Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Cutaneous Squamous Cell Carcinoma | Research

From Bowen disease to cutaneous squamous cell carcinoma: eight markers were verified from transcriptomic and proteomic analyses

Authors: Tang Biao, He Cai-feng, Lu Xiao-hong, Chang Xiao-li, Liu Wen-bei, Wang Jun, Ci Chao, Yuan Tao

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Bowen's disease is a cutaneous squamous cell carcinoma (CSCC) in situ. If left untreated, BD may progress to invasive CSCC. CSCC is one of the most common cutaneous carcinoma in the elderly and the advanced, metastasis CSCC usually have a poor outcomes. However, the mechanisms of invasion and metastasis from Bowen’s disease to CSCC is complicated and still unclear.

Objectives

The aim of this study was to explore the biomarkers and molecular alterations in Bowen’s disease development process via analyzing the proteomics changes in tissues of CSCC, Bowen disease and healthy skin.

Methods

A total of 7 individuals with CSCC (5 for proteomics study and 2 for validation), 7 individuals with Bowen disease (5 for proteomics study and 2 for validation) and 7 healthy controls (5 for proteomics study and 2 for validation) presented to the Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College between January 2021 and December 2021 were enrolled. The proteomics analysis was performed to screen differentially expressed proteins/gens (DEPs/DEGs) in the lesions of CSCC, Bowen disease and healthy skin tissues. The transcriptomic data (GSE32628) of CSCC was selected and downloaded from the GEO database. The common DEGs in our proteomics results and GSE32628 between CSCC and healthy skin tissues were selected. And then, the common DEGs which significantly up or down-regulated between CSCC and Bowen disease in our proteomics results were further screened to identify using Western blot methods in the validation group. CSCC A431 cells were transfected with SERPINB1 small interfering RNA (si-SERPINB1) or small interfering RNA negative control (si-NC). To explore the effect of SERPINB1 silencing on migration and invasion ability of A431 cells.

Results

A total of 501 proteins were differentially expressed between the CSCC and healthy skin tissues, with 332 up-regulated and 169 down-regulated at least 1.5-fold with a P value < 0.05. These DEPs involved multiple biological functions such as protein binding process, immune, inflammation, ribosome, protein digestion and absorption, ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway and others. A total of 20 common DEGs (COL3A1, LUM, TNC, COL1A1, ALDH3A2, FSCN1, SERPINB4, SERPINB1, CD36, COL4A1, CSTB, GPX3, S100A7, ACTN1, SERPINB3, S100A8, RAB31, STAT1, SPRR1B, S100A9) between CSCC and healthy skin tissues in GSE32628 and our proteomics results were found. Besides, the proteins of TNC, FSCN1, SERPINB1, ACTN1 and RAB31 in CSCC were significantly up-regulated, while COL3A1, COL1A1 and CD36 were significantly down-regulated relative to Bowen disease in proteomics results. These proteins were mainly involved in multiple pathways, including Focal adhesion, ECM-receptor interaction, Human papillomavirus infection, PI3K-Akt signaling pathway, PPAR signaling pathway, AMPK signaling pathway and others. These eight proteins were selected for further validation. According to the Western blotting analysis, when compared with the Bowen disease and healthy skin tissues, we found that the relative expression levels of TNC, FSCN1, SERPINB1, ACTN1 and RAB31 in the CSCC were significantly increased, while COL1A1 and CD36 were significantly decreased, and the differences were statistically significant (P < 0.05). Furthermore, the relative expression levels of TNC, FSCN1, SERPINB1 in the Bowen disease were also significantly increased, while the COL3A1 were also significantly decreased relative to the healthy control. SERPINB1 siRNA inhibited the expression of SERPINB1 at mRNA and protein levels in the A431 cells. After interfering with the expression of SERPINB1, the migration and invasion ability in the A431 cells were significantly decreased (P < 0.05).

Conclusions

This study highlights that eight proteins, TNC, FSCN1, SERPINB1, ACTN1, RAB31, COL3A1, COL1A1, CD36, were significantly associated with the mechanisms of invasion and metastasis in Bowen’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.CrossRef Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.CrossRef
2.
go back to reference Morton CA, Birnie AJ, Eedy DJ. British Association of Dermatologists’ guidelines for the management of squamous cell carcinoma in situ (Bowen’s disease) 2014. Br J Dermatol. 2014;170(2):245–60.CrossRef Morton CA, Birnie AJ, Eedy DJ. British Association of Dermatologists’ guidelines for the management of squamous cell carcinoma in situ (Bowen’s disease) 2014. Br J Dermatol. 2014;170(2):245–60.CrossRef
3.
go back to reference Ratour-Bigot C, Chemidling M, Montlahuc C, et al. Squamous cell carcinoma following photodynamic therapy for cutaneous Bowen’s disease in a series of 105 patients. Acta Derm Venereol. 2016;96(5):658–63.CrossRef Ratour-Bigot C, Chemidling M, Montlahuc C, et al. Squamous cell carcinoma following photodynamic therapy for cutaneous Bowen’s disease in a series of 105 patients. Acta Derm Venereol. 2016;96(5):658–63.CrossRef
4.
go back to reference Genders RE, Osinga JAJ, Tromp EE, et al. Metastasis risk of cutaneous squamous cell carcinoma in organ transplant recipients and immunocompetent patients. Acta Derm Venereol. 2018;98(6):551–5.CrossRef Genders RE, Osinga JAJ, Tromp EE, et al. Metastasis risk of cutaneous squamous cell carcinoma in organ transplant recipients and immunocompetent patients. Acta Derm Venereol. 2018;98(6):551–5.CrossRef
5.
go back to reference Harel M, Ortenberg R, Varanasi SK, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 2019;179(1):236–50.CrossRef Harel M, Ortenberg R, Varanasi SK, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 2019;179(1):236–50.CrossRef
6.
go back to reference Shapanis A, Lai C, Smith S, et al. Identification of proteins associated with development of metastasis from cutaneous squamous cell carcinomas (cSCCs) via proteomic analysis of primary cSCCs. Br J Dermatol. 2021;184(4):709–21.CrossRef Shapanis A, Lai C, Smith S, et al. Identification of proteins associated with development of metastasis from cutaneous squamous cell carcinomas (cSCCs) via proteomic analysis of primary cSCCs. Br J Dermatol. 2021;184(4):709–21.CrossRef
7.
go back to reference Giusti L, Angeloni C, Lucacchini A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics. 2019;16(6):513–20.CrossRef Giusti L, Angeloni C, Lucacchini A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics. 2019;16(6):513–20.CrossRef
8.
go back to reference Lydiatt WM, Patel SG, O’Sullivan B, et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.CrossRef Lydiatt WM, Patel SG, O’Sullivan B, et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37.CrossRef
9.
go back to reference Azimi A, Yang P, Ali M, et al. Data Independent acquisition proteomic analysis can discriminate between actinic keratosis, Bowen’s disease, and cutaneous squamous cell carcinoma. J Invest Dermatol. 2020;140(1):212-222.e11.CrossRef Azimi A, Yang P, Ali M, et al. Data Independent acquisition proteomic analysis can discriminate between actinic keratosis, Bowen’s disease, and cutaneous squamous cell carcinoma. J Invest Dermatol. 2020;140(1):212-222.e11.CrossRef
10.
go back to reference The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.CrossRef The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.CrossRef
11.
go back to reference Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303.CrossRef Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303.CrossRef
12.
go back to reference Geng Q, Shen Z, Li L, et al. COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ. 2021;9: e11145.CrossRef Geng Q, Shen Z, Li L, et al. COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ. 2021;9: e11145.CrossRef
13.
go back to reference Zhang C, Liu S, Wang X, et al. COL1A1 is a potential prognostic biomarker and correlated with immune infiltration in mesothelioma. Biomed Res Int. 2021;2021:5320941.PubMedPubMedCentral Zhang C, Liu S, Wang X, et al. COL1A1 is a potential prognostic biomarker and correlated with immune infiltration in mesothelioma. Biomed Res Int. 2021;2021:5320941.PubMedPubMedCentral
14.
go back to reference Engqvist H, Parris TZ, Kovács A, et al. Immunohistochemical validation of COL3A1, GPR158 and PITHD1 as prognostic biomarkers in early-stage ovarian carcinomas. BMC Cancer. 2019;19(1):928.CrossRef Engqvist H, Parris TZ, Kovács A, et al. Immunohistochemical validation of COL3A1, GPR158 and PITHD1 as prognostic biomarkers in early-stage ovarian carcinomas. BMC Cancer. 2019;19(1):928.CrossRef
15.
go back to reference Ladanyi A, Mukherjee A, Kenny HA, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285–301.CrossRef Ladanyi A, Mukherjee A, Kenny HA, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285–301.CrossRef
16.
go back to reference Hashimoto M, Uesugi N, Osakabe M, et al. Expression patterns of microenvironmental factors and Tenascin-C at the invasive front of stage II and III colorectal cancer: novel tumor prognostic markers. Front Oncol. 2021;11: 690816.CrossRef Hashimoto M, Uesugi N, Osakabe M, et al. Expression patterns of microenvironmental factors and Tenascin-C at the invasive front of stage II and III colorectal cancer: novel tumor prognostic markers. Front Oncol. 2021;11: 690816.CrossRef
17.
go back to reference Xia S, Lal B, Tung B, et al. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016;18(4):507–17.CrossRef Xia S, Lal B, Tung B, et al. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016;18(4):507–17.CrossRef
18.
go back to reference Zhang M, Zhao Z, Duan X, et al. FSCN1 predicts survival and is regulated by a PI3K-dependent mechanism in renal cell carcinoma. J Cell Physiol. 2018;233(6):4748–58.CrossRef Zhang M, Zhao Z, Duan X, et al. FSCN1 predicts survival and is regulated by a PI3K-dependent mechanism in renal cell carcinoma. J Cell Physiol. 2018;233(6):4748–58.CrossRef
19.
go back to reference Liang J, Liu Z, Wei X, et al. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. BMC Cancer. 2019;19(1):1165.CrossRef Liang J, Liu Z, Wei X, et al. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. BMC Cancer. 2019;19(1):1165.CrossRef
20.
go back to reference Xie GF, Zhao LD, Chen Q, et al. High ACTN1 Is associated with poor prognosis, and ACTN1 silencing suppresses cell proliferation and metastasis in oral squamous cell carcinoma. Drug Des Devel Ther. 2020;14:1717–27.CrossRef Xie GF, Zhao LD, Chen Q, et al. High ACTN1 Is associated with poor prognosis, and ACTN1 silencing suppresses cell proliferation and metastasis in oral squamous cell carcinoma. Drug Des Devel Ther. 2020;14:1717–27.CrossRef
21.
go back to reference Chen Q, Zhou XW, Zhang AJ, et al. ACTN1 supports tumor growth by inhibiting Hippo signaling in hepatocellular carcinoma. J Exp Clin Cancer Res. 2021;40(1):23.CrossRef Chen Q, Zhou XW, Zhang AJ, et al. ACTN1 supports tumor growth by inhibiting Hippo signaling in hepatocellular carcinoma. J Exp Clin Cancer Res. 2021;40(1):23.CrossRef
22.
go back to reference Li H, Zhang SR, Xu HX, et al. SRPX2 and RAB31 are effective prognostic biomarkers in pancreatic cancer. J Cancer. 2019;10(12):2670–8.CrossRef Li H, Zhang SR, Xu HX, et al. SRPX2 and RAB31 are effective prognostic biomarkers in pancreatic cancer. J Cancer. 2019;10(12):2670–8.CrossRef
23.
go back to reference Huang Y, Liu R, Han X, et al. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. 2022;18(1):112–23.CrossRef Huang Y, Liu R, Han X, et al. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. 2022;18(1):112–23.CrossRef
24.
go back to reference Huasong G, Zongmei D, Jianfeng H, et al. Serine protease inhibitor (SERPIN) B1 suppresses cell migration and invasion in glioma cells. Brain Res. 2015;1600:59–69.CrossRef Huasong G, Zongmei D, Jianfeng H, et al. Serine protease inhibitor (SERPIN) B1 suppresses cell migration and invasion in glioma cells. Brain Res. 2015;1600:59–69.CrossRef
25.
go back to reference de Jong E, Lammerts MUPA, Genders RE, et al. Update of advanced cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2022;36(Suppl 1):6–10.CrossRef de Jong E, Lammerts MUPA, Genders RE, et al. Update of advanced cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2022;36(Suppl 1):6–10.CrossRef
26.
go back to reference Friedrich C, Schallenberg S, Kirchner M, et al. Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories. Nat Commun. 2021;12(1):3576.CrossRef Friedrich C, Schallenberg S, Kirchner M, et al. Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories. Nat Commun. 2021;12(1):3576.CrossRef
27.
go back to reference Mantsiou A, Makridakis M, Fasoulakis K, et al. Proteomics analysis of formalin fixed paraffin embedded tissues in the investigation of prostate cancer. J Proteome Res. 2020;19(7):2631–42.CrossRef Mantsiou A, Makridakis M, Fasoulakis K, et al. Proteomics analysis of formalin fixed paraffin embedded tissues in the investigation of prostate cancer. J Proteome Res. 2020;19(7):2631–42.CrossRef
28.
go back to reference Hameetman L, Commandeur S, Bavinck JN, et al. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer. 2013;13:58.CrossRef Hameetman L, Commandeur S, Bavinck JN, et al. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer. 2013;13:58.CrossRef
29.
go back to reference Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1): a004978.CrossRef Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1): a004978.CrossRef
30.
go back to reference Wang J, Li Y. CD36 tango in cancer: signaling pathways and functions. Theranostics. 2019;9(17):4893–908.CrossRef Wang J, Li Y. CD36 tango in cancer: signaling pathways and functions. Theranostics. 2019;9(17):4893–908.CrossRef
31.
go back to reference Clarke DN, Martin AC. Actin-based force generation and cell adhesion in tissue morphogenesis. Curr Biol. 2021;31(10):R667–80.CrossRef Clarke DN, Martin AC. Actin-based force generation and cell adhesion in tissue morphogenesis. Curr Biol. 2021;31(10):R667–80.CrossRef
32.
go back to reference Chiovaro F, Chiquet-Ehrismann R, Chiquet M. Transcriptional regulation of tenascin genes. Cell Adh Migr. 2015;9(1–2):34–47.CrossRef Chiovaro F, Chiquet-Ehrismann R, Chiquet M. Transcriptional regulation of tenascin genes. Cell Adh Migr. 2015;9(1–2):34–47.CrossRef
33.
go back to reference Yang Z, Zhang C, Feng Y, et al. Tenascin-C predicts poor outcomes for patients with colorectal cancer and drives cancer stemness via Hedgehog signaling pathway. Cancer Cell Int. 2020;20:122.CrossRef Yang Z, Zhang C, Feng Y, et al. Tenascin-C predicts poor outcomes for patients with colorectal cancer and drives cancer stemness via Hedgehog signaling pathway. Cancer Cell Int. 2020;20:122.CrossRef
34.
go back to reference Dang C, Gottschling M, Roewert J, et al. Tenascin-C patterns and splice variants in actinic keratosis and cutaneous squamous cell carcinoma. Br J Dermatol. 2006;155(4):763–70.CrossRef Dang C, Gottschling M, Roewert J, et al. Tenascin-C patterns and splice variants in actinic keratosis and cutaneous squamous cell carcinoma. Br J Dermatol. 2006;155(4):763–70.CrossRef
35.
go back to reference Tseng MY, Liu SY, Chen HR, et al. Serine protease inhibitor (SERPIN) B1 promotes oral cancer cell motility and is over-expressed in invasive oral squamous cell carcinoma. Oral Oncol. 2009;45(9):771–6.CrossRef Tseng MY, Liu SY, Chen HR, et al. Serine protease inhibitor (SERPIN) B1 promotes oral cancer cell motility and is over-expressed in invasive oral squamous cell carcinoma. Oral Oncol. 2009;45(9):771–6.CrossRef
Metadata
Title
From Bowen disease to cutaneous squamous cell carcinoma: eight markers were verified from transcriptomic and proteomic analyses
Authors
Tang Biao
He Cai-feng
Lu Xiao-hong
Chang Xiao-li
Liu Wen-bei
Wang Jun
Ci Chao
Yuan Tao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03622-1

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.