Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Human serum-derived α-synuclein auto-antibodies mediate NMDA receptor-dependent degeneration of CNS neurons

Authors: Pretty Garg, Franziska Würtz, Fabian Hobbie, Klemens Buttgereit, Abhishek Aich, Kristian Leite, Peter Rehling, Sebastian Kügler, Mathias Bähr

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson’s disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB).

Findings

The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES.

Conclusion

These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.CrossRef Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.CrossRef
2.
go back to reference Jankovic J. Current concepts in Parkinson’s disease and other movement disorders. Curr Opin Neurol. 2012;25:429–32.PubMedCrossRef Jankovic J. Current concepts in Parkinson’s disease and other movement disorders. Curr Opin Neurol. 2012;25:429–32.PubMedCrossRef
3.
go back to reference Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. Brain region-dependent differential expression of alpha-synuclein. J Comp Neurol. 2016;524:1236–58.PubMedCrossRef Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. Brain region-dependent differential expression of alpha-synuclein. J Comp Neurol. 2016;524:1236–58.PubMedCrossRef
4.
go back to reference Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.PubMedPubMedCentralCrossRef Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.PubMedPubMedCentralCrossRef
5.
go back to reference Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.PubMedCrossRef Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.PubMedCrossRef
6.
go back to reference Fauser M, Lohle M, Ebersbach G, Odin P, Fuchs G, Jost WH, Chaudhuri KR, Koch R. NoMoFlu PDsg, Storch A. Intraindividual variability of Nonmotor fluctuations in Advanced Parkinson’s Disease. J Parkinsons Dis. 2015;5:737–41.PubMedCrossRef Fauser M, Lohle M, Ebersbach G, Odin P, Fuchs G, Jost WH, Chaudhuri KR, Koch R. NoMoFlu PDsg, Storch A. Intraindividual variability of Nonmotor fluctuations in Advanced Parkinson’s Disease. J Parkinsons Dis. 2015;5:737–41.PubMedCrossRef
7.
go back to reference Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76:343–8.PubMedPubMedCentralCrossRef Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76:343–8.PubMedPubMedCentralCrossRef
8.
go back to reference Wolters E. Variability in the clinical expression of Parkinson’s disease. J Neurol Sci. 2008;266:197–203.PubMedCrossRef Wolters E. Variability in the clinical expression of Parkinson’s disease. J Neurol Sci. 2008;266:197–203.PubMedCrossRef
9.
go back to reference Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci. 2019;49:328–38.PubMedCrossRef Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci. 2019;49:328–38.PubMedCrossRef
10.
go back to reference Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.ADSPubMedCrossRef Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.ADSPubMedCrossRef
11.
go back to reference Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011;122:187–204.PubMedCrossRef Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011;122:187–204.PubMedCrossRef
12.
go back to reference Jellinger KA. Formation and development of Lewy pathology: a critical update. J Neurol. 2009;256(Suppl 3):270–9.PubMedCrossRef Jellinger KA. Formation and development of Lewy pathology: a critical update. J Neurol. 2009;256(Suppl 3):270–9.PubMedCrossRef
13.
go back to reference Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting alpha-Synuclein. Mov Disord. 2023. Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting alpha-Synuclein. Mov Disord. 2023.
14.
go back to reference Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, Dawson VL, Dawson TM, Oseroff C, Pham J, Sidney J, Dillon MB, Carpenter C, Weiskopf D, Phillips E, Mallal S, Peters B, Frazier A, Lindestam Arlehamn CS, Sette A. T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature. 2017;546:656–61.ADSPubMedPubMedCentralCrossRef Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, Dawson VL, Dawson TM, Oseroff C, Pham J, Sidney J, Dillon MB, Carpenter C, Weiskopf D, Phillips E, Mallal S, Peters B, Frazier A, Lindestam Arlehamn CS, Sette A. T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature. 2017;546:656–61.ADSPubMedPubMedCentralCrossRef
15.
go back to reference Maetzler W, Apel A, Langkamp M, Deuschle C, Dilger SS, Stirnkorb JG, Schulte C, Schleicher E, Gasser T, Berg D. Comparable autoantibody serum levels against amyloid- and inflammation-associated proteins in Parkinson’s disease patients and controls. PLoS ONE. 2014;9:e88604.ADSPubMedPubMedCentralCrossRef Maetzler W, Apel A, Langkamp M, Deuschle C, Dilger SS, Stirnkorb JG, Schulte C, Schleicher E, Gasser T, Berg D. Comparable autoantibody serum levels against amyloid- and inflammation-associated proteins in Parkinson’s disease patients and controls. PLoS ONE. 2014;9:e88604.ADSPubMedPubMedCentralCrossRef
16.
go back to reference Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem. 2007;101:749–56.PubMedPubMedCentralCrossRef Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem. 2007;101:749–56.PubMedPubMedCentralCrossRef
17.
go back to reference Kuhn I, Rogosch T, Schindler TI, Tackenberg B, Zemlin M, Maier RF, Dodel R, Kronimus Y. Serum titers of autoantibodies against alpha-synuclein and tau in child- and adulthood. J Neuroimmunol. 2018;315:33–9.PubMedCrossRef Kuhn I, Rogosch T, Schindler TI, Tackenberg B, Zemlin M, Maier RF, Dodel R, Kronimus Y. Serum titers of autoantibodies against alpha-synuclein and tau in child- and adulthood. J Neuroimmunol. 2018;315:33–9.PubMedCrossRef
18.
go back to reference Patrias LM, Klaver AC, Coffey MP, Loeffler DA. Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol. 2010;161:527–35.PubMedPubMedCentralCrossRef Patrias LM, Klaver AC, Coffey MP, Loeffler DA. Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol. 2010;161:527–35.PubMedPubMedCentralCrossRef
19.
go back to reference Smith LM, Klaver AC, Coffey MP, Dang L, Loeffler DA. Effects of intravenous immunoglobulin on alpha synuclein aggregation and neurotoxicity. Int Immunopharmacol. 2012;14:550–7.PubMedCrossRef Smith LM, Klaver AC, Coffey MP, Dang L, Loeffler DA. Effects of intravenous immunoglobulin on alpha synuclein aggregation and neurotoxicity. Int Immunopharmacol. 2012;14:550–7.PubMedCrossRef
20.
go back to reference Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflammation. 2012;9:188.PubMedPubMedCentralCrossRef Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflammation. 2012;9:188.PubMedPubMedCentralCrossRef
21.
go back to reference Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–9.PubMedCrossRef Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–9.PubMedCrossRef
22.
go back to reference Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain. 2005;128:2665–74.PubMedCrossRef Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain. 2005;128:2665–74.PubMedCrossRef
23.
go back to reference Piepgras J, Holtje M, Otto C, Harms H, Satapathy A, Cesca F, Benfenati F, Gitler D, Pich A, Zander JF, Ahnert-Hilger G, Ruprecht K. Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e169.PubMedPubMedCentralCrossRef Piepgras J, Holtje M, Otto C, Harms H, Satapathy A, Cesca F, Benfenati F, Gitler D, Pich A, Zander JF, Ahnert-Hilger G, Ruprecht K. Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e169.PubMedPubMedCentralCrossRef
24.
go back to reference Lakos A, Ferenczi E, Komoly S, Granstrom M. Different B-cell populations are responsible for the peripheral and intrathecal antibody production in neuroborreliosis. Int Immunol. 2005;17:1631–7.PubMedCrossRef Lakos A, Ferenczi E, Komoly S, Granstrom M. Different B-cell populations are responsible for the peripheral and intrathecal antibody production in neuroborreliosis. Int Immunol. 2005;17:1631–7.PubMedCrossRef
25.
26.
go back to reference Li X, Koudstaal W, Fletcher L, Costa M, van Winsen M, Siregar B, Inganas H, Kim J, Keogh E, Macedo J, Holland T, Perry S, Bard F, Hoozemans JJ, Goudsmit J, Apetri A, Pascual G. Naturally occurring antibodies isolated from PD patients inhibit synuclein seeding in vitro and recognize Lewy pathology. Acta Neuropathol. 2019;137:825–36.PubMedPubMedCentralCrossRef Li X, Koudstaal W, Fletcher L, Costa M, van Winsen M, Siregar B, Inganas H, Kim J, Keogh E, Macedo J, Holland T, Perry S, Bard F, Hoozemans JJ, Goudsmit J, Apetri A, Pascual G. Naturally occurring antibodies isolated from PD patients inhibit synuclein seeding in vitro and recognize Lewy pathology. Acta Neuropathol. 2019;137:825–36.PubMedPubMedCentralCrossRef
27.
go back to reference Braczynski AK, Sevenich M, Gering I, Kupreichyk T, Agerschou ED, Kronimus Y, Habib P, Stoldt M, Willbold D, Schulz JB, Bach JP, Falkenburger BH, Hoyer W. Alpha-synuclein-specific naturally occurring antibodies inhibit aggregation in Vitro and in vivo. Biomolecules. 2022;12. Braczynski AK, Sevenich M, Gering I, Kupreichyk T, Agerschou ED, Kronimus Y, Habib P, Stoldt M, Willbold D, Schulz JB, Bach JP, Falkenburger BH, Hoyer W. Alpha-synuclein-specific naturally occurring antibodies inhibit aggregation in Vitro and in vivo. Biomolecules. 2022;12.
28.
go back to reference Yu HJ, Thijssen E, van Brummelen E, van der Plas JL, Radanovic I, Moerland M, Hsieh E, Groeneveld GJ, Dodart JC. A Randomized First-in-human study with UB-312, a UBITh(R) alpha-synuclein peptide vaccine. Mov Disord. 2022;37:1416–24.PubMedPubMedCentralCrossRef Yu HJ, Thijssen E, van Brummelen E, van der Plas JL, Radanovic I, Moerland M, Hsieh E, Groeneveld GJ, Dodart JC. A Randomized First-in-human study with UB-312, a UBITh(R) alpha-synuclein peptide vaccine. Mov Disord. 2022;37:1416–24.PubMedPubMedCentralCrossRef
29.
go back to reference Garg P, Maass F, Sundaram SM, Mollenhauer B, Mahajani S, van Riesen C, Kügler S, Bähr M. The relevance of synuclein autoantibodies as a biomarker for Parkinson’s disease. Mol Cell Neurosci. 2022;121:103746.PubMedCrossRef Garg P, Maass F, Sundaram SM, Mollenhauer B, Mahajani S, van Riesen C, Kügler S, Bähr M. The relevance of synuclein autoantibodies as a biomarker for Parkinson’s disease. Mol Cell Neurosci. 2022;121:103746.PubMedCrossRef
30.
go back to reference Leite K, Garg P, Spitzner FP, Guerin Darvas S, Bähr M, Priesemann V, Kügler S. Alpha-synuclein impacts on intrinsic neuronal network activity through reduced levels of cyclic AMP and diminished numbers of active presynaptic terminals. Front Mol Neurosci. 2022;15:868790.PubMedPubMedCentralCrossRef Leite K, Garg P, Spitzner FP, Guerin Darvas S, Bähr M, Priesemann V, Kügler S. Alpha-synuclein impacts on intrinsic neuronal network activity through reduced levels of cyclic AMP and diminished numbers of active presynaptic terminals. Front Mol Neurosci. 2022;15:868790.PubMedPubMedCentralCrossRef
31.
go back to reference Tolo J, Taschenberger G, Leite K, Stahlberg MA, Spehlbrink G, Kues J, Munari F, Capaldi S, Becker S, Zweckstetter M, Dean C, Bähr M, Kügler S. Pathophysiological consequences of neuronal alpha-synuclein overexpression: impacts on Ion Homeostasis, stress signaling, mitochondrial Integrity, and Electrical Activity. Front Mol Neurosci. 2018;11:49.PubMedPubMedCentralCrossRef Tolo J, Taschenberger G, Leite K, Stahlberg MA, Spehlbrink G, Kues J, Munari F, Capaldi S, Becker S, Zweckstetter M, Dean C, Bähr M, Kügler S. Pathophysiological consequences of neuronal alpha-synuclein overexpression: impacts on Ion Homeostasis, stress signaling, mitochondrial Integrity, and Electrical Activity. Front Mol Neurosci. 2018;11:49.PubMedPubMedCentralCrossRef
32.
go back to reference Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30.PubMedCrossRef Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–30.PubMedCrossRef
33.
go back to reference Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, Kügler S. Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther. 2012;20:534–43.PubMedCrossRef Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, Kügler S. Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther. 2012;20:534–43.PubMedCrossRef
34.
go back to reference Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A. 2006;103:17513–8.ADSPubMedPubMedCentralCrossRef Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A. 2006;103:17513–8.ADSPubMedPubMedCentralCrossRef
35.
go back to reference Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20:160–72.PubMedCrossRef Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20:160–72.PubMedCrossRef
36.
go back to reference Veldkamp CT, Koplinski CA, Jensen DR, Peterson FC, Smits KM, Smith BL, Johnson SK, Lettieri C, Buchholz WG, Solheim JC, Volkman BF. Production of recombinant chemokines and Validation of Refolding. Methods Enzymol. 2016;570:539–65.PubMedCrossRef Veldkamp CT, Koplinski CA, Jensen DR, Peterson FC, Smits KM, Smith BL, Johnson SK, Lettieri C, Buchholz WG, Solheim JC, Volkman BF. Production of recombinant chemokines and Validation of Refolding. Methods Enzymol. 2016;570:539–65.PubMedCrossRef
38.
go back to reference Frandsen A, Schousboe A. Dantrolene prevents glutamate cytotoxicity and Ca2 + release from intracellular stores in cultured cerebral cortical neurons. J Neurochem. 1991;56:1075–8.PubMedCrossRef Frandsen A, Schousboe A. Dantrolene prevents glutamate cytotoxicity and Ca2 + release from intracellular stores in cultured cerebral cortical neurons. J Neurochem. 1991;56:1075–8.PubMedCrossRef
39.
go back to reference Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of ins(1,4,5)P3-induced Ca2 + release. J Biochem. 1997;122:498–505.PubMedCrossRef Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of ins(1,4,5)P3-induced Ca2 + release. J Biochem. 1997;122:498–505.PubMedCrossRef
40.
go back to reference Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239–47.ADSPubMedCrossRef Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239–47.ADSPubMedCrossRef
41.
go back to reference Davies J, Francis AA, Jones AW, Watkins JC. 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett. 1981;21:77–81.PubMedCrossRef Davies J, Francis AA, Jones AW, Watkins JC. 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett. 1981;21:77–81.PubMedCrossRef
42.
go back to reference Limapichat W, Yu WY, Branigan E, Lester HA, Dougherty DA. Key binding interactions for memantine in the NMDA receptor. ACS Chem Neurosci. 2013;4:255–60.PubMedCrossRef Limapichat W, Yu WY, Branigan E, Lester HA, Dougherty DA. Key binding interactions for memantine in the NMDA receptor. ACS Chem Neurosci. 2013;4:255–60.PubMedCrossRef
43.
go back to reference Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, Dexter DT. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis. 2015;74:392–405.PubMedCrossRef Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, Dexter DT. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis. 2015;74:392–405.PubMedCrossRef
44.
go back to reference Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef
45.
go back to reference von Coelln R, Shulman LM. Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol. 2016;29:727–34.CrossRef von Coelln R, Shulman LM. Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol. 2016;29:727–34.CrossRef
46.
go back to reference Burre J, Sharma M, Sudhof TC. Cell Biology and Pathophysiology of alpha-synuclein. Cold Spring Harb Perspect Med. 2018;8. Burre J, Sharma M, Sudhof TC. Cell Biology and Pathophysiology of alpha-synuclein. Cold Spring Harb Perspect Med. 2018;8.
48.
go back to reference Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Nasstrom T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergstrom J, Ingelsson M, Quintas A, Sebastiao AM, Lopes LV, Outeiro TF. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32:11750–62.PubMedPubMedCentralCrossRef Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Nasstrom T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergstrom J, Ingelsson M, Quintas A, Sebastiao AM, Lopes LV, Outeiro TF. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32:11750–62.PubMedPubMedCentralCrossRef
49.
go back to reference Tozzi A, de Iure A, Bagetta V, Tantucci M, Durante V, Quiroga-Varela A, Costa C, Di Filippo M, Ghiglieri V, Latagliata EC, Wegrzynowicz M, Decressac M, Giampa C, Dalley JW, Xia J, Gardoni F, Mellone M, El-Agnaf OM, Ardah MT, Puglisi-Allegra S, Bjorklund A, Spillantini MG, Picconi B, Calabresi P. Alpha-synuclein produces early behavioral alterations via Striatal Cholinergic Synaptic Dysfunction by interacting with GluN2D N-Methyl-D-Aspartate receptor subunit. Biol Psychiatry. 2016;79:402–14.PubMedCrossRef Tozzi A, de Iure A, Bagetta V, Tantucci M, Durante V, Quiroga-Varela A, Costa C, Di Filippo M, Ghiglieri V, Latagliata EC, Wegrzynowicz M, Decressac M, Giampa C, Dalley JW, Xia J, Gardoni F, Mellone M, El-Agnaf OM, Ardah MT, Puglisi-Allegra S, Bjorklund A, Spillantini MG, Picconi B, Calabresi P. Alpha-synuclein produces early behavioral alterations via Striatal Cholinergic Synaptic Dysfunction by interacting with GluN2D N-Methyl-D-Aspartate receptor subunit. Biol Psychiatry. 2016;79:402–14.PubMedCrossRef
50.
go back to reference Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain. 2019;142:1365–85.PubMedCrossRef Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain. 2019;142:1365–85.PubMedCrossRef
51.
go back to reference Trudler D, Sanz-Blasco S, Eisele YS, Ghatak S, Bodhinathan K, Akhtar MW, Lynch WP, Pina-Crespo JC, Talantova M, Kelly JW, Lipton SA. Alpha-synuclein oligomers induce glutamate release from astrocytes and excessive extrasynaptic NMDAR activity in neurons, thus contributing to synapse loss. J Neurosci. 2021;41:2264–73.PubMedPubMedCentralCrossRef Trudler D, Sanz-Blasco S, Eisele YS, Ghatak S, Bodhinathan K, Akhtar MW, Lynch WP, Pina-Crespo JC, Talantova M, Kelly JW, Lipton SA. Alpha-synuclein oligomers induce glutamate release from astrocytes and excessive extrasynaptic NMDAR activity in neurons, thus contributing to synapse loss. J Neurosci. 2021;41:2264–73.PubMedPubMedCentralCrossRef
52.
go back to reference Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.PubMedPubMedCentralCrossRef Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.PubMedPubMedCentralCrossRef
53.
go back to reference Tang P, Chong L, Li X, Liu Y, Liu P, Hou C, Li R. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid Med Cell Longev. 2014;2014:208408.PubMedPubMedCentralCrossRef Tang P, Chong L, Li X, Liu Y, Liu P, Hou C, Li R. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid Med Cell Longev. 2014;2014:208408.PubMedPubMedCentralCrossRef
54.
go back to reference Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K. Neutralization of RANTES and Eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson Disease. J Biol Chem. 2016;291:15267–81.PubMedPubMedCentralCrossRef Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K. Neutralization of RANTES and Eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson Disease. J Biol Chem. 2016;291:15267–81.PubMedPubMedCentralCrossRef
55.
go back to reference Chiu YS, Wu KJ, Yu SJ, Wu KL, Wang YS, Lin J, Chu CY, Chen S, Chen H, Hsu SC, Wang Y, Chen YH. Peptide immunization against the C-terminal of alpha-synuclein reduces locomotor activity in mice overexpressing alpha-synuclein. PLoS ONE. 2023;18:e0291927.PubMedPubMedCentralCrossRef Chiu YS, Wu KJ, Yu SJ, Wu KL, Wang YS, Lin J, Chu CY, Chen S, Chen H, Hsu SC, Wang Y, Chen YH. Peptide immunization against the C-terminal of alpha-synuclein reduces locomotor activity in mice overexpressing alpha-synuclein. PLoS ONE. 2023;18:e0291927.PubMedPubMedCentralCrossRef
56.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.PubMedCrossRef Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.PubMedCrossRef
57.
go back to reference Psol M, Darvas SG, Leite K, Mahajani SU, Bähr M, Kügler S. Dementia with Lewy bodies-associated ss-synuclein mutations V70M and P123H cause mutation-specific neuropathological lesions. Hum Mol Genet. 2021. Psol M, Darvas SG, Leite K, Mahajani SU, Bähr M, Kügler S. Dementia with Lewy bodies-associated ss-synuclein mutations V70M and P123H cause mutation-specific neuropathological lesions. Hum Mol Genet. 2021.
58.
go back to reference Kügler S, Meyn L, Holzmuller H, Gerhardt E, Isenmann S, Schulz JB, Bähr M. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci. 2001;17:78–96.PubMedCrossRef Kügler S, Meyn L, Holzmuller H, Gerhardt E, Isenmann S, Schulz JB, Bähr M. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci. 2001;17:78–96.PubMedCrossRef
59.
go back to reference Schroeter CB, Herrmann AM, Bock S, Vogelsang A, Eichler S, Albrecht P, Meuth SG, Ruck T. One brain-all cells: a Comprehensive Protocol to isolate all principal CNS-Resident cell types from Brain and Spinal Cord of Adult Healthy and EAE Mice. Cells. 2021;10. Schroeter CB, Herrmann AM, Bock S, Vogelsang A, Eichler S, Albrecht P, Meuth SG, Ruck T. One brain-all cells: a Comprehensive Protocol to isolate all principal CNS-Resident cell types from Brain and Spinal Cord of Adult Healthy and EAE Mice. Cells. 2021;10.
60.
go back to reference Mahajani S, Raina A, Fokken C, Kügler S, Bähr M. Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death Dis. 2019;10:898.PubMedPubMedCentralCrossRef Mahajani S, Raina A, Fokken C, Kügler S, Bähr M. Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death Dis. 2019;10:898.PubMedPubMedCentralCrossRef
Metadata
Title
Human serum-derived α-synuclein auto-antibodies mediate NMDA receptor-dependent degeneration of CNS neurons
Authors
Pretty Garg
Franziska Würtz
Fabian Hobbie
Klemens Buttgereit
Abhishek Aich
Kristian Leite
Peter Rehling
Sebastian Kügler
Mathias Bähr
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03050-6

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue