Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 9/2019

01-09-2019 | Computed Tomography | Original Paper

Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion

Authors: Amit R. Patel, Francesco Maffessanti, Mita B. Patel, Kalie Kebed, Akhil Narang, Amita Singh, Diego Medvedofsky, S. Javed Zaidi, Anuj Mediratta, Neha Goyal, Nadjia Kachenoura, Roberto M. Lang, Victor Mor-Avi

Published in: The International Journal of Cardiovascular Imaging | Issue 9/2019

Login to get access

Abstract

Vasodilator-stress CT perfusion imaging in addition to CT coronary angiography (CTCA) may provide a single-test alternative to nuclear stress testing, commonly used to assess hemodynamic significance of stenosis. Another alternative is fractional flow reserve (FFR) calculated from cardiac CT images. We studied the concordance between these two approaches and their relationship to outcomes. We prospectively studied 150 patients with chest pain, who underwent CTCA and regadenoson CT. CTCA images were interpreted for presence and severity of stenosis. Fused 3D displays of subendocardial X-ray attenuation with coronary arteries were created to detect stress perfusion defects (SPD) in each coronary territory. In patients with stenosis > 25%, CT-FFR was quantified. Significant stenosis was determined by: (1) combination of stenosis > 50% with an SPD, (2) CT-FFR ≤ 0.80. Patients were followed-up for 36 ± 25 months for death, myocardial infarction or revascularization. After excluding patients with normal arteries and technical/quality issues, in final analysis of 76 patients, CTCA depicted stenosis > 70% in 13/224 arteries, 50–70% in 24, and < 50% in 187. CT-FFR ≤ 0.80 was found in 41/224 arteries, and combination of SPD with > 50% stenosis in 31/224 arteries. Inter-technique agreement was 89%. Despite high incidence of abnormal CT-FFR (30/76 patients), only 7 patients experienced adverse outcomes; 6/7 also had SPDs. Only 1/9 patients with CT-FFR ≤ 0.80 but normal perfusion had an event. Fusion of CTCA and stress perfusion can help determine the hemodynamic impact of stenosis in one test, in good agreement with CT-FFR. Adding stress CT perfusion analysis may help risk-stratify patients with abnormal CT-FFR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garcia MJ, Lessick J, Hoffmann MH, Investigators CS (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411CrossRefPubMed Garcia MJ, Lessick J, Hoffmann MH, Investigators CS (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411CrossRefPubMed
2.
go back to reference Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRefPubMed Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRefPubMed
3.
go back to reference Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556CrossRefPubMed Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556CrossRefPubMed
4.
go back to reference Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary–artery stenoses. N Engl J Med 334:1703–1708CrossRefPubMed Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary–artery stenoses. N Engl J Med 334:1703–1708CrossRefPubMed
5.
go back to reference Tonino PA, Fearon WF, De Bruyne B et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55:2816–2821CrossRefPubMed Tonino PA, Fearon WF, De Bruyne B et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55:2816–2821CrossRefPubMed
6.
go back to reference George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160CrossRefPubMed George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160CrossRefPubMed
7.
go back to reference Ko BS, Cameron JD, Defrance T, Seneviratne SK (2011) CT stress myocardial perfusion imaging using multidetector CT—a review. J Cardiovasc Comput Tomogr 5:345–356CrossRefPubMed Ko BS, Cameron JD, Defrance T, Seneviratne SK (2011) CT stress myocardial perfusion imaging using multidetector CT—a review. J Cardiovasc Comput Tomogr 5:345–356CrossRefPubMed
8.
go back to reference Techasith T, Cury RC (2011) Stress myocardial CT perfusion: an update and future perspective. JACC Cardiovasc Imaging 4:905–916CrossRefPubMed Techasith T, Cury RC (2011) Stress myocardial CT perfusion: an update and future perspective. JACC Cardiovasc Imaging 4:905–916CrossRefPubMed
9.
go back to reference Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084CrossRefPubMed Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084CrossRefPubMed
10.
go back to reference Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45:306–313CrossRefPubMed Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45:306–313CrossRefPubMed
11.
go back to reference Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419CrossRefPubMedPubMedCentral Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419CrossRefPubMedPubMedCentral
12.
go back to reference Bettencourt N, Rocha J, Ferreira N et al (2011) Incremental value of an integrated adenosine stress-rest MDCT perfusion protocol for detection of obstructive coronary artery disease. J Cardiovasc Comput Tomogr 5:392–405CrossRefPubMed Bettencourt N, Rocha J, Ferreira N et al (2011) Incremental value of an integrated adenosine stress-rest MDCT perfusion protocol for detection of obstructive coronary artery disease. J Cardiovasc Comput Tomogr 5:392–405CrossRefPubMed
13.
go back to reference Patel AR, Lodato JA, Chandra S et al (2011) Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. J Cardiovasc Comput Tomogr 5:247–254CrossRefPubMed Patel AR, Lodato JA, Chandra S et al (2011) Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. J Cardiovasc Comput Tomogr 5:247–254CrossRefPubMed
14.
go back to reference Ko BS, Cameron JD, Meredith IT et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33:67–77CrossRefPubMed Ko BS, Cameron JD, Meredith IT et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33:67–77CrossRefPubMed
15.
go back to reference Maffessanti F, Patel AR, Patel MB et al (2017) Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging 18:670–680PubMed Maffessanti F, Patel AR, Patel MB et al (2017) Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging 18:670–680PubMed
16.
go back to reference Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed
17.
18.
go back to reference Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRefPubMed Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889CrossRefPubMed
19.
go back to reference Renker M, Schoepf UJ, Wang R et al (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114:1303–1308CrossRefPubMed Renker M, Schoepf UJ, Wang R et al (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114:1303–1308CrossRefPubMed
20.
go back to reference Voros S, Rinehart S, Vazquez-Figueroa JG et al (2014) Prospective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the ATLANTA I and II Study). Am J Cardiol 113:23–29CrossRefPubMed Voros S, Rinehart S, Vazquez-Figueroa JG et al (2014) Prospective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the ATLANTA I and II Study). Am J Cardiol 113:23–29CrossRefPubMed
21.
go back to reference Baumann S, Renker M, Hetjens S et al (2016) Comparison of coronary computed tomography angiography-derived vs invasive fractional flow reserve assessment: meta-analysis with subgroup evaluation of intermediate stenosis. Acad Radiol 23:1402–1411CrossRefPubMed Baumann S, Renker M, Hetjens S et al (2016) Comparison of coronary computed tomography angiography-derived vs invasive fractional flow reserve assessment: meta-analysis with subgroup evaluation of intermediate stenosis. Acad Radiol 23:1402–1411CrossRefPubMed
22.
go back to reference Gaur S, Ovrehus KA, Dey D et al (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37:1220–1227CrossRefPubMedPubMedCentral Gaur S, Ovrehus KA, Dey D et al (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37:1220–1227CrossRefPubMedPubMedCentral
23.
go back to reference Kawaji T, Shiomi H, Morishita H et al (2017) Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice. Int J Cardiovasc Imaging 33:271–281CrossRefPubMed Kawaji T, Shiomi H, Morishita H et al (2017) Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice. Int J Cardiovasc Imaging 33:271–281CrossRefPubMed
24.
go back to reference Rabbat MG, Berman DS, Kern M et al (2017) Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice. J Cardiovasc Comput Tomogr 11:383–3388CrossRefPubMed Rabbat MG, Berman DS, Kern M et al (2017) Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice. J Cardiovasc Comput Tomogr 11:383–3388CrossRefPubMed
25.
go back to reference Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 247:49–56CrossRefPubMed Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 247:49–56CrossRefPubMed
26.
