Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Constitutive knockout of interleukin-6 ameliorates memory deficits and entorhinal astrocytosis in the MRL/lpr mouse model of neuropsychiatric lupus

Authors: Joshua Reynolds, Michelle Huang, Yaxi Li, Myriam Meineck, Tamara Moeckel, Julia Weinmann-Menke, Chandra Mohan, Andreas Schwarting, Chaim Putterman

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE’s pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice.

Methods

We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala.

Results

MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory.

Conclusions

The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;13(1):43.PubMedPubMedCentralCrossRef Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;13(1):43.PubMedPubMedCentralCrossRef
2.
go back to reference Nusbaum JS, Mirza I, Shum J, Freilich RW, Cohen RE, Pillinger MH, et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis. Mayo Clin Proc. 2020;95(2):384–94.PubMedCrossRef Nusbaum JS, Mirza I, Shum J, Freilich RW, Cohen RE, Pillinger MH, et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis. Mayo Clin Proc. 2020;95(2):384–94.PubMedCrossRef
3.
go back to reference Somers EC, Marder W, Cagnoli P, Lewis EE, DeGuire P, Gordon C, et al. Population-based incidence and prevalence of systemic lupus erythematosus: the Michigan lupus epidemiology and surveillance program. Arthritis Rheumatol. 2014;66(2):369–78.PubMedPubMedCentralCrossRef Somers EC, Marder W, Cagnoli P, Lewis EE, DeGuire P, Gordon C, et al. Population-based incidence and prevalence of systemic lupus erythematosus: the Michigan lupus epidemiology and surveillance program. Arthritis Rheumatol. 2014;66(2):369–78.PubMedPubMedCentralCrossRef
4.
go back to reference Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10(10):579–96.PubMedCrossRef Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10(10):579–96.PubMedCrossRef
5.
go back to reference Marian G, Nica EA, Ionescu BE, Carlogea DG. Depression as an initial feature of systemic lupus erythematosus? A case report. J Med Life. 2010;3(2):183–5.PubMedPubMedCentral Marian G, Nica EA, Ionescu BE, Carlogea DG. Depression as an initial feature of systemic lupus erythematosus? A case report. J Med Life. 2010;3(2):183–5.PubMedPubMedCentral
6.
go back to reference Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol. 2019;15(3):137–52.PubMedPubMedCentralCrossRef Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol. 2019;15(3):137–52.PubMedPubMedCentralCrossRef
7.
go back to reference Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmun Rev. 2019;18(4):426–32.PubMedCrossRef Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmun Rev. 2019;18(4):426–32.PubMedCrossRef
8.
go back to reference Yoshio T, Okamoto H, Kurasawa K, Dei Y, Hirohata S, Minota S. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25(9):997–1003.PubMedCrossRef Yoshio T, Okamoto H, Kurasawa K, Dei Y, Hirohata S, Minota S. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25(9):997–1003.PubMedCrossRef
9.
go back to reference Okamoto H, Kobayashi A, Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J Biomed Biotechnol. 2010;2010: 268436.PubMedPubMedCentralCrossRef Okamoto H, Kobayashi A, Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J Biomed Biotechnol. 2010;2010: 268436.PubMedPubMedCentralCrossRef
10.
go back to reference Sibbitt WL Jr, Brooks WM, Kornfeld M, Hart BL, Bankhurst AD, Roldan CA. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin Arthritis Rheum. 2010;40(1):32–52.PubMedCrossRef Sibbitt WL Jr, Brooks WM, Kornfeld M, Hart BL, Bankhurst AD, Roldan CA. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin Arthritis Rheum. 2010;40(1):32–52.PubMedCrossRef
11.
go back to reference Monahan RC, Inglese F, Middelkoop H, van Buchem M, Huizinga TW, Kloppenburg M, et al. White matter hyperintensities associate with cognitive slowing in patients with systemic lupus erythematosus and neuropsychiatric symptoms. RMD Open. 2021;7(2): e001650.PubMedPubMedCentralCrossRef Monahan RC, Inglese F, Middelkoop H, van Buchem M, Huizinga TW, Kloppenburg M, et al. White matter hyperintensities associate with cognitive slowing in patients with systemic lupus erythematosus and neuropsychiatric symptoms. RMD Open. 2021;7(2): e001650.PubMedPubMedCentralCrossRef
12.
go back to reference Hirohata S, Arinuma Y, Yanagida T, Yoshio T. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2014;16(2):R77.PubMedPubMedCentralCrossRef Hirohata S, Arinuma Y, Yanagida T, Yoshio T. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2014;16(2):R77.PubMedPubMedCentralCrossRef
13.
go back to reference Abbott NJ, Mendonça LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12(12):908–15.PubMedCrossRef Abbott NJ, Mendonça LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12(12):908–15.PubMedCrossRef
14.
go back to reference Stock AD, Der E, Gelb S, Huang M, Weidenheim K, Ben-Zvi A, et al. Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. JCI Insight. 2019;4(11): e124203.PubMedPubMedCentralCrossRef Stock AD, Der E, Gelb S, Huang M, Weidenheim K, Ben-Zvi A, et al. Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. JCI Insight. 2019;4(11): e124203.PubMedPubMedCentralCrossRef
16.
go back to reference Zandman-Goddard G, Chapman J, Shoenfeld Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum. 2007;36(5):297–315.PubMedCrossRef Zandman-Goddard G, Chapman J, Shoenfeld Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum. 2007;36(5):297–315.PubMedCrossRef
17.
go back to reference Williams S, Sakic B, Hoffman SA. Circulating brain-reactive autoantibodies and behavioral deficits in the MRL model of CNS lupus. J Neuroimmunol. 2010;218(1–2):73–82.PubMedCrossRef Williams S, Sakic B, Hoffman SA. Circulating brain-reactive autoantibodies and behavioral deficits in the MRL model of CNS lupus. J Neuroimmunol. 2010;218(1–2):73–82.PubMedCrossRef
18.
go back to reference Kapadia M, Bijelić D, Zhao H, Ma D, Stojanovich L, Milošević M, et al. Effects of sustained i.c.v. infusion of lupus CSF and autoantibodies on behavioral phenotype and neuronal calcium signaling. Acta Neuropathol Commun. 2017;5(1):70.PubMedPubMedCentralCrossRef Kapadia M, Bijelić D, Zhao H, Ma D, Stojanovich L, Milošević M, et al. Effects of sustained i.c.v. infusion of lupus CSF and autoantibodies on behavioral phenotype and neuronal calcium signaling. Acta Neuropathol Commun. 2017;5(1):70.PubMedPubMedCentralCrossRef
19.
go back to reference Faust TW, Chang EH, Kowal C, Berlin R, Gazaryan IG, Bertini E, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci USA. 2010;107(43):18569–74.PubMedPubMedCentralCrossRef Faust TW, Chang EH, Kowal C, Berlin R, Gazaryan IG, Bertini E, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci USA. 2010;107(43):18569–74.PubMedPubMedCentralCrossRef
20.
go back to reference Hu C, Huang W, Chen H, Song G, Li P, Shan Q, et al. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus. PLoS ONE. 2015;10(5): e0126643.PubMedPubMedCentralCrossRef Hu C, Huang W, Chen H, Song G, Li P, Shan Q, et al. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus. PLoS ONE. 2015;10(5): e0126643.PubMedPubMedCentralCrossRef
21.
go back to reference Svenungsson E, Andersson M, Brundin L, van Vollenhoven R, Khademi M, Tarkowski A, et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis. 2001;60(4):372–9.PubMedPubMedCentralCrossRef Svenungsson E, Andersson M, Brundin L, van Vollenhoven R, Khademi M, Tarkowski A, et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis. 2001;60(4):372–9.PubMedPubMedCentralCrossRef
22.
go back to reference Chun H-Y, Chung J-W, Kim H-A, Yun J-M, Jeon J-Y, Ye Y-M, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol. 2007;27(5):461–6.PubMedCrossRef Chun H-Y, Chung J-W, Kim H-A, Yun J-M, Jeon J-Y, Ye Y-M, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol. 2007;27(5):461–6.PubMedCrossRef
23.
go back to reference Ding J, Su S, You T, Xia T, Lin X, Chen Z, et al. Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: a meta-analysis. Clinics. 2020;75: e1801.PubMedPubMedCentralCrossRef Ding J, Su S, You T, Xia T, Lin X, Chen Z, et al. Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: a meta-analysis. Clinics. 2020;75: e1801.PubMedPubMedCentralCrossRef
24.
go back to reference Lindblom J, Mohan C, Parodis I. Biomarkers in neuropsychiatric systemic lupus erythematosus: a systematic literature review of the last decade. Brain Sci. 2022;12(2):192.PubMedPubMedCentralCrossRef Lindblom J, Mohan C, Parodis I. Biomarkers in neuropsychiatric systemic lupus erythematosus: a systematic literature review of the last decade. Brain Sci. 2022;12(2):192.PubMedPubMedCentralCrossRef
25.
go back to reference Hirohata S, Miyamoto T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990;33(5):644–9.PubMedCrossRef Hirohata S, Miyamoto T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990;33(5):644–9.PubMedCrossRef
27.
go back to reference Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus. 2000;9(7):498–503.PubMedCrossRef Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus. 2000;9(7):498–503.PubMedCrossRef
29.
go back to reference Asano T, Ito H, Kariya Y, Hoshi K, Yoshihara A, Ugawa Y, et al. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PloS one. 2017;12(10): e0186414.PubMedPubMedCentralCrossRef Asano T, Ito H, Kariya Y, Hoshi K, Yoshihara A, Ugawa Y, et al. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PloS one. 2017;12(10): e0186414.PubMedPubMedCentralCrossRef
31.
go back to reference Trysberg E, Nylen K, Rosengren LE, Tarkowski A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 2003;48(10):2881–7.PubMedCrossRef Trysberg E, Nylen K, Rosengren LE, Tarkowski A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 2003;48(10):2881–7.PubMedCrossRef
34.
go back to reference Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12(1):114.PubMedPubMedCentralCrossRef Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12(1):114.PubMedPubMedCentralCrossRef
35.
go back to reference Burton MD, Rytych JL, Freund GG, Johnson RW. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice. Brain Behav Immun. 2013;30:66–72.PubMedPubMedCentralCrossRef Burton MD, Rytych JL, Freund GG, Johnson RW. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice. Brain Behav Immun. 2013;30:66–72.PubMedPubMedCentralCrossRef
36.
go back to reference Chiang CS, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994;16(3–4):212–21.PubMedCrossRef Chiang CS, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994;16(3–4):212–21.PubMedCrossRef
37.
go back to reference Cardenas H, Bolin LM. Compromised reactive microgliosis in MPTP-lesioned IL-6 KO mice. Brain Res. 2003;985(1):89–97.PubMedCrossRef Cardenas H, Bolin LM. Compromised reactive microgliosis in MPTP-lesioned IL-6 KO mice. Brain Res. 2003;985(1):89–97.PubMedCrossRef
40.
go back to reference Ercan E, Magro-Checa C, Valabregue R, Branzoli F, Wood ET, Steup-Beekman GM, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites. Brain. 2016;139(5):1447–57.PubMedPubMedCentralCrossRef Ercan E, Magro-Checa C, Valabregue R, Branzoli F, Wood ET, Steup-Beekman GM, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites. Brain. 2016;139(5):1447–57.PubMedPubMedCentralCrossRef
41.
go back to reference Han X, Xu T, Ding C, Wang D, Yao G, Chen H, et al. Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther. 2022;7(1):50.PubMedPubMedCentralCrossRef Han X, Xu T, Ding C, Wang D, Yao G, Chen H, et al. Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther. 2022;7(1):50.PubMedPubMedCentralCrossRef
42.
go back to reference Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, et al. A novel microglia-specific transcriptional signature correlates with behavioral deficits in neuropsychiatric lupus. Front Immunol. 2020;11:230.PubMedPubMedCentralCrossRef Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, et al. A novel microglia-specific transcriptional signature correlates with behavioral deficits in neuropsychiatric lupus. Front Immunol. 2020;11:230.PubMedPubMedCentralCrossRef
43.
go back to reference Maric D, Millward JM, Ballok DA, Szechtman H, Denburg JA, Barker JL, et al. Neurotoxic properties of cerebrospinal fluid from behaviorally impaired autoimmune mice. Brain Res. 2001;920(1):183–93.PubMedCrossRef Maric D, Millward JM, Ballok DA, Szechtman H, Denburg JA, Barker JL, et al. Neurotoxic properties of cerebrospinal fluid from behaviorally impaired autoimmune mice. Brain Res. 2001;920(1):183–93.PubMedCrossRef
44.
go back to reference Pikman R, Kivity S, Levy Y, Arango MT, Chapman J, Yonath H, et al. Neuropsychiatric SLE: from animal model to human. Lupus. 2017;26(5):470–7.PubMedCrossRef Pikman R, Kivity S, Levy Y, Arango MT, Chapman J, Yonath H, et al. Neuropsychiatric SLE: from animal model to human. Lupus. 2017;26(5):470–7.PubMedCrossRef
45.
46.
go back to reference Sakić B, Szechtman H, Braciak T, Richards C, Gauldie J, Denburg JA. Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res Bull. 1997;44(2):155–65.PubMedCrossRef Sakić B, Szechtman H, Braciak T, Richards C, Gauldie J, Denburg JA. Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res Bull. 1997;44(2):155–65.PubMedCrossRef
47.
go back to reference Sakić B, Gauldie J, Denburg JA, Szechtman H. Behavioral effects of infection with IL-6 adenovector. Brain Behav Immun. 2001;15(1):25–42.PubMedCrossRef Sakić B, Gauldie J, Denburg JA, Szechtman H. Behavioral effects of infection with IL-6 adenovector. Brain Behav Immun. 2001;15(1):25–42.PubMedCrossRef
48.
go back to reference Kapadia M, Zhao H, Ma D, Sakic B. Sustained immunosuppression alters olfactory function in the MRL model of CNS Lupus. J Neuroimmune Pharmacol. 2017;12(3):555–64.PubMedCrossRef Kapadia M, Zhao H, Ma D, Sakic B. Sustained immunosuppression alters olfactory function in the MRL model of CNS Lupus. J Neuroimmune Pharmacol. 2017;12(3):555–64.PubMedCrossRef
49.
go back to reference Sakić B, Szechtman H, Talangbayan H, Denburg SD, Carbotte RM, Denburg JA. Disturbed emotionality in autoimmune MRL-lpr mice. Physiol Behav. 1994;56(3):609–17.PubMedCrossRef Sakić B, Szechtman H, Talangbayan H, Denburg SD, Carbotte RM, Denburg JA. Disturbed emotionality in autoimmune MRL-lpr mice. Physiol Behav. 1994;56(3):609–17.PubMedCrossRef
50.
go back to reference Sakić B. The MRL model: an invaluable tool in studies of autoimmunity-brain interactions. Methods Mol Biol. 2012;934:277–99.PubMedCrossRef Sakić B. The MRL model: an invaluable tool in studies of autoimmunity-brain interactions. Methods Mol Biol. 2012;934:277–99.PubMedCrossRef
52.
go back to reference Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, et al. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation. 2021;18(1):229.PubMedPubMedCentralCrossRef Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, et al. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation. 2021;18(1):229.PubMedPubMedCentralCrossRef
53.
go back to reference Karino K, Kono M, Takeyama S, Kudo Y, Kanda M, Abe N, et al. Inhibitor of NF-κB kinase subunit ε contributes to neuropsychiatric manifestations in lupus-prone mice through microglial activation. Arthritis Rheumatol. 2023;75(3):411–23.PubMedCrossRef Karino K, Kono M, Takeyama S, Kudo Y, Kanda M, Abe N, et al. Inhibitor of NF-κB kinase subunit ε contributes to neuropsychiatric manifestations in lupus-prone mice through microglial activation. Arthritis Rheumatol. 2023;75(3):411–23.PubMedCrossRef
54.
go back to reference Bendorius M, Po C, Muller S, Jeltsch-David H. From systemic inflammation to neuroinflammation: the case of neurolupus. Int J Mol Sci. 2018;19(11):3588.PubMedPubMedCentralCrossRef Bendorius M, Po C, Muller S, Jeltsch-David H. From systemic inflammation to neuroinflammation: the case of neurolupus. Int J Mol Sci. 2018;19(11):3588.PubMedPubMedCentralCrossRef
55.
go back to reference Barcellini W, Rizzardi GP, Borghi MO, Nicoletti F, Fain C, Del Papa N, et al. In vitro type-1 and type-2 cytokine production in systemic lupus erythematosus: lack of relationship with clinical disease activity. Lupus. 1996;5(2):139–45.PubMedCrossRef Barcellini W, Rizzardi GP, Borghi MO, Nicoletti F, Fain C, Del Papa N, et al. In vitro type-1 and type-2 cytokine production in systemic lupus erythematosus: lack of relationship with clinical disease activity. Lupus. 1996;5(2):139–45.PubMedCrossRef
57.
go back to reference Celhar T, Fairhurst AM. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology (Oxford). 2017;56(1):i88–99.PubMed Celhar T, Fairhurst AM. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology (Oxford). 2017;56(1):i88–99.PubMed
58.
go back to reference Sidor MM, Sakic B, Malinowski PM, Ballok DA, Oleschuk CJ, Macri J. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol. 2005;165(1):104–13.PubMedPubMedCentralCrossRef Sidor MM, Sakic B, Malinowski PM, Ballok DA, Oleschuk CJ, Macri J. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol. 2005;165(1):104–13.PubMedPubMedCentralCrossRef
59.
go back to reference Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev. 2014;13(9):963–73.PubMedCrossRef Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev. 2014;13(9):963–73.PubMedCrossRef
60.
go back to reference Šakić B. Cerebrospinal fluid collection in laboratory mice: literature review and modified cisternal puncture method. J Neurosci Methods. 2019;311:402–7.PubMedCrossRef Šakić B. Cerebrospinal fluid collection in laboratory mice: literature review and modified cisternal puncture method. J Neurosci Methods. 2019;311:402–7.PubMedCrossRef
61.
go back to reference Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:207504.PubMedPubMedCentralCrossRef Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:207504.PubMedPubMedCentralCrossRef
62.
go back to reference Gelb S, Stock AD, Anzi S, Putterman C, Ben-Zvi A. Mechanisms of neuropsychiatric lupus: the relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. J Autoimmun. 2018;91:34–44.PubMedPubMedCentralCrossRef Gelb S, Stock AD, Anzi S, Putterman C, Ben-Zvi A. Mechanisms of neuropsychiatric lupus: the relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. J Autoimmun. 2018;91:34–44.PubMedPubMedCentralCrossRef
63.
go back to reference Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T, et al. Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol. 1991;3(3):273–8.PubMedCrossRef Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T, et al. Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol. 1991;3(3):273–8.PubMedCrossRef
64.
go back to reference Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, et al. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. 2023. Ann Rheum Dis. https://doi.org/10.1136/ard-2022-223506. Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, et al. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. 2023. Ann Rheum Dis. https://​doi.​org/​10.​1136/​ard-2022-223506.
65.
go back to reference Cash H, Relle M, Menke J, Brochhausen C, Jones SA, Topley N, et al. Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: the IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. J Rheumatol. 2010;37(1):60–70.PubMedCrossRef Cash H, Relle M, Menke J, Brochhausen C, Jones SA, Topley N, et al. Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: the IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. J Rheumatol. 2010;37(1):60–70.PubMedCrossRef
66.
go back to reference Gao HX, Sanders E, Tieng AT, Putterman C. Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J Neuroimmunol. 2010;229(1–2):112–22.PubMedCrossRef Gao HX, Sanders E, Tieng AT, Putterman C. Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J Neuroimmunol. 2010;229(1–2):112–22.PubMedCrossRef
67.
go back to reference Brick JE, Ong SH, Bathon JM, Walker SE, O’Sullivan FX, DiBartolomeo AG. Anti-histone antibodies in the serum of autoimmune MRL and NZB/NZW1 F1 mice. Clin Immunol Immunopathol. 1990;54(3):372–81.PubMedCrossRef Brick JE, Ong SH, Bathon JM, Walker SE, O’Sullivan FX, DiBartolomeo AG. Anti-histone antibodies in the serum of autoimmune MRL and NZB/NZW1 F1 mice. Clin Immunol Immunopathol. 1990;54(3):372–81.PubMedCrossRef
68.
go back to reference Moore E, Huang MW, Reynolds CA, Macian F, Putterman C. Choroid plexus-infiltrating T cells as drivers of murine neuropsychiatric lupus. Arthritis Rheumatol. 2022;74(11):1796–807.PubMedPubMedCentralCrossRef Moore E, Huang MW, Reynolds CA, Macian F, Putterman C. Choroid plexus-infiltrating T cells as drivers of murine neuropsychiatric lupus. Arthritis Rheumatol. 2022;74(11):1796–807.PubMedPubMedCentralCrossRef
69.
70.
go back to reference Stock AD, Wen J, Doerner J, Herlitz LC, Gulinello M, Putterman C. Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. J Neuroinflammation. 2015;12:205.PubMedPubMedCentralCrossRef Stock AD, Wen J, Doerner J, Herlitz LC, Gulinello M, Putterman C. Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. J Neuroinflammation. 2015;12:205.PubMedPubMedCentralCrossRef
71.
go back to reference Mike EV, Makinde HM, Gulinello M, Vanarsa K, Herlitz L, Gadhvi G, et al. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. J Autoimmun. 2019;96:59–73.PubMedCrossRef Mike EV, Makinde HM, Gulinello M, Vanarsa K, Herlitz L, Gadhvi G, et al. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. J Autoimmun. 2019;96:59–73.PubMedCrossRef
72.
go back to reference Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C. Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun. 2016;54:27–37.PubMedCrossRef Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C. Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun. 2016;54:27–37.PubMedCrossRef
73.
go back to reference Reynolds JA, Li Y, Herlitz L, Mohan C, Putterman C. Novel biomarker discovery through comprehensive proteomic analysis of lupus mouse serum. J Autoimmun. 2024;142: 103134.PubMedCrossRef Reynolds JA, Li Y, Herlitz L, Mohan C, Putterman C. Novel biomarker discovery through comprehensive proteomic analysis of lupus mouse serum. J Autoimmun. 2024;142: 103134.PubMedCrossRef
74.
go back to reference Chalmers SA, Doerner J, Bosanac T, Khalil S, Smith D, Harcken C, et al. Therapeutic blockade of immune complex-mediated glomerulonephritis by highly selective inhibition of Bruton’s tyrosine kinase. Sci Rep. 2016;6:26164.PubMedPubMedCentralCrossRef Chalmers SA, Doerner J, Bosanac T, Khalil S, Smith D, Harcken C, et al. Therapeutic blockade of immune complex-mediated glomerulonephritis by highly selective inhibition of Bruton’s tyrosine kinase. Sci Rep. 2016;6:26164.PubMedPubMedCentralCrossRef
75.
go back to reference Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European league against rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151–9.PubMedCrossRef Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European league against rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151–9.PubMedCrossRef
76.
go back to reference Palazzo L, Lindblom J, Mohan C, Parodis I. Current insights on biomarkers in lupus nephritis: a systematic review of the literature. J Clin Med. 2022;11(19):5759.PubMedPubMedCentralCrossRef Palazzo L, Lindblom J, Mohan C, Parodis I. Current insights on biomarkers in lupus nephritis: a systematic review of the literature. J Clin Med. 2022;11(19):5759.PubMedPubMedCentralCrossRef
77.
go back to reference Chalmers SA, Wen J, Shum J, Doerner J, Herlitz L, Putterman C. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin Immunol. 2017;185:100–8.PubMedCrossRef Chalmers SA, Wen J, Shum J, Doerner J, Herlitz L, Putterman C. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin Immunol. 2017;185:100–8.PubMedCrossRef
78.
79.
go back to reference Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529.PubMedPubMedCentralCrossRef Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529.PubMedPubMedCentralCrossRef
82.
go back to reference de Landeta AB, Pereyra M, Medina JH, Katche C. Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep. 2020;10(1):4002.PubMedPubMedCentralCrossRef de Landeta AB, Pereyra M, Medina JH, Katche C. Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep. 2020;10(1):4002.PubMedPubMedCentralCrossRef
83.
go back to reference Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev. 2022;141: 104855.PubMedPubMedCentralCrossRef Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev. 2022;141: 104855.PubMedPubMedCentralCrossRef
84.
go back to reference Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 3rd ed. Oxford: Academic; 2008. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 3rd ed. Oxford: Academic; 2008.
85.
go back to reference Oon S, Monaghan K, Ng M, Hoi A, Morand E, Vairo G, et al. A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus. Clin Transl Immunol. 2019;8(12): e01097.CrossRef Oon S, Monaghan K, Ng M, Hoi A, Morand E, Vairo G, et al. A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus. Clin Transl Immunol. 2019;8(12): e01097.CrossRef
86.
go back to reference Ichinose K, Arima K, Ushigusa T, Nishino A, Nakashima Y, Suzuki T, et al. Distinguishing the cerebrospinal fluid cytokine profile in neuropsychiatric systemic lupus erythematosus from other autoimmune neurological diseases. Clin Immunol. 2015;157(2):114–20.PubMedCrossRef Ichinose K, Arima K, Ushigusa T, Nishino A, Nakashima Y, Suzuki T, et al. Distinguishing the cerebrospinal fluid cytokine profile in neuropsychiatric systemic lupus erythematosus from other autoimmune neurological diseases. Clin Immunol. 2015;157(2):114–20.PubMedCrossRef
87.
go back to reference Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, Llorente L, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56(4):1242–50.PubMedCrossRef Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, Llorente L, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56(4):1242–50.PubMedCrossRef
88.
go back to reference Sakic B, Maric I, Koeberle PD, Millward JM, Szechtman H, Maric D, et al. Increased TUNEL staining in brains of autoimmune Fas-deficient mice. J Neuroimmunol. 2000;104(2):147–54.PubMedCrossRef Sakic B, Maric I, Koeberle PD, Millward JM, Szechtman H, Maric D, et al. Increased TUNEL staining in brains of autoimmune Fas-deficient mice. J Neuroimmunol. 2000;104(2):147–54.PubMedCrossRef
89.
go back to reference Schlüter KD, Wolf A, Schreckenberg R. Coming back to physiology: extra hepatic functions of proprotein convertase Subtilisin/Kexin Type 9. Front Physiol. 2020;11: 598649.PubMedPubMedCentralCrossRef Schlüter KD, Wolf A, Schreckenberg R. Coming back to physiology: extra hepatic functions of proprotein convertase Subtilisin/Kexin Type 9. Front Physiol. 2020;11: 598649.PubMedPubMedCentralCrossRef
90.
go back to reference Picklo MJ Sr, Olson SJ, Hayes JD, Markesbery WR, Montine TJ. Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Res. 2001;916(1–2):229–38.PubMedCrossRef Picklo MJ Sr, Olson SJ, Hayes JD, Markesbery WR, Montine TJ. Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Res. 2001;916(1–2):229–38.PubMedCrossRef
91.
go back to reference Jeltsch-David H, Muller S. Autoimmunity, neuroinflammation, pathogen load: a decisive crosstalk in neuropsychiatric SLE. J Autoimmun. 2016;74:13–26.PubMedCrossRef Jeltsch-David H, Muller S. Autoimmunity, neuroinflammation, pathogen load: a decisive crosstalk in neuropsychiatric SLE. J Autoimmun. 2016;74:13–26.PubMedCrossRef
92.
go back to reference Hanly JG, Kozora E, Beyea SD, Birnbaum J. Nervous system disease in systemic lupus erythematosus: current status and future directions. Arthritis Rheumatol. 2019;71(1):33–42.PubMedCrossRef Hanly JG, Kozora E, Beyea SD, Birnbaum J. Nervous system disease in systemic lupus erythematosus: current status and future directions. Arthritis Rheumatol. 2019;71(1):33–42.PubMedCrossRef
93.
go back to reference Stephan D, Sbai O, Wen J, Couraud PO, Putterman C, Khrestchatisky M, et al. TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J Neuroinflammation. 2013;10:9.PubMedPubMedCentralCrossRef Stephan D, Sbai O, Wen J, Couraud PO, Putterman C, Khrestchatisky M, et al. TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J Neuroinflammation. 2013;10:9.PubMedPubMedCentralCrossRef
94.
go back to reference Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta Mol Cell Res. 2016;1863(6):1218–27.CrossRef Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta Mol Cell Res. 2016;1863(6):1218–27.CrossRef
95.
go back to reference Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(2):297–314.PubMedPubMedCentralCrossRef Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(2):297–314.PubMedPubMedCentralCrossRef
96.
go back to reference Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74(2):318–26.PubMedPubMedCentralCrossRef Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74(2):318–26.PubMedPubMedCentralCrossRef
97.
go back to reference Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B. Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res. 2012;234(2):303–11.PubMedCrossRef Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B. Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res. 2012;234(2):303–11.PubMedCrossRef
98.
go back to reference Shoenfeld N, Agmon-Levin N, Flitman-Katzevman I, Paran D, Katz BS, Kivity S, et al. The sense of smell in systemic lupus erythematosus. Arthritis Rheum. 2009;60(5):1484–7.PubMedCrossRef Shoenfeld N, Agmon-Levin N, Flitman-Katzevman I, Paran D, Katz BS, Kivity S, et al. The sense of smell in systemic lupus erythematosus. Arthritis Rheum. 2009;60(5):1484–7.PubMedCrossRef
99.
go back to reference Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun. 2013;43:44–54.PubMedPubMedCentralCrossRef Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun. 2013;43:44–54.PubMedPubMedCentralCrossRef
100.
go back to reference Li Y, Eskelund AR, Zhou H, Budac DP, Sánchez C, Gulinello M. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for Neuropsychiatric Lupus (NP-SLE). Int J Mol Sci. 2015;16(7):15150–71.PubMedPubMedCentralCrossRef Li Y, Eskelund AR, Zhou H, Budac DP, Sánchez C, Gulinello M. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for Neuropsychiatric Lupus (NP-SLE). Int J Mol Sci. 2015;16(7):15150–71.PubMedPubMedCentralCrossRef
101.
go back to reference Kandell ER, Koester JD, Mack SH, Siegelbaum S. Principles of neural science. New York: McGraw-Hill; 2021. Kandell ER, Koester JD, Mack SH, Siegelbaum S. Principles of neural science. New York: McGraw-Hill; 2021.
102.
go back to reference Ballok DA, Millward JM, Sakic B. Neurodegeneration in autoimmune MRL-lpr mice as revealed by Fluoro Jade B staining. Brain Res. 2003;964(2):200–10.PubMedCrossRef Ballok DA, Millward JM, Sakic B. Neurodegeneration in autoimmune MRL-lpr mice as revealed by Fluoro Jade B staining. Brain Res. 2003;964(2):200–10.PubMedCrossRef
103.
go back to reference Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305(5688):1258–64.PubMedCrossRef Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305(5688):1258–64.PubMedCrossRef
104.
go back to reference Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–6.PubMedCrossRef Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–6.PubMedCrossRef
105.
go back to reference Save E, Sargolini F. Disentangling the role of the MEC and LEC in the processing of spatial and non-spatial information: contribution of lesion studies. Front Syst Neurosci. 2017;11:81.PubMedPubMedCentralCrossRef Save E, Sargolini F. Disentangling the role of the MEC and LEC in the processing of spatial and non-spatial information: contribution of lesion studies. Front Syst Neurosci. 2017;11:81.PubMedPubMedCentralCrossRef
106.
go back to reference Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, et al. Inflammatory pathology markers (activated microglia and reactive astrocytes) in early and late onset Alzheimer disease: a post mortem study. Neuropathol Appl Neurobiol. 2018;44(3):298–313.PubMedCrossRef Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, et al. Inflammatory pathology markers (activated microglia and reactive astrocytes) in early and late onset Alzheimer disease: a post mortem study. Neuropathol Appl Neurobiol. 2018;44(3):298–313.PubMedCrossRef
107.
go back to reference Igarashi KM. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023;46(2):124–36.PubMedCrossRef Igarashi KM. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023;46(2):124–36.PubMedCrossRef
108.
go back to reference Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339–50.PubMedPubMedCentralCrossRef Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339–50.PubMedPubMedCentralCrossRef
109.
go back to reference Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, et al. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun. 2015;60:40–50.PubMedPubMedCentralCrossRef Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, et al. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun. 2015;60:40–50.PubMedPubMedCentralCrossRef
110.
go back to reference Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010;62(2):542–52.PubMedPubMedCentralCrossRef Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010;62(2):542–52.PubMedPubMedCentralCrossRef
111.
go back to reference Zhao P, Zhang N, An Z. Engineering antibody and protein therapeutics to cross the blood-brain barrier. Antib Ther. 2022;5(4):311–31.PubMedPubMedCentral Zhao P, Zhang N, An Z. Engineering antibody and protein therapeutics to cross the blood-brain barrier. Antib Ther. 2022;5(4):311–31.PubMedPubMedCentral
112.
go back to reference Nellan A, McCully CML, Cruz Garcia R, Jayaprakash N, Widemann BC, Lee DW, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018;132(6):662–6.PubMedPubMedCentralCrossRef Nellan A, McCully CML, Cruz Garcia R, Jayaprakash N, Widemann BC, Lee DW, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018;132(6):662–6.PubMedPubMedCentralCrossRef
113.
go back to reference Sidman RL, Angevine JB, Pierce ET. Atlas of the mouse brain and spinal cord. Cambridge: Harvard University Press; 1971. Sidman RL, Angevine JB, Pierce ET. Atlas of the mouse brain and spinal cord. Cambridge: Harvard University Press; 1971.
Metadata
Title
Constitutive knockout of interleukin-6 ameliorates memory deficits and entorhinal astrocytosis in the MRL/lpr mouse model of neuropsychiatric lupus
Authors
Joshua Reynolds
Michelle Huang
Yaxi Li
Myriam Meineck
Tamara Moeckel
Julia Weinmann-Menke
Chandra Mohan
Andreas Schwarting
Chaim Putterman
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03085-9

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue