Skip to main content
Top
Published in: Lasers in Medical Science 3/2017

01-04-2017 | Original Article

Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts

Authors: Gamze Bölükbaşı Ateş, Ayşe Ak Can, Murat Gülsoy

Published in: Lasers in Medical Science | Issue 3/2017

Login to get access

Abstract

Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm2. Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.
Literature
1.
go back to reference Woodruff LD, Bounkeo J, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247CrossRefPubMed Woodruff LD, Bounkeo J, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247CrossRefPubMed
2.
3.
go back to reference Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–40CrossRefPubMed Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–40CrossRefPubMed
5.
go back to reference Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–42CrossRefPubMed Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–42CrossRefPubMed
6.
go back to reference Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–54CrossRefPubMed Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–54CrossRefPubMed
7.
go back to reference Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–7CrossRefPubMed Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–7CrossRefPubMed
8.
go back to reference Nicolau RA, Jorgetti V, Rigau J, Pacheco MTT, Dos Reis LM, Zângaro RA (2003) Effect of low-power GaAIAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18:89–94. doi:10.1007/s10103-003-0260-z CrossRef Nicolau RA, Jorgetti V, Rigau J, Pacheco MTT, Dos Reis LM, Zângaro RA (2003) Effect of low-power GaAIAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18:89–94. doi:10.​1007/​s10103-003-0260-z CrossRef
9.
go back to reference Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed
11.
go back to reference Dörtbudak O, Haas R, Mailath-Pokorny G (2002) Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res 13:288–292CrossRefPubMed Dörtbudak O, Haas R, Mailath-Pokorny G (2002) Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res 13:288–292CrossRefPubMed
12.
go back to reference Ebrahimi T et al (2012) The influence of low-intensity laser therapy on bone healing. J Dent 9(4):238–248 Ebrahimi T et al (2012) The influence of low-intensity laser therapy on bone healing. J Dent 9(4):238–248
13.
go back to reference Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34(3):277–84CrossRefPubMed Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34(3):277–84CrossRefPubMed
14.
go back to reference Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700CrossRefPubMed Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700CrossRefPubMed
15.
go back to reference Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–96CrossRefPubMed Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–96CrossRefPubMed
16.
go back to reference Ribeiro DA, Matsumoto MA (2008) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35(12):925–33CrossRefPubMed Ribeiro DA, Matsumoto MA (2008) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35(12):925–33CrossRefPubMed
17.
go back to reference Lopes CB, Pinheiro ALB, Sathaiah S et al (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101CrossRefPubMed Lopes CB, Pinheiro ALB, Sathaiah S et al (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101CrossRefPubMed
18.
go back to reference Lopes CB, Pinheiro ALB, Sathaiah S et al (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23:27–31CrossRefPubMed Lopes CB, Pinheiro ALB, Sathaiah S et al (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23:27–31CrossRefPubMed
19.
go back to reference Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24(1):38–44CrossRefPubMed Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24(1):38–44CrossRefPubMed
20.
go back to reference Torres CS, Santos JN, Monteiro JSC et al (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377CrossRefPubMed Torres CS, Santos JN, Monteiro JSC et al (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377CrossRefPubMed
21.
go back to reference Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309CrossRefPubMed Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309CrossRefPubMed
22.
go back to reference Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys. doi:10.1088/1054-660X/25/9/095602 Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys. doi:10.​1088/​1054-660X/​25/​9/​095602
23.
go back to reference Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) Role of reactive oxygen species in low level light therapy. 716502–716502–11. doi: 10.1117/12.814890 Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) Role of reactive oxygen species in low level light therapy. 716502–716502–11. doi: 10.​1117/​12.​814890
24.
go back to reference Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280CrossRefPubMed Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280CrossRefPubMed
25.
go back to reference Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–7CrossRefPubMed Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–7CrossRefPubMed
26.
27.
go back to reference Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4:3–14CrossRefPubMed Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4:3–14CrossRefPubMed
29.
go back to reference Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana ACP, de Rezende MLR, Greghi SLA, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29:55–9. doi:10.1007/s10103-012-1238-5 CrossRefPubMed Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana ACP, de Rezende MLR, Greghi SLA, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29:55–9. doi:10.​1007/​s10103-012-1238-5 CrossRefPubMed
30.
go back to reference Bloise N, Ceccarelli G, Minzioni P et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt. doi:10.1117/1.JBO.18.12.128006 Bloise N, Ceccarelli G, Minzioni P et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt. doi:10.​1117/​1.​JBO.​18.​12.​128006
31.
go back to reference Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692CrossRefPubMed Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692CrossRefPubMed
33.
go back to reference Ré Poppi R, Da Silva AL, Nacer RS et al (2011) Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26:515. doi:10.1007/s10103-010-0867-9 CrossRefPubMed Ré Poppi R, Da Silva AL, Nacer RS et al (2011) Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26:515. doi:10.​1007/​s10103-010-0867-9 CrossRefPubMed
34.
go back to reference Basso FG, Turrioni APS, Almeida LF, Soares DG, Oliveira CF, Hebling J, de Souza Costa CA (2016) Nutritional deprivation and LPS exposure as feasible methods for induction of cellular—a methodology to validate for vitro photobiomodulation studies. J Photochem Photobiol B Biol 159:205–210. doi:10.1016/j.jphotobiol.2016.04.001 CrossRef Basso FG, Turrioni APS, Almeida LF, Soares DG, Oliveira CF, Hebling J, de Souza Costa CA (2016) Nutritional deprivation and LPS exposure as feasible methods for induction of cellular—a methodology to validate for vitro photobiomodulation studies. J Photochem Photobiol B Biol 159:205–210. doi:10.​1016/​j.​jphotobiol.​2016.​04.​001 CrossRef
35.
go back to reference Mark P, Kleinsorge M, Gaebel R, Lux C, Al. E (2013) Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 1–8 Mark P, Kleinsorge M, Gaebel R, Lux C, Al. E (2013) Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 1–8
36.
go back to reference Zhang C, Li S, Chen Y, Jiang Y, Chen P, Wang C, Fu X, Kang H, Shen B, Liang J (2014) Stimulative effects of low intensity He-Ne laser irradiation on the proliferative potential and cell-cycle progression of myoblasts in culture. doi: 10.1155/2014/205839 Zhang C, Li S, Chen Y, Jiang Y, Chen P, Wang C, Fu X, Kang H, Shen B, Liang J (2014) Stimulative effects of low intensity He-Ne laser irradiation on the proliferative potential and cell-cycle progression of myoblasts in culture. doi: 10.1155/2014/205839
37.
go back to reference Nowak KC, McCormack M, Koch RJMD (2000) The effect of superpulsed carbon dioxide laser energy on keloid and normal dermal fibroblast secretion of growth factors: a serum-free study. Plast Reconstr Surg 105(6):2019–2048CrossRef Nowak KC, McCormack M, Koch RJMD (2000) The effect of superpulsed carbon dioxide laser energy on keloid and normal dermal fibroblast secretion of growth factors: a serum-free study. Plast Reconstr Surg 105(6):2019–2048CrossRef
38.
go back to reference Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38(4):332–336. doi:10.1002/lsm.20298 CrossRefPubMed Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38(4):332–336. doi:10.​1002/​lsm.​20298 CrossRefPubMed
40.
go back to reference Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi:10.1002/lsm.1107 CrossRefPubMed Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi:10.​1002/​lsm.​1107 CrossRefPubMed
41.
go back to reference Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901CrossRefPubMed Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901CrossRefPubMed
43.
go back to reference Oliveira CF, Basso FG, Lins EC et al (2011) In vitro effect of low-level laser on odontoblast-like cells. Laser Phys Lett 8:155–163CrossRef Oliveira CF, Basso FG, Lins EC et al (2011) In vitro effect of low-level laser on odontoblast-like cells. Laser Phys Lett 8:155–163CrossRef
Metadata
Title
Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts
Authors
Gamze Bölükbaşı Ateş
Ayşe Ak Can
Murat Gülsoy
Publication date
01-04-2017
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2017
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2153-6

Other articles of this Issue 3/2017

Lasers in Medical Science 3/2017 Go to the issue