Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Dimethyl Fumarate | Research

Dimethyl fumarate improves cognitive impairment and neuroinflammation in mice with Alzheimer’s disease

Authors: Ting Wang, Akira Sobue, Seiji Watanabe, Okiru Komine, Takaomi C. Saido, Takashi Saito, Koji Yamanaka

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Neuroinflammation substantially contributes to the pathology of Alzheimer’s disease (AD), the most common form of dementia. Studies have reported that nuclear factor erythroid 2-related factor 2 (Nrf2) attenuates neuroinflammation in the mouse models of neurodegenerative diseases, however, the detailed mechanism remains unclear.

Methods

The effects of dimethyl fumarate (DMF), a clinically used drug to activate the Nrf2 pathway, on neuroinflammation were analyzed in primary astrocytes and AppNL−G−F (App-KI) mice. The cognitive function and behavior of DMF-administrated App-KI mice were evaluated. For the gene expression analysis, microglia and astrocytes were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, followed by quantitative PCR.

Results

DMF treatment activated some Nrf2 target genes and inhibited the expression of proinflammatory markers in primary astrocytes. Moreover, chronic oral administration of DMF attenuated neuroinflammation, particularly in astrocytes, and reversed cognitive dysfunction presumably by activating the Nrf2-dependent pathway in App-KI mice. Furthermore, DMF administration inhibited the expression of STAT3/C3 and C3 receptor in astrocytes and microglia isolated from App-KI mice, respectively, suggesting that the astrocyte–microglia crosstalk is involved in neuroinflammation in mice with AD.

Conclusion

The activation of astrocytic Nrf2 signaling confers neuroprotection in mice with AD by controlling neuroinflammation, particularly by regulating astrocytic C3-STAT3 signaling. Furthermore, our study has implications for the repositioning of DMF as a drug for AD treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzheimer’s disease facts and figures. Alzheimer’s Dement, 2023; 19(4): 1598–1695. Alzheimer’s disease facts and figures. Alzheimer’s Dement, 2023; 19(4): 1598–1695.
3.
4.
go back to reference Sobue A, Komine O, Yamanaka K. Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease. Inflamm Regen. 2023;43(1):26.PubMedPubMedCentralCrossRef Sobue A, Komine O, Yamanaka K. Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease. Inflamm Regen. 2023;43(1):26.PubMedPubMedCentralCrossRef
5.
go back to reference Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev. 2018;98(3):1169–203.PubMedPubMedCentralCrossRef Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev. 2018;98(3):1169–203.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Ramsey CP, Glass CA, Montgomery MB, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66(1):75–85.PubMedCrossRef Ramsey CP, Glass CA, Montgomery MB, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66(1):75–85.PubMedCrossRef
8.
go back to reference Youssef P, Chami B, Lim J, et al. Evidence supporting oxidative stress in a moderately affected area of the brain in Alzheimer’s disease. Sci Rep. 2018;8(1):11553.ADSPubMedPubMedCentralCrossRef Youssef P, Chami B, Lim J, et al. Evidence supporting oxidative stress in a moderately affected area of the brain in Alzheimer’s disease. Sci Rep. 2018;8(1):11553.ADSPubMedPubMedCentralCrossRef
9.
go back to reference Uruno A, Matsumaru D, Ryoke R, et al. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice. Mol Cell Biol. 2020;40(6):e00467-e519.PubMedPubMedCentralCrossRef Uruno A, Matsumaru D, Ryoke R, et al. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice. Mol Cell Biol. 2020;40(6):e00467-e519.PubMedPubMedCentralCrossRef
10.
go back to reference Rojo AI, Pajares M, Garcia-Yague AJ, et al. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol. 2018;18:173–80.PubMedPubMedCentralCrossRef Rojo AI, Pajares M, Garcia-Yague AJ, et al. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol. 2018;18:173–80.PubMedPubMedCentralCrossRef
11.
go back to reference Joshi G, Gan KA, Johnson DA, et al. Increased Alzheimer’s disease-like pathology in the APP/ PS1DeltaE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36(2):664–79.PubMedCrossRef Joshi G, Gan KA, Johnson DA, et al. Increased Alzheimer’s disease-like pathology in the APP/ PS1DeltaE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36(2):664–79.PubMedCrossRef
12.
go back to reference Ren P, Chen J, Li B, et al. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: the role of neuroinflammation and oxidative stress. Oxid Med Cell Longev. 2020;2020:3050971.PubMedPubMedCentralCrossRef Ren P, Chen J, Li B, et al. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: the role of neuroinflammation and oxidative stress. Oxid Med Cell Longev. 2020;2020:3050971.PubMedPubMedCentralCrossRef
13.
go back to reference Branca C, Ferreira E, Nguyen TV, et al. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2017;26(24):4823–35.PubMedPubMedCentralCrossRef Branca C, Ferreira E, Nguyen TV, et al. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2017;26(24):4823–35.PubMedPubMedCentralCrossRef
14.
go back to reference Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.ADSPubMedPubMedCentralCrossRef Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.ADSPubMedPubMedCentralCrossRef
15.
go back to reference Saha S, Buttari B, Profumo E, et al. A perspective on Nrf2 signaling pathway for neuroinflammation: a potential therapeutic target in Alzheimer’s and Parkinson’s diseases. Front Cell Neurosci. 2021;15: 787258.PubMedCrossRef Saha S, Buttari B, Profumo E, et al. A perspective on Nrf2 signaling pathway for neuroinflammation: a potential therapeutic target in Alzheimer’s and Parkinson’s diseases. Front Cell Neurosci. 2021;15: 787258.PubMedCrossRef
16.
go back to reference Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.PubMedPubMedCentralCrossRef
17.
go back to reference Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37–53.PubMedCrossRef Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37–53.PubMedCrossRef
18.
go back to reference Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317.PubMedCrossRef Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317.PubMedCrossRef
19.
go back to reference Cuadrado A, Kugler S, Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol. 2018;14:522–34.PubMedCrossRef Cuadrado A, Kugler S, Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol. 2018;14:522–34.PubMedCrossRef
20.
go back to reference Vargas MR, Johnson DA, Sirkis DW, et al. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci. 2008;28(50):13574–81.PubMedPubMedCentralCrossRef Vargas MR, Johnson DA, Sirkis DW, et al. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci. 2008;28(50):13574–81.PubMedPubMedCentralCrossRef
21.
go back to reference Chen PC, Vargas MR, Pani AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci U S A. 2009;106(8):2933–8.ADSPubMedPubMedCentralCrossRef Chen PC, Vargas MR, Pani AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci U S A. 2009;106(8):2933–8.ADSPubMedPubMedCentralCrossRef
23.
go back to reference Peng S, Zhang B, Meng X, et al. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. J Med Chem. 2015;58(13):5242–55.PubMedCrossRef Peng S, Zhang B, Meng X, et al. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. J Med Chem. 2015;58(13):5242–55.PubMedCrossRef
24.
go back to reference Campolo M, Casili G, Biundo F, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-kappaB/Nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef Campolo M, Casili G, Biundo F, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-kappaB/Nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27(8):453–71.PubMedPubMedCentralCrossRef
25.
go back to reference Ellrichmann G, Petrasch-Parwez E, Lee DH, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS ONE. 2011;6(1): e16172.ADSPubMedPubMedCentralCrossRef Ellrichmann G, Petrasch-Parwez E, Lee DH, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS ONE. 2011;6(1): e16172.ADSPubMedPubMedCentralCrossRef
26.
go back to reference Mohle L, Brackhan M, Bascunana P, et al. Dimethyl fumarate does not mitigate cognitive decline and beta-amyloidosis in female APPPS1 mice. Brain Res. 2021;1768: 147579.PubMedCrossRef Mohle L, Brackhan M, Bascunana P, et al. Dimethyl fumarate does not mitigate cognitive decline and beta-amyloidosis in female APPPS1 mice. Brain Res. 2021;1768: 147579.PubMedCrossRef
27.
go back to reference Saito T, Matsuba Y, Mihira N, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3.PubMedCrossRef Saito T, Matsuba Y, Mihira N, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3.PubMedCrossRef
28.
go back to reference Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef
29.
go back to reference Sobue A, Komine O, Hara Y, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):1.PubMedPubMedCentralCrossRef Sobue A, Komine O, Hara Y, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):1.PubMedPubMedCentralCrossRef
30.
go back to reference Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, et al. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal. 2016;25(2):61–77.PubMedPubMedCentralCrossRef Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, et al. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal. 2016;25(2):61–77.PubMedPubMedCentralCrossRef
31.
go back to reference Sobue A, Ito N, Nagai T, et al. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia. 2018;66(5):1034–52.PubMedCrossRef Sobue A, Ito N, Nagai T, et al. Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia. 2018;66(5):1034–52.PubMedCrossRef
32.
go back to reference Kidana K, Tatebe T, Ito K, et al. Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer’s disease model mice. EMBO Mol Med. 2018;10(3): e8184.PubMedPubMedCentralCrossRef Kidana K, Tatebe T, Ito K, et al. Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer’s disease model mice. EMBO Mol Med. 2018;10(3): e8184.PubMedPubMedCentralCrossRef
33.
go back to reference Endo F, Komine O, Fujimori-Tonou N, et al. Astrocyte-derived TGF-beta1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep. 2015;11(4):592–604.PubMedCrossRef Endo F, Komine O, Fujimori-Tonou N, et al. Astrocyte-derived TGF-beta1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep. 2015;11(4):592–604.PubMedCrossRef
35.
go back to reference Pagani F, Testi C, Grimaldi A, et al. Dimethyl fumarate reduces microglia functional response to tissue damage and favors brain iron homeostasis. Neuroscience. 2020;439:241–54.PubMedCrossRef Pagani F, Testi C, Grimaldi A, et al. Dimethyl fumarate reduces microglia functional response to tissue damage and favors brain iron homeostasis. Neuroscience. 2020;439:241–54.PubMedCrossRef
36.
go back to reference Nishino K, Watanabe S, Shijie J, et al. Mice deficient in the C-terminal domain of TAR DNA-binding protein 43 develop age-dependent motor dysfunction associated with impaired Notch1-Akt signaling pathway. Acta Neuropathol Commun. 2019;7(1):118.PubMedPubMedCentralCrossRef Nishino K, Watanabe S, Shijie J, et al. Mice deficient in the C-terminal domain of TAR DNA-binding protein 43 develop age-dependent motor dysfunction associated with impaired Notch1-Akt signaling pathway. Acta Neuropathol Commun. 2019;7(1):118.PubMedPubMedCentralCrossRef
38.
go back to reference Schmider E, Ziegler M, Danay E, et al. Is it really robust? Methodology. 2010;6:147.CrossRef Schmider E, Ziegler M, Danay E, et al. Is it really robust? Methodology. 2010;6:147.CrossRef
39.
go back to reference Wilms H, Sievers J, Rickert U, et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30.PubMedPubMedCentralCrossRef Wilms H, Sievers J, Rickert U, et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30.PubMedPubMedCentralCrossRef
40.
go back to reference Brennan MS, Matos MF, Richter KE, et al. The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes. Sci Rep. 2017;7:42054.ADSPubMedPubMedCentralCrossRef Brennan MS, Matos MF, Richter KE, et al. The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes. Sci Rep. 2017;7:42054.ADSPubMedPubMedCentralCrossRef
41.
go back to reference Litvinchuk A, Wan YW, Swartzlander DB, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron. 2018;100(6):1337–53.PubMedPubMedCentralCrossRef Litvinchuk A, Wan YW, Swartzlander DB, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron. 2018;100(6):1337–53.PubMedPubMedCentralCrossRef
42.
go back to reference Kandalepas PC, Sadleir KR, Eimer WA, et al. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126(3):329–52.PubMedPubMedCentralCrossRef Kandalepas PC, Sadleir KR, Eimer WA, et al. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126(3):329–52.PubMedPubMedCentralCrossRef
43.
go back to reference Abd El-Fatah IM, Abdelrazek HMA, Ibrahim SM, et al. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-Galactose/ovariectomy-induced Alzheimer’s-like disease: modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3beta, adiponectin/Adipo1R, and NF-kappaB/IL-1beta/ROS trajectories. Neurochem Int. 2021;148:105082.PubMedCrossRef Abd El-Fatah IM, Abdelrazek HMA, Ibrahim SM, et al. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-Galactose/ovariectomy-induced Alzheimer’s-like disease: modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3beta, adiponectin/Adipo1R, and NF-kappaB/IL-1beta/ROS trajectories. Neurochem Int. 2021;148:105082.PubMedCrossRef
44.
go back to reference Mohle L, Stefan K, Bascunana P, et al. ABC transporter C1 prevents dimethyl fumarate from targeting Alzheimer’s disease. Biology (Basel). 2023;12(7):932.PubMed Mohle L, Stefan K, Bascunana P, et al. ABC transporter C1 prevents dimethyl fumarate from targeting Alzheimer’s disease. Biology (Basel). 2023;12(7):932.PubMed
45.
go back to reference Lee JM, Calkins MJ, Chan K, et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278(14):12029–38.PubMedCrossRef Lee JM, Calkins MJ, Chan K, et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278(14):12029–38.PubMedCrossRef
46.
go back to reference Lian H, Litvinchuk A, Chiang AC, et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci. 2016;36(2):577–89.PubMedPubMedCentralCrossRef Lian H, Litvinchuk A, Chiang AC, et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci. 2016;36(2):577–89.PubMedPubMedCentralCrossRef
47.
go back to reference Herrmann JE, Imura T, Song B, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28(28):7231–43.PubMedPubMedCentralCrossRef Herrmann JE, Imura T, Song B, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28(28):7231–43.PubMedPubMedCentralCrossRef
48.
go back to reference Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2019;11(2): e9665.PubMedPubMedCentralCrossRef Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2019;11(2): e9665.PubMedPubMedCentralCrossRef
49.
go back to reference Choi M, Kim H, Yang EJ, et al. Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease. J Pharmacol Sci. 2020;143(4):290–9.PubMedCrossRef Choi M, Kim H, Yang EJ, et al. Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease. J Pharmacol Sci. 2020;143(4):290–9.PubMedCrossRef
50.
go back to reference Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 2019;18(4):406–14.PubMedCrossRef Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 2019;18(4):406–14.PubMedCrossRef
51.
go back to reference Davoust N, Jones J, Stahel PF, et al. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26(3):201–11.PubMedCrossRef Davoust N, Jones J, Stahel PF, et al. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26(3):201–11.PubMedCrossRef
53.
go back to reference Guneykaya D, Ivanov A, Hernandez DP, et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 2018;24(10):2773–83.PubMedCrossRef Guneykaya D, Ivanov A, Hernandez DP, et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 2018;24(10):2773–83.PubMedCrossRef
Metadata
Title
Dimethyl fumarate improves cognitive impairment and neuroinflammation in mice with Alzheimer’s disease
Authors
Ting Wang
Akira Sobue
Seiji Watanabe
Okiru Komine
Takaomi C. Saido
Takashi Saito
Koji Yamanaka
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03046-2

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue