Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 9/2019

01-09-2019 | Echocardiography | Original Paper

Effect of diastolic dysfunction on intraventricular velocity behavior in early diastole by flow mapping

Authors: Bostjan Berlot, Jose Luis Moya Mur, Borut Jug, Daniel Rodríguez Muñoz, Alicia Megias, Eduardo Casas Rojo, Covadonga Fernández-Golfín, Jose Luis Zamorano

Published in: The International Journal of Cardiovascular Imaging | Issue 9/2019

Login to get access

Abstract

Intraventricular velocity distribution reflects left ventricular (LV) diastolic function and can be measured non-invasively by flow mapping technologies. We designed our study to compare intraventricular velocities and gradients, obtained by vector flow mapping (VFM) technology during early diastole in consecutive patients diagnosed with mild and advanced diastolic dysfunction at echocardiography and a control group with a purpose to validate the hypothesis of relationship between new parameters and severity of diastolic dysfunction and conventional markers of elevated LV filling pressure. Two-dimensional streamline fields were obtained using VFM technology in 121 subjects (57 with normal diastolic function, 38 with mild diastolic dysfunction and 26 with advanced diastolic dysfunction). We measured several velocities and calculated a gradient along the selected streamline, which we compared between groups and correlated them with conventional echocardiographic parameters. Apical intraventricular velocity gradient (GrIV) was the lowest in control group, followed by mild and advanced diastolic dysfunction groups (5.3 ± 1.9 vs. 6.8 ± 2.5 vs. 13.6 ± 5.0/s, p < 0.001) and showed good correlation with E/e’ (r = 0.751, p < 000.1). GrIV/e’ ratio was the strongest single predictor of severity of diastolic dysfunction. Different degrees of diastolic dysfunction affect the Intraventricular velocity behavior during early diastole obtained by VFM. GrIV could discriminate between groups with different levels of diastolic dysfunction and was closely associated with classical echocardiographic indices of elevated LV filling pressure. GrIV/e’ ratio has a potential to become a single parameter needed to assess left ventricular diastolic function.
Literature
1.
go back to reference Flachskampf FA, Biering-Sørensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA (2015) Cardiac imaging to evaluate left ventricular diastolic function. JACC Cardiovasc Imaging 8(9):1071–1093CrossRefPubMed Flachskampf FA, Biering-Sørensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA (2015) Cardiac imaging to evaluate left ventricular diastolic function. JACC Cardiovasc Imaging 8(9):1071–1093CrossRefPubMed
2.
go back to reference Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29(4):277–314CrossRefPubMed Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29(4):277–314CrossRefPubMed
3.
go back to reference Kuwaki H, Takeuchi M, Chien-Chia Wu V, Otani K, Nagata Y, Hayashi A et al (2014) Redefining diastolic dysfunction grading: combination of E/A </=0.75 and deceleration time > 140 ms and E/epsilon’ >/=10. JACC Cardiovasc Imaging 7(8):749–758CrossRefPubMed Kuwaki H, Takeuchi M, Chien-Chia Wu V, Otani K, Nagata Y, Hayashi A et al (2014) Redefining diastolic dysfunction grading: combination of E/A </=0.75 and deceleration time > 140 ms and E/epsilon’ >/=10. JACC Cardiovasc Imaging 7(8):749–758CrossRefPubMed
4.
go back to reference Bella JN, Palmieri V, Roman MJ, Liu JE, Welty TK, Lee ET et al (2002) Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 105(16):1928–1933CrossRefPubMed Bella JN, Palmieri V, Roman MJ, Liu JE, Welty TK, Lee ET et al (2002) Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 105(16):1928–1933CrossRefPubMed
5.
go back to reference Mogelvang R, Sogaard P, Pedersen SA, Olsen NT, Marott JL, Schnohr P et al (2009) Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population. Circulation 119(20):2679–2685CrossRefPubMed Mogelvang R, Sogaard P, Pedersen SA, Olsen NT, Marott JL, Schnohr P et al (2009) Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population. Circulation 119(20):2679–2685CrossRefPubMed
6.
go back to reference Courtois M, Kovacs SJJ, Ludbrook PA (1988) Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78(3):661–671CrossRefPubMed Courtois M, Kovacs SJJ, Ludbrook PA (1988) Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78(3):661–671CrossRefPubMed
7.
go back to reference Steine K, Stugaard M, Smiseth O (2002) Mechanisms of diastolic intraventricular regional pressure differences and flow in the inflow and outflow tracts. J Am Coll Cardiol 40(5):983–990CrossRefPubMed Steine K, Stugaard M, Smiseth O (2002) Mechanisms of diastolic intraventricular regional pressure differences and flow in the inflow and outflow tracts. J Am Coll Cardiol 40(5):983–990CrossRefPubMed
8.
go back to reference Pasipoularides A (2015) Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. J Cardiovasc Transl Res 8(1):76–87CrossRefPubMedPubMedCentral Pasipoularides A (2015) Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. J Cardiovasc Transl Res 8(1):76–87CrossRefPubMedPubMedCentral
9.
go back to reference Crandon S, Westenberg JJM, Swoboda PP, Fent GJ, Foley JRJ, Chew PG et al (2018) Impact of age and diastolic function on novel, 4D flow CMR biomarkers of left ventricular blood flow kinetic energy. Sci Rep 8(1):14436CrossRefPubMedPubMedCentral Crandon S, Westenberg JJM, Swoboda PP, Fent GJ, Foley JRJ, Chew PG et al (2018) Impact of age and diastolic function on novel, 4D flow CMR biomarkers of left ventricular blood flow kinetic energy. Sci Rep 8(1):14436CrossRefPubMedPubMedCentral
10.
go back to reference Yotti R, Bermejo J, Antoranz JC, Desco MM, Cortina C, Rojo-Alvarez JL et al (2005) A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929CrossRefPubMed Yotti R, Bermejo J, Antoranz JC, Desco MM, Cortina C, Rojo-Alvarez JL et al (2005) A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929CrossRefPubMed
11.
go back to reference Yamamoto K, Masuyama T, Tanouchi J, Naito J, Mano T, Kondo H et al (1995) Intraventricular dispersion of early diastolic filling: a new marker of left ventricular diastolic dysfunction. Am Heart J 129(2):291–299CrossRefPubMed Yamamoto K, Masuyama T, Tanouchi J, Naito J, Mano T, Kondo H et al (1995) Intraventricular dispersion of early diastolic filling: a new marker of left ventricular diastolic dysfunction. Am Heart J 129(2):291–299CrossRefPubMed
12.
go back to reference Moller JE, Sondergaard E, Seward JB, Appleton CP, Egstrup K (2000) Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color M-mode Doppler echocardiography in first myocardial infarction: prognostic and clinical implications. J Am Coll Cardiol 35(2):363–370CrossRefPubMed Moller JE, Sondergaard E, Seward JB, Appleton CP, Egstrup K (2000) Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color M-mode Doppler echocardiography in first myocardial infarction: prognostic and clinical implications. J Am Coll Cardiol 35(2):363–370CrossRefPubMed
13.
go back to reference de Knegt MC, Biering-Sorensen T, Sogaard P, Sivertsen J, Jensen JS, Mogelvang R (2014) Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions. Eur Heart J Cardiovasc Imaging 15(1):62–69CrossRefPubMed de Knegt MC, Biering-Sorensen T, Sogaard P, Sivertsen J, Jensen JS, Mogelvang R (2014) Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions. Eur Heart J Cardiovasc Imaging 15(1):62–69CrossRefPubMed
15.
go back to reference Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S, Tanaka M et al (2010) A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med Biol 36(5):772–788CrossRefPubMed Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S, Tanaka M et al (2010) A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med Biol 36(5):772–788CrossRefPubMed
16.
go back to reference Rodevand O, Bjornerheim R, Edvardsen T, Smiseth OA, Ihlen H (1999) Diastolic flow pattern in the normal left ventricle. J Am Soc Echocardiogr 12(6):500–507CrossRefPubMed Rodevand O, Bjornerheim R, Edvardsen T, Smiseth OA, Ihlen H (1999) Diastolic flow pattern in the normal left ventricle. J Am Soc Echocardiogr 12(6):500–507CrossRefPubMed
17.
go back to reference Bellhouse BJ (1972) Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res 6(2):199–210CrossRefPubMed Bellhouse BJ (1972) Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res 6(2):199–210CrossRefPubMed
18.
go back to reference Martinez-Legazpi P, Bermejo J, Benito Y, Yotti R, Perez Del Villar C, Gonzalez-Mansilla A et al (2014) Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol 64(16):1711–1721CrossRefPubMed Martinez-Legazpi P, Bermejo J, Benito Y, Yotti R, Perez Del Villar C, Gonzalez-Mansilla A et al (2014) Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol 64(16):1711–1721CrossRefPubMed
19.
go back to reference Pasipoularides A, Shu M, Shah A, Tucconi A, Glower DD (2003) RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am J Physiol Heart Circ Physiol 285(5):H1956–H1965CrossRefPubMedPubMedCentral Pasipoularides A, Shu M, Shah A, Tucconi A, Glower DD (2003) RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am J Physiol Heart Circ Physiol 285(5):H1956–H1965CrossRefPubMedPubMedCentral
20.
go back to reference Garg P, Crandon S, Swoboda PP, Fent GJ, Foley JRJ, Chew PG et al (2018) Left ventricular blood flow kinetic energy after myocardial infarction—insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 20(1):61CrossRefPubMedPubMedCentral Garg P, Crandon S, Swoboda PP, Fent GJ, Foley JRJ, Chew PG et al (2018) Left ventricular blood flow kinetic energy after myocardial infarction—insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 20(1):61CrossRefPubMedPubMedCentral
21.
go back to reference Smiseth OA, Steine K, Sandbaek G, Stugaard M, Gjolberg T (1998) Mechanics of intraventricular filling: study of LV early diastolic pressure gradients and flow velocities. Am J Physiol 275(3):H1062–H1069PubMed Smiseth OA, Steine K, Sandbaek G, Stugaard M, Gjolberg T (1998) Mechanics of intraventricular filling: study of LV early diastolic pressure gradients and flow velocities. Am J Physiol 275(3):H1062–H1069PubMed
22.
go back to reference Kuecherer HF, Muhiudeen IA, Kusumoto FM, Lee E, Moulinier LE, Cahalan MK et al (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82(4):1127–1139CrossRefPubMed Kuecherer HF, Muhiudeen IA, Kusumoto FM, Lee E, Moulinier LE, Cahalan MK et al (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82(4):1127–1139CrossRefPubMed
23.
go back to reference Zhang W, Shmuylovich L, Kovacs SJ (2010) The E-wave delayed relaxation pattern to LV pressure contour relation: model-based prediction with in vivo validation. Ultrasound Med Biol 36(3):497–511CrossRefPubMed Zhang W, Shmuylovich L, Kovacs SJ (2010) The E-wave delayed relaxation pattern to LV pressure contour relation: model-based prediction with in vivo validation. Ultrasound Med Biol 36(3):497–511CrossRefPubMed
Metadata
Title
Effect of diastolic dysfunction on intraventricular velocity behavior in early diastole by flow mapping
Authors
Bostjan Berlot
Jose Luis Moya Mur
Borut Jug
Daniel Rodríguez Muñoz
Alicia Megias
Eduardo Casas Rojo
Covadonga Fernández-Golfín
Jose Luis Zamorano
Publication date
01-09-2019
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 9/2019
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-019-01612-x

Other articles of this Issue 9/2019

The International Journal of Cardiovascular Imaging 9/2019 Go to the issue