Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Myasthenia Gravis | Research

Impaired cerebral microvascular endothelial cells integrity due to elevated dopamine in myasthenic model

Authors: Yue Hao, Yinchun Su, Yifan He, Wenyuan Zhang, Yang Liu, Yu Guo, Xingfan Chen, Chunhan Liu, Siyu Han, Buyi Wang, Yushuang Liu, Wei Zhao, Lili Mu, Jinghua Wang, Haisheng Peng, Junwei Han, Qingfei Kong

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood–brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/β-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain–blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/β-catenin pathway.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun. 2014;48–49:143–8.PubMedCrossRef Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun. 2014;48–49:143–8.PubMedCrossRef
2.
go back to reference Parker DC. The functions of antigen recognition in T cell-dependent B cell activation. Semin Immunol. 1993;5:413–20.PubMedCrossRef Parker DC. The functions of antigen recognition in T cell-dependent B cell activation. Semin Immunol. 1993;5:413–20.PubMedCrossRef
3.
go back to reference Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, et al. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol. 2015;45:1339–47.PubMedCrossRef Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, et al. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol. 2015;45:1339–47.PubMedCrossRef
4.
go back to reference Tong O, Delfiner L, Herskovitz S. Pain, headache, and other non-motor symptoms in myasthenia gravis. Curr Pain Headache Rep. 2018;22:39.PubMedCrossRef Tong O, Delfiner L, Herskovitz S. Pain, headache, and other non-motor symptoms in myasthenia gravis. Curr Pain Headache Rep. 2018;22:39.PubMedCrossRef
5.
go back to reference Martínez-Lapiscina EH, Erro ME, Ayuso T, Jericó I. Myasthenia gravis: sleep quality, quality of life, and disease severity. Muscle Nerve. 2012;46:174–80.PubMedCrossRef Martínez-Lapiscina EH, Erro ME, Ayuso T, Jericó I. Myasthenia gravis: sleep quality, quality of life, and disease severity. Muscle Nerve. 2012;46:174–80.PubMedCrossRef
6.
go back to reference Oliveira EF, Nacif SR, Urbano JJ, Silva AS, Oliveira CS, Perez EA, et al. Sleep, lung function, and quality of life in patients with myasthenia gravis: a cross-sectional study. Neuromuscul Disord. 2017;27:120–7.PubMedCrossRef Oliveira EF, Nacif SR, Urbano JJ, Silva AS, Oliveira CS, Perez EA, et al. Sleep, lung function, and quality of life in patients with myasthenia gravis: a cross-sectional study. Neuromuscul Disord. 2017;27:120–7.PubMedCrossRef
7.
go back to reference Nikolić A, Perić S, Nišić T, Popović S, Ilić M, Stojanović VR, et al. The presence of dysautonomia in different subgroups of myasthenia gravis patients. J Neurol. 2014;261:2119–27.PubMedCrossRef Nikolić A, Perić S, Nišić T, Popović S, Ilić M, Stojanović VR, et al. The presence of dysautonomia in different subgroups of myasthenia gravis patients. J Neurol. 2014;261:2119–27.PubMedCrossRef
8.
go back to reference Jordan B, Schweden TLK, Mehl T, Menge U, Zierz S. Cognitive fatigue in patients with myasthenia gravis. Muscle Nerve. 2017;56:449–57.PubMedCrossRef Jordan B, Schweden TLK, Mehl T, Menge U, Zierz S. Cognitive fatigue in patients with myasthenia gravis. Muscle Nerve. 2017;56:449–57.PubMedCrossRef
9.
go back to reference Bogdan A, Barnett C, Ali A, AlQwaifly M, Abraham A, Mannan S, et al. Chronic stress, depression and personality type in patients with myasthenia gravis. Eur J Neurol. 2020;27:204–9.PubMedCrossRef Bogdan A, Barnett C, Ali A, AlQwaifly M, Abraham A, Mannan S, et al. Chronic stress, depression and personality type in patients with myasthenia gravis. Eur J Neurol. 2020;27:204–9.PubMedCrossRef
10.
go back to reference Bartel PR, Lotz BP. Neuropsychological test performance and affect in myasthenia gravis. Acta Neurol Scand. 1995;91:266–70.PubMedCrossRef Bartel PR, Lotz BP. Neuropsychological test performance and affect in myasthenia gravis. Acta Neurol Scand. 1995;91:266–70.PubMedCrossRef
11.
go back to reference Tartara A, Mola M, Manni R, Moglia A, Lombardi M, Poloni M, et al. EEG findings in 118 cases of myasthenia gravis. Rev Electroencephalogr Neurophysiol Clin. 1982;12:275–9.PubMedCrossRef Tartara A, Mola M, Manni R, Moglia A, Lombardi M, Poloni M, et al. EEG findings in 118 cases of myasthenia gravis. Rev Electroencephalogr Neurophysiol Clin. 1982;12:275–9.PubMedCrossRef
12.
go back to reference Naess A, Gilhus NE, Aarli JA. Lymphocyte subpopulations and IgG concentrations in cerebrospinal fluid and blood from patients with myasthenia gravis. Scand J Immunol. 1980;11:431–6.PubMedCrossRef Naess A, Gilhus NE, Aarli JA. Lymphocyte subpopulations and IgG concentrations in cerebrospinal fluid and blood from patients with myasthenia gravis. Scand J Immunol. 1980;11:431–6.PubMedCrossRef
13.
go back to reference Müller KM, Taskinen E, Lefvert AK, Pirskanen R, Iivanainen M. Immunoactivation in the central nervous system in myasthenia gravis. J Neurol Sci. 1987;80:13–23.PubMedCrossRef Müller KM, Taskinen E, Lefvert AK, Pirskanen R, Iivanainen M. Immunoactivation in the central nervous system in myasthenia gravis. J Neurol Sci. 1987;80:13–23.PubMedCrossRef
15.
go back to reference Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells. 2020;9:851.PubMedPubMedCentralCrossRef Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells. 2020;9:851.PubMedPubMedCentralCrossRef
17.
go back to reference Zhang Y, Khan S, Liu Y, Siddique R, Zhang R, Yong VW, et al. Gap junctions and hemichannels composed of connexins and pannexins mediate the secondary brain injury following intracerebral hemorrhage. Biology (Basel). 2021;11:27.PubMed Zhang Y, Khan S, Liu Y, Siddique R, Zhang R, Yong VW, et al. Gap junctions and hemichannels composed of connexins and pannexins mediate the secondary brain injury following intracerebral hemorrhage. Biology (Basel). 2021;11:27.PubMed
18.
go back to reference Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res. 2014;355:701–15.PubMedCrossRef Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res. 2014;355:701–15.PubMedCrossRef
19.
go back to reference Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45:687–97.PubMedCrossRef Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45:687–97.PubMedCrossRef
22.
go back to reference Boyé K, Geraldo LH, Furtado J, Pibouin-Fragner L, Poulet M, Kim D, et al. Endothelial Unc5B controls blood-brain barrier integrity. Nat Commun. 2022;13:1169.PubMedPubMedCentralCrossRef Boyé K, Geraldo LH, Furtado J, Pibouin-Fragner L, Poulet M, Kim D, et al. Endothelial Unc5B controls blood-brain barrier integrity. Nat Commun. 2022;13:1169.PubMedPubMedCentralCrossRef
23.
go back to reference Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022;145:4334–48.PubMedPubMedCentralCrossRef Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022;145:4334–48.PubMedPubMedCentralCrossRef
24.
go back to reference Wang Q, Huang X, Su Y, Yin G, Wang S, Yu B, et al. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer’s disease. Brain. 2022;145:4474–88.PubMedPubMedCentralCrossRef Wang Q, Huang X, Su Y, Yin G, Wang S, Yu B, et al. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer’s disease. Brain. 2022;145:4474–88.PubMedPubMedCentralCrossRef
25.
go back to reference Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.PubMedPubMedCentralCrossRef Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.PubMedPubMedCentralCrossRef
26.
go back to reference Tank AW, Lee WD. Peripheral and central effects of circulating catecholamines. Compr Physiol. 2015;5:1–15.PubMed Tank AW, Lee WD. Peripheral and central effects of circulating catecholamines. Compr Physiol. 2015;5:1–15.PubMed
27.
go back to reference Beaulieu J-M, Espinoza S, Gainetdinov RR. Dopamine receptors—IUPHAR review 13. Br J Pharmacol. 2015;172:1–23.PubMedCrossRef Beaulieu J-M, Espinoza S, Gainetdinov RR. Dopamine receptors—IUPHAR review 13. Br J Pharmacol. 2015;172:1–23.PubMedCrossRef
29.
go back to reference Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34:167–79.PubMedPubMedCentralCrossRef Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34:167–79.PubMedPubMedCentralCrossRef
30.
go back to reference Lu S-Z, Wu Y, Guo Y-S, Liang P-Z, Yin S, Yin Y-Q, et al. Inhibition of astrocytic DRD2 suppresses CNS inflammation in an animal model of multiple sclerosis. J Exp Med. 2022;219: e20210998.PubMedPubMedCentralCrossRef Lu S-Z, Wu Y, Guo Y-S, Liang P-Z, Yin S, Yin Y-Q, et al. Inhibition of astrocytic DRD2 suppresses CNS inflammation in an animal model of multiple sclerosis. J Exp Med. 2022;219: e20210998.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7:569–74.PubMedCrossRef Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7:569–74.PubMedCrossRef
34.
go back to reference Sarkar C, Ganju RK, Pompili VJ, Chakroborty D. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis. 2017;20:97–107.PubMedCrossRef Sarkar C, Ganju RK, Pompili VJ, Chakroborty D. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis. 2017;20:97–107.PubMedCrossRef
35.
go back to reference Contreras F, Prado C, González H, Franz D, Osorio-Barrios F, Osorio F, et al. Dopamine receptor D3 signaling on CD4+ T cells Favors Th1- and Th17-mediated immunity. J Immunol. 2016;196:4143–9.PubMedCrossRef Contreras F, Prado C, González H, Franz D, Osorio-Barrios F, Osorio F, et al. Dopamine receptor D3 signaling on CD4+ T cells Favors Th1- and Th17-mediated immunity. J Immunol. 2016;196:4143–9.PubMedCrossRef
36.
go back to reference Papa I, Saliba D, Ponzoni M, Bustamante S, Canete PF, Gonzalez-Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318–23.PubMedPubMedCentralCrossRef Papa I, Saliba D, Ponzoni M, Bustamante S, Canete PF, Gonzalez-Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318–23.PubMedPubMedCentralCrossRef
37.
go back to reference Wieber K, Fleige L, Tsiami S, Reinders J, Braun J, Baraliakos X, et al. Dopamine receptor 1 expressing B cells exert a proinflammatory role in female patients with rheumatoid arthritis. Sci Rep. 2022;12:5985.PubMedPubMedCentralCrossRef Wieber K, Fleige L, Tsiami S, Reinders J, Braun J, Baraliakos X, et al. Dopamine receptor 1 expressing B cells exert a proinflammatory role in female patients with rheumatoid arthritis. Sci Rep. 2022;12:5985.PubMedPubMedCentralCrossRef
38.
go back to reference Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, et al. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors: recommendations for methods and experimental designs. Exp Neurol. 2015;270:18–28.PubMedPubMedCentralCrossRef Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, et al. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors: recommendations for methods and experimental designs. Exp Neurol. 2015;270:18–28.PubMedPubMedCentralCrossRef
39.
go back to reference van der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-SNE. J Mach Learn Res. 2008;9:2579–605. van der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
40.
go back to reference van der Maaten L. Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014;15:3221–45. van der Maaten L. Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014;15:3221–45.
41.
go back to reference Lee Y-K, Uchida H, Smith H, Ito A, Sanchez T. The isolation and molecular characterization of cerebral microvessels. Nat Protoc. 2019;14:3059–81.PubMedCrossRef Lee Y-K, Uchida H, Smith H, Ito A, Sanchez T. The isolation and molecular characterization of cerebral microvessels. Nat Protoc. 2019;14:3059–81.PubMedCrossRef
42.
go back to reference Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA. 2017;114:E1168–77.PubMedPubMedCentralCrossRef Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA. 2017;114:E1168–77.PubMedPubMedCentralCrossRef
43.
go back to reference Cui Y, Chang L, Wang C, Han X, Mu L, Hao Y, et al. Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol. 2019;75: 105822.PubMedCrossRef Cui Y, Chang L, Wang C, Han X, Mu L, Hao Y, et al. Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol. 2019;75: 105822.PubMedCrossRef
44.
go back to reference Xie X, Mu L, Yao X, Li N, Sun B, Li Y, et al. ATRA alters humoral responses associated with amelioration of EAMG symptoms by balancing Tfh/Tfr helper cell profiles. Clin Immunol. 2013;148:162–76.PubMedCrossRef Xie X, Mu L, Yao X, Li N, Sun B, Li Y, et al. ATRA alters humoral responses associated with amelioration of EAMG symptoms by balancing Tfh/Tfr helper cell profiles. Clin Immunol. 2013;148:162–76.PubMedCrossRef
45.
go back to reference Koseoglu E, Sungur N, Muhtaroglu S, Zararsiz G, Eken A. The beneficial clinical effects of teriflunomide in experimental autoimmune myasthenia gravis and the investigation of the possible immunological mechanisms. Cell Mol Neurobiol. 2023;43:2071–87.PubMedCrossRef Koseoglu E, Sungur N, Muhtaroglu S, Zararsiz G, Eken A. The beneficial clinical effects of teriflunomide in experimental autoimmune myasthenia gravis and the investigation of the possible immunological mechanisms. Cell Mol Neurobiol. 2023;43:2071–87.PubMedCrossRef
46.
go back to reference Vernino S, Cheshire WP, Lennon VA. Myasthenia gravis with autoimmune autonomic neuropathy. Auton Neurosci. 2001;88:187–92.PubMedCrossRef Vernino S, Cheshire WP, Lennon VA. Myasthenia gravis with autoimmune autonomic neuropathy. Auton Neurosci. 2001;88:187–92.PubMedCrossRef
47.
go back to reference Luzanova E, Stepanova S, Nadtochiy N, Kryukova E, Karpova M. Cross-syndrome: myasthenia gravis and the demyelinating diseases of the central nervous system combination. Systematic literature review and case reports. Acta Neurol. 2023;123:367–74.CrossRef Luzanova E, Stepanova S, Nadtochiy N, Kryukova E, Karpova M. Cross-syndrome: myasthenia gravis and the demyelinating diseases of the central nervous system combination. Systematic literature review and case reports. Acta Neurol. 2023;123:367–74.CrossRef
48.
go back to reference Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;12:CD002277.PubMed Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;12:CD002277.PubMed
49.
