Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2019

Open Access 01-12-2019 | Hypertension | Research article

Exhaled nitric oxide is not a biomarker for idiopathic pulmonary arterial hypertension or for treatment efficacy

Authors: Majid Malekmohammad, Gert Folkerts, Babak Sharif Kashani, Parisa Adimi Naghan, Zahra Habibi Dastenae, Batoul Khoundabi, Johan Garssen, Esmaeil Mortaz, Ian M. Adcock

Published in: BMC Pulmonary Medicine | Issue 1/2019

Login to get access

Abstract

Background

Idiopathic pulmonary arterial hypertension (IPAH) is a fatal illness. Despite many improvements in the treatment of these patients, there is no unique prognostic variable available to track these patients. The aim of this study was to evaluate the association between fractional exhaled nitric oxide (FeNO) levels, as a noninvasive biomarker, with disease severity and treatment outcome.

Methods

Thirty-six patients (29 women and 7 men, mean age 38.4 ± 11.3 years) with IPAH referred to the outpatient’s clinic of Masih Daneshvari Hospital, Tehran, Iran, were enrolled into this pilot observational study. Echocardiography, six-minute walking test (6MWT), FeNO, brain natriuretic peptide (BNP) levels and the functional class of patients was assessed before patients started treatment. Assessments were repeated after three months. 30 healthy non-IPAH subjects were recruited as control subjects.

Results

There was no significant difference in FeNO levels at baseline between patients with IPAH and subjects in the control group. There was also no significant increase in FeNO levels during the three months of treatment and levels did not correlate with other disease measures. In contrast, other markers of disease severity were correlated with treatment effect over the three months.

Conclusion

FeNO levels are a poor non-invasive measure of IPAH severity and of treatment response in patients in this pilot study.
Literature
1.
go back to reference Hoper MM, Bogard HJ, Condiffer R, Frantz R. Definition and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:42–50.CrossRef Hoper MM, Bogard HJ, Condiffer R, Frantz R. Definition and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:42–50.CrossRef
2.
go back to reference Benza RL, Miller DP, Gomberg-Maitland M, Frantz PR. Predicting survival in pulmonary arterial hypertension: insights from the registry to Evalute early and Long-term pulmonary arterial hypertension. Chest. 2011;39:1299–309. Benza RL, Miller DP, Gomberg-Maitland M, Frantz PR. Predicting survival in pulmonary arterial hypertension: insights from the registry to Evalute early and Long-term pulmonary arterial hypertension. Chest. 2011;39:1299–309.
3.
go back to reference Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J. 2007;30:104–9.CrossRef Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J. 2007;30:104–9.CrossRef
4.
go back to reference Humbert M, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173(9):1023–30.CrossRef Humbert M, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173(9):1023–30.CrossRef
5.
go back to reference Mclaughlin VV. Survival in patient with pulmonary arterial hypertension treated with first-line bosentan. Eur J Clin Investig. 2006;36(3):10–50.CrossRef Mclaughlin VV. Survival in patient with pulmonary arterial hypertension treated with first-line bosentan. Eur J Clin Investig. 2006;36(3):10–50.CrossRef
6.
go back to reference Bonderman D, Wexbery P, Martischnig AM, Heinzl H. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J. 2011;37:1096–103.CrossRef Bonderman D, Wexbery P, Martischnig AM, Heinzl H. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J. 2011;37:1096–103.CrossRef
7.
go back to reference Milne EN. Forgotten gold in diagnosing pulmonary hypertension: the plain chest radiogragh. Radioghraghics. 2012;32(4):1085–7.CrossRef Milne EN. Forgotten gold in diagnosing pulmonary hypertension: the plain chest radiogragh. Radioghraghics. 2012;32(4):1085–7.CrossRef
8.
go back to reference Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Am collcardiol. 2003;41:1028–35.CrossRef Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Am collcardiol. 2003;41:1028–35.CrossRef
9.
go back to reference Hoeper MM, Pletz MW, Golpn H, Welte T. Prognostic value of blood gas analysis in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2007;29:944–50.CrossRef Hoeper MM, Pletz MW, Golpn H, Welte T. Prognostic value of blood gas analysis in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2007;29:944–50.CrossRef
10.
go back to reference Long PM, Badano LP, Mor-Avi V, Ailalo J. Recommendation for cardiac chamber quantification by echochardiography in adult: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovascular Imaging. 2015;16:233–41.CrossRef Long PM, Badano LP, Mor-Avi V, Ailalo J. Recommendation for cardiac chamber quantification by echochardiography in adult: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovascular Imaging. 2015;16:233–41.CrossRef
11.
go back to reference Shen Y, Wan C, Tian P, Wu Y, Chen L. CT-base pulmonary artery measurement in the detection of pulmonary hypertension: meta-analysis and systematic review. Medicine (Baltimore). 2014; 93(27): e256: 1–9. Shen Y, Wan C, Tian P, Wu Y, Chen L. CT-base pulmonary artery measurement in the detection of pulmonary hypertension: meta-analysis and systematic review. Medicine (Baltimore). 2014; 93(27): e256: 1–9.
12.
go back to reference Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J. 2010 May;35(5):1079–87.CrossRef Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J. 2010 May;35(5):1079–87.CrossRef
13.
go back to reference Raymonad RJ, Hinderliter AL, Willis PW, Ralph D, Hill NS. Echocardiographic predictors of advers outcome in primary pulmonary hypertension. J Am Coll Cardiol. 2003;39:1214–9.CrossRef Raymonad RJ, Hinderliter AL, Willis PW, Ralph D, Hill NS. Echocardiographic predictors of advers outcome in primary pulmonary hypertension. J Am Coll Cardiol. 2003;39:1214–9.CrossRef
14.
go back to reference Peacock AJ, Crawley S, Mclure L, Blyth K. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging. 2014;7(1):107–14.CrossRef Peacock AJ, Crawley S, Mclure L, Blyth K. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging. 2014;7(1):107–14.CrossRef
15.
go back to reference Gabler NB, French B, Strom BL, Halpern SD. Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation. 2012;126:349–56.CrossRef Gabler NB, French B, Strom BL, Halpern SD. Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation. 2012;126:349–56.CrossRef
16.
go back to reference Leuchte HH, El Nounou M, Tuerpe JC, Hartmann B, Baumgartner RA, Vogeser M, Muehling O, Behr J. N-terminal pro-brain natriuretic peptide and renal insufficiency as predictors of mortality in pulmonary hypertension. Chest. 2007;131:402–9.CrossRef Leuchte HH, El Nounou M, Tuerpe JC, Hartmann B, Baumgartner RA, Vogeser M, Muehling O, Behr J. N-terminal pro-brain natriuretic peptide and renal insufficiency as predictors of mortality in pulmonary hypertension. Chest. 2007;131:402–9.CrossRef
17.
go back to reference Warwick G, Thomas PS, Yates DH. Biomarkers in pulmonary hypertension. Eur Respir J. 2008;32:503–12.CrossRef Warwick G, Thomas PS, Yates DH. Biomarkers in pulmonary hypertension. Eur Respir J. 2008;32:503–12.CrossRef
18.
go back to reference Antman EM. Decision making with cardiac troponin tests. N Engl J Med. 2002;346:2079–82.CrossRef Antman EM. Decision making with cardiac troponin tests. N Engl J Med. 2002;346:2079–82.CrossRef
19.
go back to reference Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF. Hyperuricemia in severe pulmonary hypertension. Chest. 2000 Jan;117(1):19–24.CrossRef Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF. Hyperuricemia in severe pulmonary hypertension. Chest. 2000 Jan;117(1):19–24.CrossRef
20.
go back to reference Shah R. Endothelin in health and disease. Eur J Intern Med. 2007;18:272–82.CrossRef Shah R. Endothelin in health and disease. Eur J Intern Med. 2007;18:272–82.CrossRef
21.
go back to reference Machado RF, Londhe Nerkar MV, Dweik RA, Hammel J, Janocha A, Pyle J, Laskowski D, Jennings C, Arroliga AC, Erzurum SC. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic Biol Med. 2004;37(7):1010–7.CrossRef Machado RF, Londhe Nerkar MV, Dweik RA, Hammel J, Janocha A, Pyle J, Laskowski D, Jennings C, Arroliga AC, Erzurum SC. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic Biol Med. 2004;37(7):1010–7.CrossRef
22.
go back to reference Girgis RE, Champion HC, Diett GB, Johns RA. Decreased exhaled nitric oxide in pulmonary aterial hypertension: response to bosenan therapy. Am J Respir Crit Car Med. 2005;172:352–7.CrossRef Girgis RE, Champion HC, Diett GB, Johns RA. Decreased exhaled nitric oxide in pulmonary aterial hypertension: response to bosenan therapy. Am J Respir Crit Car Med. 2005;172:352–7.CrossRef
23.
go back to reference Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J. 2017;49:160096526.CrossRef Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J. 2017;49:160096526.CrossRef
24.
go back to reference Yang X, Mardekian J, Sanders KN, Mychaskiw MA, Thomas J 3rd. Prevalence of pulmonary arterial hypertension in patients with connective tissue diseases: a systematic review of the literature. Clin Rheumatol. 2013;32(10):1519–31.CrossRef Yang X, Mardekian J, Sanders KN, Mychaskiw MA, Thomas J 3rd. Prevalence of pulmonary arterial hypertension in patients with connective tissue diseases: a systematic review of the literature. Clin Rheumatol. 2013;32(10):1519–31.CrossRef
25.
go back to reference Low A, George S, Howard L, Bell N, Millar A, Tulloh RMR. Lung function, inflammation, and Endothelin-1 in congenital heart disease–associated pulmonary arterial hypertension. J Am Heart Assoc. 2018;7(4):e007249.CrossRef Low A, George S, Howard L, Bell N, Millar A, Tulloh RMR. Lung function, inflammation, and Endothelin-1 in congenital heart disease–associated pulmonary arterial hypertension. J Am Heart Assoc. 2018;7(4):e007249.CrossRef
26.
go back to reference Malinovschi A, Henrohn D, Eriksson A, Lundberg JO, Alving K, Wikström G. Increased plasma and salivary nitrite and decreased bronchial contribution to exhaled NO in pulmonary arterial hypertension. Eur J Clin Investig. 2011 Aug;41(8):889–97.CrossRef Malinovschi A, Henrohn D, Eriksson A, Lundberg JO, Alving K, Wikström G. Increased plasma and salivary nitrite and decreased bronchial contribution to exhaled NO in pulmonary arterial hypertension. Eur J Clin Investig. 2011 Aug;41(8):889–97.CrossRef
27.
go back to reference Ozkan M, Dweik RA, Laskowski D, Arroliga AC, Erzurum SC. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung. 2001;179:233–43.CrossRef Ozkan M, Dweik RA, Laskowski D, Arroliga AC, Erzurum SC. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung. 2001;179:233–43.CrossRef
28.
go back to reference Riley MS, Pórszász J, Miranda J, Engelen MP, Brundage B, Wasserman K. Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis. Chest. 1997;111:44–50.CrossRef Riley MS, Pórszász J, Miranda J, Engelen MP, Brundage B, Wasserman K. Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis. Chest. 1997;111:44–50.CrossRef
29.
go back to reference Olivieri M, Talamini G, Corradi M, Perbellini L, Mutti A, Tantucci C, Malerba M. Reference values for exhaled nitric oxide (reveno) study. Respir Res. 2006 Jun 30;7:94.CrossRef Olivieri M, Talamini G, Corradi M, Perbellini L, Mutti A, Tantucci C, Malerba M. Reference values for exhaled nitric oxide (reveno) study. Respir Res. 2006 Jun 30;7:94.CrossRef
30.
go back to reference Schuster A, Thakur A, Wang Z, Borowski AG, Thomas JD, Tang WH. Increased exhaled nitric oxide levels after exercise in patients with chronic systolic heart failure with pulmonary venous hypertension. J Card Fail. 2012;18(10):799–803.CrossRef Schuster A, Thakur A, Wang Z, Borowski AG, Thomas JD, Tang WH. Increased exhaled nitric oxide levels after exercise in patients with chronic systolic heart failure with pulmonary venous hypertension. J Card Fail. 2012;18(10):799–803.CrossRef
31.
go back to reference Garg L, Akbar G, Sahil A, Agarwal M, Khaddour L, Handa R, et al. Drug-induced pulmonary arterial hypertension: a review. Heart Fail Rev. 2017;22(3):289–97.CrossRef Garg L, Akbar G, Sahil A, Agarwal M, Khaddour L, Handa R, et al. Drug-induced pulmonary arterial hypertension: a review. Heart Fail Rev. 2017;22(3):289–97.CrossRef
32.
go back to reference Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL. Taylor DR; American Thoracic Society Committee on interpretation of exhaled nitric oxide levels (FENO) for clinical applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011 Sep 1;184(5):602–15.CrossRef Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL. Taylor DR; American Thoracic Society Committee on interpretation of exhaled nitric oxide levels (FENO) for clinical applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011 Sep 1;184(5):602–15.CrossRef
33.
go back to reference Olin AC, Aldenbratt A, Ekman A, Ljungkvist G, Jungersten L, Alving K, Torén K. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med. 2001;95(2):153–8.CrossRef Olin AC, Aldenbratt A, Ekman A, Ljungkvist G, Jungersten L, Alving K, Torén K. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med. 2001;95(2):153–8.CrossRef
34.
go back to reference Bruce C, Yates DH, Thomas PS. Caffeine decreases exhaled nitric oxide. Thorax. 2002;57:361–3.CrossRef Bruce C, Yates DH, Thomas PS. Caffeine decreases exhaled nitric oxide. Thorax. 2002;57:361–3.CrossRef
35.
go back to reference Ruiter G, Lanser IJ. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011;37:1386–91.CrossRef Ruiter G, Lanser IJ. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011;37:1386–91.CrossRef
36.
go back to reference Pisi R, Aiello M, Tzani P, Marangio E, Olivieri D, Chetta A. Measurement of fractional exhaled nitric oxide by a new portable device: comparison with the standard technique. J Asthma. 2010;47:805–9.CrossRef Pisi R, Aiello M, Tzani P, Marangio E, Olivieri D, Chetta A. Measurement of fractional exhaled nitric oxide by a new portable device: comparison with the standard technique. J Asthma. 2010;47:805–9.CrossRef
37.
go back to reference American Thoracic Society; European Respiratory Society. ATS/ ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171:912–30.CrossRef American Thoracic Society; European Respiratory Society. ATS/ ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171:912–30.CrossRef
38.
go back to reference Kapande KM, McConaghy LA, Douglas I, McKenna S, Hughes JL, McCance DR, et al. Comparative repeatability of two handheld fractional exhaled nitric oxide monitors. Pediatr Pulmonol. 2012;47:546–50.CrossRef Kapande KM, McConaghy LA, Douglas I, McKenna S, Hughes JL, McCance DR, et al. Comparative repeatability of two handheld fractional exhaled nitric oxide monitors. Pediatr Pulmonol. 2012;47:546–50.CrossRef
Metadata
Title
Exhaled nitric oxide is not a biomarker for idiopathic pulmonary arterial hypertension or for treatment efficacy
Authors
Majid Malekmohammad
Gert Folkerts
Babak Sharif Kashani
Parisa Adimi Naghan
Zahra Habibi Dastenae
Batoul Khoundabi
Johan Garssen
Esmaeil Mortaz
Ian M. Adcock
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2019
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0954-z

Other articles of this Issue 1/2019

BMC Pulmonary Medicine 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.