). 2023;28(10):925–33.CrossRef Kalafatis D, Joshua V, Hansson M, Mathsson-Alm L, Hensvold A, Sköld M. Presence of anti-modified protein antibodies in idiopathic pulmonary fibrosis. Respirol (Carlton Vic). 2023;28(10):925–33.CrossRef
29.
go back to reference McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.ADSCrossRefPubMedPubMedCentral McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.ADSCrossRefPubMedPubMedCentral
30.
31.
go back to reference Buitinga M, Callebaut A, Marques Câmara Sodré F, Crèvecoeur I, Blahnik-Fagan G, Yang ML, et al. Inflammation-Induced Citrullinated glucose-regulated protein 78 elicits Immune responses in human type 1 diabetes. Diabetes. 2018;67(11):2337–48.CrossRefPubMedPubMedCentral Buitinga M, Callebaut A, Marques Câmara Sodré F, Crèvecoeur I, Blahnik-Fagan G, Yang ML, et al. Inflammation-Induced Citrullinated glucose-regulated protein 78 elicits Immune responses in human type 1 diabetes. Diabetes. 2018;67(11):2337–48.CrossRefPubMedPubMedCentral
32.
go back to reference James EA, Pietropaolo M, Mamula MJ. Immune Recognition of β-Cells: neoepitopes as key players in the loss of Tolerance. Diabetes. 2018;67(6):1035–42.CrossRefPubMedPubMedCentral James EA, Pietropaolo M, Mamula MJ. Immune Recognition of β-Cells: neoepitopes as key players in the loss of Tolerance. Diabetes. 2018;67(6):1035–42.CrossRefPubMedPubMedCentral
33.
go back to reference Babon JA, DeNicola ME, Blodgett DM, Crèvecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7.CrossRefPubMedPubMedCentral Babon JA, DeNicola ME, Blodgett DM, Crèvecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7.CrossRefPubMedPubMedCentral
34.
go back to reference Samara KD, Trachalaki A, Tsitoura E, Koutsopoulos AV, Lagoudaki ED, Lasithiotaki I, et al. Upregulation of citrullination pathway: from autoimmune to idiopathic lung fibrosis. Respir Res. 2017;18(1):218.CrossRefPubMedPubMedCentral Samara KD, Trachalaki A, Tsitoura E, Koutsopoulos AV, Lagoudaki ED, Lasithiotaki I, et al. Upregulation of citrullination pathway: from autoimmune to idiopathic lung fibrosis. Respir Res. 2017;18(1):218.CrossRefPubMedPubMedCentral
35.
go back to reference Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol. 2003;200(4):537–46.CrossRefPubMed Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol. 2003;200(4):537–46.CrossRefPubMed
36.
go back to reference Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, et al. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J. 2020;39(11):e103477.CrossRefPubMedPubMedCentral Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, et al. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J. 2020;39(11):e103477.CrossRefPubMedPubMedCentral
37.
go back to reference Kumar V, Nawroth PP. Is the association between diabetes mellitus and pulmonary fibrosis real? Nat Reviews Endocrinol. 2021;17(12):703–4.CrossRef Kumar V, Nawroth PP. Is the association between diabetes mellitus and pulmonary fibrosis real? Nat Reviews Endocrinol. 2021;17(12):703–4.CrossRef
38.
go back to reference Gamad N, Malik S, Suchal K, Vasisht S, Tomar A, Arava S, et al. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: pharmacological effects and molecular mechanisms. Volume 97. Biomedicine & pharmacotherapy = Biomedecine &; 2018. pp. 1544–53. pharmacotherapie. Gamad N, Malik S, Suchal K, Vasisht S, Tomar A, Arava S, et al. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: pharmacological effects and molecular mechanisms. Volume 97. Biomedicine & pharmacotherapy = Biomedecine &; 2018. pp. 1544–53. pharmacotherapie.
39.
go back to reference Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121–7.CrossRefPubMedPubMedCentral Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121–7.CrossRefPubMedPubMedCentral
40.
41.
go back to reference Yu W, Mi L, Long T. Efficacies of rosiglitazone and retinoin on bleomycin-induced pulmonary fibrosis in rats. Experimental Therapeutic Med. 2017;14(1):609–15.CrossRef Yu W, Mi L, Long T. Efficacies of rosiglitazone and retinoin on bleomycin-induced pulmonary fibrosis in rats. Experimental Therapeutic Med. 2017;14(1):609–15.CrossRef
42.
go back to reference El-Horany HE, Atef MM, Abdel Ghafar MT, Fouda MH, Nasef NA, Hegab II et al. Empagliflozin ameliorates Bleomycin-Induced Pulmonary fibrosis in rats by modulating Sesn2/AMPK/Nrf2 signaling and targeting ferroptosis and autophagy. Int J Mol Sci. 2023;24(11). El-Horany HE, Atef MM, Abdel Ghafar MT, Fouda MH, Nasef NA, Hegab II et al. Empagliflozin ameliorates Bleomycin-Induced Pulmonary fibrosis in rats by modulating Sesn2/AMPK/Nrf2 signaling and targeting ferroptosis and autophagy. Int J Mol Sci. 2023;24(11).
Metadata
Title
Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study
Authors
Quou Kang
Jing Ren
Jinpeng Cong
Wencheng Yu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2024
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-024-02961-7

Other articles of this Issue 1/2024

BMC Pulmonary Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.