go back to reference So A, Hsieh J, Li JY, Hadway J, Kong HF, Lee TY (2012) Quantitative myocardial perfusion measurement using CT perfusion: a validation study in a porcine model of reperfused acute myocardial infarction. Int J Cardiovasc Imaging 28:1237–1248CrossRefPubMed So A, Hsieh J, Li JY, Hadway J, Kong HF, Lee TY (2012) Quantitative myocardial perfusion measurement using CT perfusion: a validation study in a porcine model of reperfused acute myocardial infarction. Int J Cardiovasc Imaging 28:1237–1248CrossRefPubMed
27.
go back to reference Nasis A, Ko BS, Leung MC et al (2013) Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study. Eur Radiol 23:1812–1821CrossRefPubMed Nasis A, Ko BS, Leung MC et al (2013) Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography: pilot study. Eur Radiol 23:1812–1821CrossRefPubMed
28.
go back to reference Kachenoura N, Veronesi F, Lodato JA et al (2010) Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol 20:337–347CrossRefPubMed Kachenoura N, Veronesi F, Lodato JA et al (2010) Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol 20:337–347CrossRefPubMed
29.
go back to reference Mor-Avi V, Lodato JA, Kachenoura N et al (2012) Quantitative three-dimensional evaluation of myocardial perfusion during regadenoson stress using multidetector computed tomography. J Comput Assist Tomogr 36:443–449CrossRefPubMed Mor-Avi V, Lodato JA, Kachenoura N et al (2012) Quantitative three-dimensional evaluation of myocardial perfusion during regadenoson stress using multidetector computed tomography. J Comput Assist Tomogr 36:443–449CrossRefPubMed
30.
go back to reference Takx RA, Blomberg BA, El Aidi H et al (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8:e002666CrossRefPubMed Takx RA, Blomberg BA, El Aidi H et al (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8:e002666CrossRefPubMed
31.
go back to reference Cury RC, Magalhaes TA, Borges AC et al (2010) Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol 106:310–315CrossRefPubMed Cury RC, Magalhaes TA, Borges AC et al (2010) Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol 106:310–315CrossRefPubMed
32.
go back to reference Bamberg F, Klotz E, Flohr T et al (2010) Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience. Eur Radiol 20:1168–1173CrossRefPubMed Bamberg F, Klotz E, Flohr T et al (2010) Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience. Eur Radiol 20:1168–1173CrossRefPubMed
33.
go back to reference Okada DR, Ghoshhajra BB, Blankstein R et al (2010) Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT. J Nucl Cardiol 17:27–37CrossRefPubMedPubMedCentral Okada DR, Ghoshhajra BB, Blankstein R et al (2010) Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT. J Nucl Cardiol 17:27–37CrossRefPubMedPubMedCentral
34.
go back to reference Bettencourt N, Chiribiri A, Schuster A et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:1099–1107CrossRefPubMed Bettencourt N, Chiribiri A, Schuster A et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:1099–1107CrossRefPubMed
35.
go back to reference George RT, Arbab-Zadeh A, Cerci RJ et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol 197:829–837CrossRefPubMedPubMedCentral George RT, Arbab-Zadeh A, Cerci RJ et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol 197:829–837CrossRefPubMedPubMedCentral
36.
go back to reference Ko BS, Cameron JD, Leung M et al (2012) Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging 5:1097–1111CrossRefPubMed Ko BS, Cameron JD, Leung M et al (2012) Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging 5:1097–1111CrossRefPubMed
37.
go back to reference Vavere AL, Simon GG, George RT et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study. J Cardiovasc Comput Tomogr 5:370–381CrossRefPubMed Vavere AL, Simon GG, George RT et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study. J Cardiovasc Comput Tomogr 5:370–381CrossRefPubMed
38.
go back to reference Gaemperli O, Schepis T, Kalff V et al (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34:1097–1106CrossRefPubMed Gaemperli O, Schepis T, Kalff V et al (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34:1097–1106CrossRefPubMed
39.
go back to reference Nakaura T, Utsunomiya D, Shiraishi S et al (2005) Images in cardiovascular medicine. Fusion imaging between myocardial perfusion single photon emission computed tomography and cardiac computed tomography. Circulation 112:e47–e48CrossRefPubMed Nakaura T, Utsunomiya D, Shiraishi S et al (2005) Images in cardiovascular medicine. Fusion imaging between myocardial perfusion single photon emission computed tomography and cardiac computed tomography. Circulation 112:e47–e48CrossRefPubMed
40.
go back to reference Tian J, Smith MF, Jeudy J, Dickfeld T (2009) Multimodality fusion imaging using delayed-enhanced cardiac magnetic resonance imaging, computed tomography, positron emission tomography, and real-time intracardiac echocardiography to guide ventricular tachycardia ablation in implantable cardioverter-defibrillator patients. Heart Rhythm 6:825–828CrossRefPubMed Tian J, Smith MF, Jeudy J, Dickfeld T (2009) Multimodality fusion imaging using delayed-enhanced cardiac magnetic resonance imaging, computed tomography, positron emission tomography, and real-time intracardiac echocardiography to guide ventricular tachycardia ablation in implantable cardioverter-defibrillator patients. Heart Rhythm 6:825–828CrossRefPubMed
41.
go back to reference Stolzmann P, Alkadhi H, Scheffel H et al (2010) Image fusion of coronary CT angiography and cardiac perfusion MRI: a pilot study. Eur Radiol 20:1174–1179CrossRefPubMed Stolzmann P, Alkadhi H, Scheffel H et al (2010) Image fusion of coronary CT angiography and cardiac perfusion MRI: a pilot study. Eur Radiol 20:1174–1179CrossRefPubMed
42.
go back to reference Yoshikai M, Ikeda K, Itoh M, Ueno Y (2009) Cardiac fusion image from myocardial perfusion scintigraphy and 64-slice computed tomography before and after coronary artery bypass grafting. Eur J Cardiothorac Surg 35:1078CrossRefPubMed Yoshikai M, Ikeda K, Itoh M, Ueno Y (2009) Cardiac fusion image from myocardial perfusion scintigraphy and 64-slice computed tomography before and after coronary artery bypass grafting. Eur J Cardiothorac Surg 35:1078CrossRefPubMed
43.
go back to reference Donati OF, Alkadhi H, Scheffel H et al (2011) 3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: accuracy and added clinical value. Invest Radiol 46:331–340CrossRefPubMed Donati OF, Alkadhi H, Scheffel H et al (2011) 3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: accuracy and added clinical value. Invest Radiol 46:331–340CrossRefPubMed
44.
go back to reference Duckett SG, Ginks M, Shetty AK et al (2011) Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with X-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace 13:285–286CrossRefPubMed Duckett SG, Ginks M, Shetty AK et al (2011) Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with X-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace 13:285–286CrossRefPubMed
45.
go back to reference Manka R, Kuhn FP, Kuest SM, Gaemperli O, Kozerke S, Kaufmann PA (2011) Hybrid cardiac magnetic resonance/computed tomographic imaging: first fusion of three-dimensional magnetic resonance perfusion and low-dose coronary computed tomographic angiography. Eur Heart J 32:2625CrossRefPubMed Manka R, Kuhn FP, Kuest SM, Gaemperli O, Kozerke S, Kaufmann PA (2011) Hybrid cardiac magnetic resonance/computed tomographic imaging: first fusion of three-dimensional magnetic resonance perfusion and low-dose coronary computed tomographic angiography. Eur Heart J 32:2625CrossRefPubMed
46.
go back to reference Cook CM, Petraco R, Shun-Shin MJ et al (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review. JAMA Cardiol 2:803–810CrossRefPubMed Cook CM, Petraco R, Shun-Shin MJ et al (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review. JAMA Cardiol 2:803–810CrossRefPubMed
47.
go back to reference Zorach B, Shaw PW, Bourque J et al (2018) Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 20:14CrossRefPubMedPubMedCentral Zorach B, Shaw PW, Bourque J et al (2018) Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 20:14CrossRefPubMedPubMedCentral
Metadata
Title
Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion
Authors
Amit R. Patel
Francesco Maffessanti
Mita B. Patel
Kalie Kebed
Akhil Narang
Amita Singh
Diego Medvedofsky
S. Javed Zaidi
Anuj Mediratta
Neha Goyal
Nadjia Kachenoura
Roberto M. Lang
Victor Mor-Avi
Publication date
01-09-2019
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 9/2019
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-019-01618-5

Other articles of this Issue 9/2019

The International Journal of Cardiovascular Imaging 9/2019 Go to the issue