50.
go back to reference Iacono S, Di Stefano V, Costa V, Schirò G, Lupica A, Maggio B, et al. Frequency and correlates of mild cognitive impairment in myasthenia gravis. Brain Sci. 2023;13:170.PubMedPubMedCentralCrossRef Iacono S, Di Stefano V, Costa V, Schirò G, Lupica A, Maggio B, et al. Frequency and correlates of mild cognitive impairment in myasthenia gravis. Brain Sci. 2023;13:170.PubMedPubMedCentralCrossRef
51.
go back to reference Müller KM, Taskinen E, Iivanainen M. Elevated cerebrospinal fluid CD4+/CD8+ T cell ratio in myasthenia gravis. J Neuroimmunol. 1990;30:219–27.PubMedCrossRef Müller KM, Taskinen E, Iivanainen M. Elevated cerebrospinal fluid CD4+/CD8+ T cell ratio in myasthenia gravis. J Neuroimmunol. 1990;30:219–27.PubMedCrossRef
52.
go back to reference Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson’s disease. Mov Disord. 2015;30:472–83.PubMedCrossRef Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson’s disease. Mov Disord. 2015;30:472–83.PubMedCrossRef
53.
go back to reference Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of Schizophrenia. Biol Psychiatry. 2017;81:9–20.PubMedCrossRef Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of Schizophrenia. Biol Psychiatry. 2017;81:9–20.PubMedCrossRef
54.
go back to reference Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.PubMedCrossRef Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.PubMedCrossRef
55.
go back to reference Chang T, Niu C, Sun C, Ma Y, Guo R, Ruan Z, et al. Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY). 2020;12:21147–60.PubMedCrossRef Chang T, Niu C, Sun C, Ma Y, Guo R, Ruan Z, et al. Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY). 2020;12:21147–60.PubMedCrossRef
56.
go back to reference Kaltsatou A, Fotiou D, Tsiptsios D, Orologas A. Cognitive impairment as a central cholinergic deficit in patients with myasthenia gravis. BBA Clin. 2015;3:299–303.PubMedPubMedCentralCrossRef Kaltsatou A, Fotiou D, Tsiptsios D, Orologas A. Cognitive impairment as a central cholinergic deficit in patients with myasthenia gravis. BBA Clin. 2015;3:299–303.PubMedPubMedCentralCrossRef
57.
go back to reference Meng T, Zheng Z-H, Liu T-T, Lin L. Contralateral retinal dopamine decrease and melatonin increase in progression of hemiparkinsonian rat. Neurochem Res. 2012;37:1050–6.PubMedCrossRef Meng T, Zheng Z-H, Liu T-T, Lin L. Contralateral retinal dopamine decrease and melatonin increase in progression of hemiparkinsonian rat. Neurochem Res. 2012;37:1050–6.PubMedCrossRef
58.
go back to reference Aosaki T, Miura M, Suzuki T, Nishimura K, Masuda M. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010;10(Suppl 1):S148-157.PubMed Aosaki T, Miura M, Suzuki T, Nishimura K, Masuda M. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010;10(Suppl 1):S148-157.PubMed
59.
go back to reference Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16:137–62.PubMedPubMedCentralCrossRef Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16:137–62.PubMedPubMedCentralCrossRef
60.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMedCrossRef Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMedCrossRef
61.
go back to reference Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, et al. Dopamine in Parkinson’s disease. Clin Chim Acta. 2021;522:114–26.PubMedCrossRef Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, et al. Dopamine in Parkinson’s disease. Clin Chim Acta. 2021;522:114–26.PubMedCrossRef
62.
go back to reference Rönnberg E, Calounova G, Pejler G. Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol Chem. 2012;393:107–12.PubMedCrossRef Rönnberg E, Calounova G, Pejler G. Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol Chem. 2012;393:107–12.PubMedCrossRef
63.
go back to reference Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf). 2016;216:42–89.PubMedCrossRef Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf). 2016;216:42–89.PubMedCrossRef
64.
go back to reference Prado C, Osorio-Barrios F, Falcón P, Espinoza A, Saez JJ, Yuseff MI, et al. Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity. J Neuroinflammation. 2021;18:292.PubMedPubMedCentralCrossRef Prado C, Osorio-Barrios F, Falcón P, Espinoza A, Saez JJ, Yuseff MI, et al. Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity. J Neuroinflammation. 2021;18:292.PubMedPubMedCentralCrossRef
65.
66.
67.
go back to reference Huehnchen P, Springer A, Kern J, Kopp U, Kohler S, Alexander T, et al. Bortezomib at therapeutic doses poorly passes the blood-brain barrier and does not impair cognition. Brain Commun. 2020;2:fcaa021.PubMedPubMedCentralCrossRef Huehnchen P, Springer A, Kern J, Kopp U, Kohler S, Alexander T, et al. Bortezomib at therapeutic doses poorly passes the blood-brain barrier and does not impair cognition. Brain Commun. 2020;2:fcaa021.PubMedPubMedCentralCrossRef
68.
go back to reference Fei Y, Zhao B, Zhu J, Fang W, Li Y. XQ-1H promotes cerebral angiogenesis via activating PI3K/Akt/GSK3β/β-catenin/VEGF signal in mice exposed to cerebral ischemic injury. Life Sci. 2021;272: 119234.PubMedCrossRef Fei Y, Zhao B, Zhu J, Fang W, Li Y. XQ-1H promotes cerebral angiogenesis via activating PI3K/Akt/GSK3β/β-catenin/VEGF signal in mice exposed to cerebral ischemic injury. Life Sci. 2021;272: 119234.PubMedCrossRef
69.
go back to reference Wang H, Zhou H, Zou Y, Liu Q, Guo C, Gao G, et al. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol. 2010;80:1386–95.PubMedCrossRef Wang H, Zhou H, Zou Y, Liu Q, Guo C, Gao G, et al. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol. 2010;80:1386–95.PubMedCrossRef
70.
go back to reference Song S, Huang H, Guan X, Fiesler V, Bhuiyan MIH, Liu R, et al. Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol. 2021;199: 101963.PubMedCrossRef Song S, Huang H, Guan X, Fiesler V, Bhuiyan MIH, Liu R, et al. Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol. 2021;199: 101963.PubMedCrossRef
71.
go back to reference Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem. 2002;277:33398–410.PubMedCrossRef Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem. 2002;277:33398–410.PubMedCrossRef
72.
go back to reference Vadlamudi U, Espinoza HM, Ganga M, Martin DM, Liu X, Engelhardt JF, et al. PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J Cell Sci. 2005;118:1129–37.PubMedCrossRef Vadlamudi U, Espinoza HM, Ganga M, Martin DM, Liu X, Engelhardt JF, et al. PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J Cell Sci. 2005;118:1129–37.PubMedCrossRef
73.
go back to reference Wang H, Zhang C, Liu J, Yang X, Han F, Wang R, et al. Dopamine promotes the progression of AML via activating NLRP3 inflammasome and IL-1β. Hum Immunol. 2021;82:968–75.PubMedCrossRef Wang H, Zhang C, Liu J, Yang X, Han F, Wang R, et al. Dopamine promotes the progression of AML via activating NLRP3 inflammasome and IL-1β. Hum Immunol. 2021;82:968–75.PubMedCrossRef
74.
go back to reference Wu Y, Hu Y, Wang B, Li S, Ma C, Liu X, et al. Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-mediated NF-κB pathway and suppress systemic inflammation. Mol Cell. 2020;78:42-56.e6.PubMedCrossRef Wu Y, Hu Y, Wang B, Li S, Ma C, Liu X, et al. Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-mediated NF-κB pathway and suppress systemic inflammation. Mol Cell. 2020;78:42-56.e6.PubMedCrossRef
Metadata
Title
Impaired cerebral microvascular endothelial cells integrity due to elevated dopamine in myasthenic model
Authors
Yue Hao
Yinchun Su
Yifan He
Wenyuan Zhang
Yang Liu
Yu Guo
Xingfan Chen
Chunhan Liu
Siyu Han
Buyi Wang
Yushuang Liu
Wei Zhao
Lili Mu
Jinghua Wang
Haisheng Peng
Junwei Han
Qingfei Kong
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-03005-3

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue