Skip to main content
Top
Published in: Lasers in Medical Science 8/2019

01-10-2019 | Diode Laser | Original Article

Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex

Authors: Hisham El Nawam, Rania El Backly, Amira Zaky, Amr Abdallah

Published in: Lasers in Medical Science | Issue 8/2019

Login to get access

Abstract

To investigate the effects of gallium-aluminum-arsenide (GaAlAs) diode laser low-level laser therapy (LLLT) on angiogenesis and dentinogenesis of the dentin-pulp complex in a human tooth slice-based in vitro model. Forty tooth slices were prepared from 31 human third molars. Slices were cultured at 37 °C, 5% CO2, and 95% humidity and randomly assigned to one of the following groups: group I: no laser treatment, group II: 660-nm diode laser; energy density = 1 J/cm2, group III: 660-nm diode laser; energy density = 3 J/cm2, group IV: 810-nm diode laser; energy density = 1 J/cm2 and group V: 810-nm diode laser; energy density = 3 J/cm2. LLLT was applied on the third and fifth days of culture. After 7 days, tissues were retrieved for real-time RT-PCR analysis to investigate the expression of VEGF, VEGFR2, DSPP, DMP-1, and BSP in respect to controls. Lower energy density (1 J/cm2) with the 660 nm wavelength showed a statistically significant up-regulation of both angiogenic (VEGF: 15.3-folds and VEGFR2: 3.8-folds) and odontogenic genes (DSPP: 6.1-folds, DMP-1: 3-fold, and BSP: 6.7-folds). While the higher energy density (3 J/cm2) with the 810 nm wavelength resulted in statistically significant up-regulation of odontogenic genes (DSPP: 2.5-folds, DMP-1: 17.7-folds, and BSP: 7.1-folds), however, the angiogenic genes had variable results where VEGF was up-regulated while VEGFR2 was down-regulated. Low-level laser therapy could be a useful tool to promote angiogenesis and dentinogenesis of the dentin-pulp complex when parameters are optimized.
Appendix
Available only for authorised users
Literature
1.
go back to reference Raedel M, Hartmann A, Bohm S, Walter MH (2015) Three-year outcomes of root canal treatment: mining an insurance database. J Dent 43(4):412–417CrossRefPubMed Raedel M, Hartmann A, Bohm S, Walter MH (2015) Three-year outcomes of root canal treatment: mining an insurance database. J Dent 43(4):412–417CrossRefPubMed
2.
go back to reference PVc S, PCsF SF, Queiroz EC, Arajo TC, Campos RE, Arajo CA, Soares CJ (2008) Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont 17(2):114–119CrossRef PVc S, PCsF SF, Queiroz EC, Arajo TC, Campos RE, Arajo CA, Soares CJ (2008) Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont 17(2):114–119CrossRef
3.
go back to reference Solomon RV, Faizuddin U, Karunakar P, Deepthi Sarvani G, Sree Soumya S (2015) coronal pulpotomy technique analysis as an alternative to pulpectomy for preserving the tooth vitality, in the context of tissue regeneration: a correlated clinical study across 4 adult permanent molars. Case Rep Dent 2015 Solomon RV, Faizuddin U, Karunakar P, Deepthi Sarvani G, Sree Soumya S (2015) coronal pulpotomy technique analysis as an alternative to pulpectomy for preserving the tooth vitality, in the context of tissue regeneration: a correlated clinical study across 4 adult permanent molars. Case Rep Dent 2015
4.
go back to reference Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22(3):241–247CrossRefPubMed Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22(3):241–247CrossRefPubMed
5.
go back to reference Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340CrossRefPubMed Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340CrossRefPubMed
6.
go back to reference da Silva JP, da Silva MA, APF A, IrL J, Matos AP (2010) Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg 28(1):17–21CrossRefPubMed da Silva JP, da Silva MA, APF A, IrL J, Matos AP (2010) Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg 28(1):17–21CrossRefPubMed
7.
go back to reference AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249CrossRefPubMed AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249CrossRefPubMed
8.
go back to reference Huang Y-Y, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):dose–response 09-027CrossRef Huang Y-Y, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):dose–response 09-027CrossRef
9.
go back to reference Pinheiro ALB, Nascimento SC, de Barros Vieira AL, Brugnera A Jr, Zanin FA, Rolim Az B, Soriano da Silva P (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20(1):23–26CrossRefPubMed Pinheiro ALB, Nascimento SC, de Barros Vieira AL, Brugnera A Jr, Zanin FA, Rolim Az B, Soriano da Silva P (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20(1):23–26CrossRefPubMed
10.
go back to reference Caruso-Davis MK, Guillot TS, Podichetty VK, Mashtalir N, Dhurandhar NV, Dubuisson O, Yu Y, Greenway FL (2011) Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg 21(6):722–729CrossRefPubMedPubMedCentral Caruso-Davis MK, Guillot TS, Podichetty VK, Mashtalir N, Dhurandhar NV, Dubuisson O, Yu Y, Greenway FL (2011) Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg 21(6):722–729CrossRefPubMedPubMedCentral
11.
go back to reference Elnaghy AM, Murray PE, Bradley P, Marchesan M, Namerow KN, Badr AE, El-Hawary YM, Badria FA (2013) Effects of low intensity laser irradiation phototherapy on dental pulp constructs. World J Stomatol 2(1):12–17CrossRef Elnaghy AM, Murray PE, Bradley P, Marchesan M, Namerow KN, Badr AE, El-Hawary YM, Badria FA (2013) Effects of low intensity laser irradiation phototherapy on dental pulp constructs. World J Stomatol 2(1):12–17CrossRef
12.
go back to reference Zaccara IM, Ginani F, Mota-Filho HG, Henriques ACG, CAGo B (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264CrossRefPubMed Zaccara IM, Ginani F, Mota-Filho HG, Henriques ACG, CAGo B (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264CrossRefPubMed
13.
go back to reference Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG (2018) Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 33(1):95–102CrossRefPubMed Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG (2018) Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 33(1):95–102CrossRefPubMed
14.
go back to reference Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts†an in vitro study. Lasers Med Sci 27(2):423–430CrossRefPubMed Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts†an in vitro study. Lasers Med Sci 27(2):423–430CrossRefPubMed
15.
go back to reference Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M, Theodorou G, Papadopoulou L, Kantiranis N, Paraskevopoulos K (2017) Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 32(1):201–210CrossRefPubMed Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M, Theodorou G, Papadopoulou L, Kantiranis N, Paraskevopoulos K (2017) Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 32(1):201–210CrossRefPubMed
16.
go back to reference Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J, Chen AC-H, Padwa BL (2014) Photoactivation of endogenous latent transforming growth factor β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6(238):238ra269–238ra269CrossRef Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J, Chen AC-H, Padwa BL (2014) Photoactivation of endogenous latent transforming growth factor β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6(238):238ra269–238ra269CrossRef
17.
go back to reference de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Carvalho PTC, Antunes DE, Bocalini DS, PJF T, Silva JA (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 30(1):217–223CrossRefPubMed de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Carvalho PTC, Antunes DE, Bocalini DS, PJF T, Silva JA (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 30(1):217–223CrossRefPubMed
18.
go back to reference Ginani F, Soares DM, CAGo B (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194CrossRefPubMed Ginani F, Soares DM, CAGo B (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194CrossRefPubMed
19.
go back to reference Marques MM, Diniz IMA, de Cara SPHM, Pedroni ACF, Abe GL, D'Almeida-Couto RS, Lima PLV, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34(11):500–508CrossRefPubMed Marques MM, Diniz IMA, de Cara SPHM, Pedroni ACF, Abe GL, D'Almeida-Couto RS, Lima PLV, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34(11):500–508CrossRefPubMed
20.
go back to reference Sloan AJ, Shelton RM, Hann AC, Moxham BJ, Smith AJ (1998) An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Arch Oral Biol 43(6):421–430CrossRefPubMed Sloan AJ, Shelton RM, Hann AC, Moxham BJ, Smith AJ (1998) An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Arch Oral Biol 43(6):421–430CrossRefPubMed
21.
go back to reference Murray PE, Lumley PJ, Ross HF, Smith AJ (2000) Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomater 21(16):1711–1721CrossRef Murray PE, Lumley PJ, Ross HF, Smith AJ (2000) Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomater 21(16):1711–1721CrossRef
22.
go back to reference Gonҫalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE (2007) Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814CrossRef Gonҫalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE (2007) Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814CrossRef
23.
go back to reference Ateş GB, Can AA, Gülsoy M (2017) Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32(3):591–599CrossRef Ateş GB, Can AA, Gülsoy M (2017) Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32(3):591–599CrossRef
24.
go back to reference Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. AnalytBiochem 162(1):156–159 Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. AnalytBiochem 162(1):156–159
25.
go back to reference Kim SG (2017) Biological molecules for the regeneration of the pulp-dentin complex. Dent Clin N Am 61(1):127–141CrossRefPubMed Kim SG (2017) Biological molecules for the regeneration of the pulp-dentin complex. Dent Clin N Am 61(1):127–141CrossRefPubMed
26.
go back to reference Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64(2):240–246CrossRefPubMed Schindl A, Heinze G, Schindl M, Pernerstorfer-Schon H, Schindl L (2002) Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res 64(2):240–246CrossRefPubMed
27.
go back to reference Boskey AL (1991) The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 2(3):369–387CrossRefPubMed Boskey AL (1991) The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 2(3):369–387CrossRefPubMed
29.
go back to reference Almushayt A, Narayanan K, Zaki AE, George A (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13(7):611–620CrossRefPubMed Almushayt A, Narayanan K, Zaki AE, George A (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13(7):611–620CrossRefPubMed
30.
go back to reference Be'gue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin, tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sc 106:963–970CrossRef Be'gue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin, tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sc 106:963–970CrossRef
31.
go back to reference Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB (2009) Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 28(4):221–229CrossRefPubMedPubMedCentral Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB (2009) Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 28(4):221–229CrossRefPubMedPubMedCentral
32.
go back to reference Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH (2008) Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 39(2):153–160CrossRefPubMed Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH (2008) Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 39(2):153–160CrossRefPubMed
33.
go back to reference Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34(3):185–194CrossRefPubMed Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34(3):185–194CrossRefPubMed
34.
go back to reference Wu J-Y, Chen C-H, Yeh L-Y, Yeh M-L, Ting C-C, Wang Y-H (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5(2):85–91CrossRefPubMedPubMedCentral Wu J-Y, Chen C-H, Yeh L-Y, Yeh M-L, Ting C-C, Wang Y-H (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5(2):85–91CrossRefPubMedPubMedCentral
35.
go back to reference CAGo B, Ginani F, Soares DM, Henriques CG, Freitas RA (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 12(1):75–81CrossRef CAGo B, Ginani F, Soares DM, Henriques CG, Freitas RA (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 12(1):75–81CrossRef
36.
go back to reference Godoy BM, Arana-Chavez VE, Nunez SC, MSe R (2007) Effects of low-power red laser on dentine-pulp interface after cavity preparation. An ultrastructural study. Arch Oral Biol 52(9):899–903CrossRefPubMed Godoy BM, Arana-Chavez VE, Nunez SC, MSe R (2007) Effects of low-power red laser on dentine-pulp interface after cavity preparation. An ultrastructural study. Arch Oral Biol 52(9):899–903CrossRefPubMed
37.
go back to reference Marques NCT, Neto NL, de Oliveira Rodini C, Fernandes AP, Sakai VT, Machado MAAM, Oliveira TM (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30(7):1815–1822CrossRefPubMed Marques NCT, Neto NL, de Oliveira Rodini C, Fernandes AP, Sakai VT, Machado MAAM, Oliveira TM (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30(7):1815–1822CrossRefPubMed
38.
go back to reference Pereira LO, Longo JPF, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085CrossRefPubMed Pereira LO, Longo JPF, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085CrossRefPubMed
39.
go back to reference Pacheco PS, de Oliveira FA, Oliveira RC, ACP S’A, de Rezende MLR, Greghi SoLA, Damante CA (2013) Laser phototherapy at high energy densities do not stimulate pre-osteoblast growth and differentiation. Photomed Laser Surg 31(5):225–229CrossRefPubMed Pacheco PS, de Oliveira FA, Oliveira RC, ACP S’A, de Rezende MLR, Greghi SoLA, Damante CA (2013) Laser phototherapy at high energy densities do not stimulate pre-osteoblast growth and differentiation. Photomed Laser Surg 31(5):225–229CrossRefPubMed
40.
go back to reference Bidar M, Moushekhian S, Gharechahi M, Talati A, Ahrari F, Bojarpour M (2016) The effect of low level laser therapy on direct pulp capping in dogs. Lasers Med Sci 7(3):177CrossRef Bidar M, Moushekhian S, Gharechahi M, Talati A, Ahrari F, Bojarpour M (2016) The effect of low level laser therapy on direct pulp capping in dogs. Lasers Med Sci 7(3):177CrossRef
41.
go back to reference Tran-Hung L, Laurent P, Camps J, About I (2008) Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 53(1):9–13CrossRefPubMed Tran-Hung L, Laurent P, Camps J, About I (2008) Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 53(1):9–13CrossRefPubMed
42.
go back to reference Renno ACM, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280CrossRefPubMed Renno ACM, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280CrossRefPubMed
43.
go back to reference Milward MR, Hadis MA, Cooper PR, Gorecki P, Carroll JD, Palin WM Biomodulatory effects of laser irradiation on dental pulp cells in vitro. In: Proc of SPIE Vol, 2015. pp 930908–930901 Milward MR, Hadis MA, Cooper PR, Gorecki P, Carroll JD, Palin WM Biomodulatory effects of laser irradiation on dental pulp cells in vitro. In: Proc of SPIE Vol, 2015. pp 930908–930901
44.
go back to reference Bouvet-Gerbettaz S, Merigo E, Rocca J-P, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297CrossRefPubMed Bouvet-Gerbettaz S, Merigo E, Rocca J-P, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297CrossRefPubMed
45.
go back to reference MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4 dentin phosphoprotein DNA sequence determination. J Biol Chem 272(2):835–842CrossRefPubMed MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4 dentin phosphoprotein DNA sequence determination. J Biol Chem 272(2):835–842CrossRefPubMed
Metadata
Title
Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex
Authors
Hisham El Nawam
Rania El Backly
Amira Zaky
Amr Abdallah
Publication date
01-10-2019
Publisher
Springer London
Keywords
Diode Laser
Laser
Published in
Lasers in Medical Science / Issue 8/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02804-6

Other articles of this Issue 8/2019

Lasers in Medical Science 8/2019 Go to the issue