Skip to main content
Top
Published in: Cardiovascular Toxicology 9/2022

25-07-2022 | Cardiomyopathy

Cardiac Remodelling Following Cancer Therapy: A Review

Authors: Tan Panpan, Du Yuchen, Shi Xianyong, Liu Meng, He Ruijuan, Dong Ranran, Zhang Pengyan, Li Mingxi, Xie Rongrong

Published in: Cardiovascular Toxicology | Issue 9/2022

Login to get access

Abstract

Cardiac remodelling is characterized by abnormal changes in the function and morphological properties such as diameter, mass, normal diameter of cavities, heart shape, fibrosis, thickening of vessels and heart layers, cardiomyopathy, infiltration of inflammatory cells, and some others. These damages are associated with damage to systolic and diastolic abnormalities, damage to ventricular function, and vascular remodelling, which may lead to heart failure and death. Exposure of the heart to radiation or anti-cancer drugs including chemotherapy drugs such as doxorubicin, receptor tyrosine kinase inhibitors (RTKIs) such as imatinib, and immune checkpoint inhibitors (ICIs) can induce several abnormal changes in the heart structure and function through the induction of inflammation and fibrosis, vascular remodelling, hypertrophy, and some others. This review aims to explain the basic mechanisms behind cardiac remodelling following cancer therapy by different anti-cancer modalities.
Literature
1.
go back to reference Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., et al. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.CrossRef Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., et al. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.CrossRef
2.
go back to reference Liu, Y.-Q., Wang, X.-L., He, D.-H., & Cheng, Y.-X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.PubMedCrossRef Liu, Y.-Q., Wang, X.-L., He, D.-H., & Cheng, Y.-X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.PubMedCrossRef
3.
go back to reference Minami, M., Matsumoto, S., & Horiuchi, H. (2010). Cardiovascular side-effects of modern cancer therapy. Circulation Journal, 2010, 1008100855. Minami, M., Matsumoto, S., & Horiuchi, H. (2010). Cardiovascular side-effects of modern cancer therapy. Circulation Journal, 2010, 1008100855.
4.
go back to reference Perez, I. E., Taveras Alam, S., Hernandez, G. A., & Sancassani, R. (2019). Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clinical Medicine Insights: Cardiology, 13, 1179546819866445.PubMedPubMedCentral Perez, I. E., Taveras Alam, S., Hernandez, G. A., & Sancassani, R. (2019). Cancer therapy-related cardiac dysfunction: An overview for the clinician. Clinical Medicine Insights: Cardiology, 13, 1179546819866445.PubMedPubMedCentral
5.
go back to reference Chen, D.-Y., Huang, W.-K., Wu, V.C.-C., Chang, W.-C., Chen, J.-S., Chuang, C.-K., et al. (2020). Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. Journal of the Formosan Medical Association., 119(10), 1461–75.PubMedCrossRef Chen, D.-Y., Huang, W.-K., Wu, V.C.-C., Chang, W.-C., Chen, J.-S., Chuang, C.-K., et al. (2020). Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. Journal of the Formosan Medical Association., 119(10), 1461–75.PubMedCrossRef
6.
go back to reference Zagar, T. M., Cardinale, D. M., & Marks, L. B. (2016). Breast cancer therapy-associated cardiovascular disease. Nature Reviews Clinical Oncology., 13(3), 172–184.PubMedCrossRef Zagar, T. M., Cardinale, D. M., & Marks, L. B. (2016). Breast cancer therapy-associated cardiovascular disease. Nature Reviews Clinical Oncology., 13(3), 172–184.PubMedCrossRef
7.
go back to reference Boopathi, E., & Thangavel, C. (2021). Dark side of cancer therapy: Cancer Treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. International Journal of Molecular Sciences, 22(18), 10126.PubMedPubMedCentralCrossRef Boopathi, E., & Thangavel, C. (2021). Dark side of cancer therapy: Cancer Treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. International Journal of Molecular Sciences, 22(18), 10126.PubMedPubMedCentralCrossRef
8.
go back to reference Du, X. L., Xia, R., Liu, C. C., Cormier, J. N., Xing, Y., Hardy, D., et al. (2009). Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer, 115(22), 5296–5308.PubMedCrossRef Du, X. L., Xia, R., Liu, C. C., Cormier, J. N., Xing, Y., Hardy, D., et al. (2009). Cardiac toxicity associated with anthracycline-containing chemotherapy in older women with breast cancer. Cancer, 115(22), 5296–5308.PubMedCrossRef
9.
go back to reference Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., et al. (2010). Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology, 55(3), 213–220.PubMedCrossRef Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., et al. (2010). Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology, 55(3), 213–220.PubMedCrossRef
10.
go back to reference Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N., & Mackman, N. (2021). Cancer therapy-associated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1291–1305.PubMedPubMedCentralCrossRef
11.
go back to reference Galvano, A., Guarini, A., Iacono, F., Castiglia, M., Rizzo, S., Tarantini, L., et al. (2019). An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opinion on Drug Safety., 18(6), 485–496.PubMedCrossRef Galvano, A., Guarini, A., Iacono, F., Castiglia, M., Rizzo, S., Tarantini, L., et al. (2019). An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opinion on Drug Safety., 18(6), 485–496.PubMedCrossRef
13.
go back to reference Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: An experimental study. Circulation, 65(7), 1446–1450.PubMedCrossRef Hochman, J. S., & Bulkley, B. H. (1982). Expansion of acute myocardial infarction: An experimental study. Circulation, 65(7), 1446–1450.PubMedCrossRef
17.
go back to reference Lu, M., Qin, X., Yao, J., Yang, Y., Zhao, M., & Sun, L. (2020). Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiologica, 230(3), e13537.PubMedCrossRef Lu, M., Qin, X., Yao, J., Yang, Y., Zhao, M., & Sun, L. (2020). Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiologica, 230(3), e13537.PubMedCrossRef
18.
go back to reference Shao, P.-P., Liu, C.-J., Xu, Q., Zhang, B., Li, S.-H., Wu, Y., et al. (2018). Eplerenone reverses cardiac fibrosis via the suppression of tregs by inhibition of Kv1. 3 channel. Frontiers in Physiology, 9, 899.PubMedPubMedCentralCrossRef Shao, P.-P., Liu, C.-J., Xu, Q., Zhang, B., Li, S.-H., Wu, Y., et al. (2018). Eplerenone reverses cardiac fibrosis via the suppression of tregs by inhibition of Kv1. 3 channel. Frontiers in Physiology, 9, 899.PubMedPubMedCentralCrossRef
19.
go back to reference Fung, T. H., Yang, K. Y., & Lui, K. O. (2020). An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics, 10(20), 8924.PubMedPubMedCentralCrossRef Fung, T. H., Yang, K. Y., & Lui, K. O. (2020). An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics, 10(20), 8924.PubMedPubMedCentralCrossRef
21.
go back to reference Xiao, H., Li, H., Wang, J.-J., Zhang, J.-S., Shen, J., An, X.-B., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal, 39(1), 60–69.PubMedCrossRef Xiao, H., Li, H., Wang, J.-J., Zhang, J.-S., Shen, J., An, X.-B., et al. (2018). IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal, 39(1), 60–69.PubMedCrossRef
23.
go back to reference Hori, M., & Nishida, K. (2009). Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovascular Research, 81(3), 457–464.PubMedCrossRef Hori, M., & Nishida, K. (2009). Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovascular Research, 81(3), 457–464.PubMedCrossRef
24.
go back to reference Briasoulis, A., Androulakis, E., Christophides, T., & Tousoulis, D. (2016). The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Failure Reviews, 21(2), 169–176.PubMedCrossRef Briasoulis, A., Androulakis, E., Christophides, T., & Tousoulis, D. (2016). The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Failure Reviews, 21(2), 169–176.PubMedCrossRef
25.
go back to reference Grover, S., Lou, P., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D., et al. (2015). Early and late changes in markers of aortic stiffness with breast cancer therapy. Internal Medicine Journal, 45(2), 140–147.PubMedCrossRef Grover, S., Lou, P., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D., et al. (2015). Early and late changes in markers of aortic stiffness with breast cancer therapy. Internal Medicine Journal, 45(2), 140–147.PubMedCrossRef
26.
go back to reference Raghunathan, D., Khilji, M. I., Hassan, S. A., & Yusuf, S. W. (2017). Radiation-induced cardiovascular disease. Current Atherosclerosis Reports, 19(5), 22.PubMedCrossRef Raghunathan, D., Khilji, M. I., Hassan, S. A., & Yusuf, S. W. (2017). Radiation-induced cardiovascular disease. Current Atherosclerosis Reports, 19(5), 22.PubMedCrossRef
27.
go back to reference Yusuf, S. W., Venkatesulu, B. P., Mahadevan, L. S., & Krishnan, S. (2017). Radiation-induced cardiovascular disease: A clinical perspective. Frontiers in Cardiovascular Medicine., 4, 66.PubMedPubMedCentralCrossRef Yusuf, S. W., Venkatesulu, B. P., Mahadevan, L. S., & Krishnan, S. (2017). Radiation-induced cardiovascular disease: A clinical perspective. Frontiers in Cardiovascular Medicine., 4, 66.PubMedPubMedCentralCrossRef
28.
go back to reference Oun, R., & Rowan, E. (2017). Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? European Journal of Pharmacology, 811, 125–128.PubMedCrossRef Oun, R., & Rowan, E. (2017). Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? European Journal of Pharmacology, 811, 125–128.PubMedCrossRef
29.
go back to reference Patanè, S. (2014). Cardiotoxicity: Cisplatin and long-term cancer survivors. International Journal of Cardiology., 175(1), 201–202.PubMedCrossRef Patanè, S. (2014). Cardiotoxicity: Cisplatin and long-term cancer survivors. International Journal of Cardiology., 175(1), 201–202.PubMedCrossRef
32.
go back to reference Mizia-Stec, K., Gościńska, A., Mizia, M., Haberka, M., Chmiel, A., Poborski, W., et al. (2013). Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodelling. Kardiologia Polska, 71(7), 681–690.PubMedCrossRef Mizia-Stec, K., Gościńska, A., Mizia, M., Haberka, M., Chmiel, A., Poborski, W., et al. (2013). Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodelling. Kardiologia Polska, 71(7), 681–690.PubMedCrossRef
33.
go back to reference Lupón, J., Gavidia-Bovadilla, G., Ferrer, E., de Antonio, M., Perera-Lluna, A., López-Ayerbe, J., et al. (2018). Dynamic trajectories of left ventricular ejection fraction in heart failure. Journal of the American College of Cardiology., 72(6), 591–601.PubMedCrossRef Lupón, J., Gavidia-Bovadilla, G., Ferrer, E., de Antonio, M., Perera-Lluna, A., López-Ayerbe, J., et al. (2018). Dynamic trajectories of left ventricular ejection fraction in heart failure. Journal of the American College of Cardiology., 72(6), 591–601.PubMedCrossRef
34.
go back to reference Kumar, S., Marfatia, R., Tannenbaum, S., Yang, C., & Avelar, E. (2012). Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Institute Journal., 39(3), 424.PubMedPubMedCentral Kumar, S., Marfatia, R., Tannenbaum, S., Yang, C., & Avelar, E. (2012). Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Institute Journal., 39(3), 424.PubMedPubMedCentral
35.
go back to reference Trapani, D., Zagami, P., Nicolò, E., Pravettoni, G., & Curigliano, G. (2020). Management of cardiac toxicity induced by chemotherapy. Journal of Clinical Medicine., 9(9), 2885.PubMedCentralCrossRef Trapani, D., Zagami, P., Nicolò, E., Pravettoni, G., & Curigliano, G. (2020). Management of cardiac toxicity induced by chemotherapy. Journal of Clinical Medicine., 9(9), 2885.PubMedCentralCrossRef
36.
go back to reference Hu, J.-R., Florido, R., Lipson, E. J., Naidoo, J., Ardehali, R., Tocchetti, C. G., et al. (2019). Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovascular Research., 115(5), 854–868.PubMedPubMedCentralCrossRef Hu, J.-R., Florido, R., Lipson, E. J., Naidoo, J., Ardehali, R., Tocchetti, C. G., et al. (2019). Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovascular Research., 115(5), 854–868.PubMedPubMedCentralCrossRef
37.
go back to reference Wu, Q.-Q., Xiao, Y., Yuan, Y., Ma, Z.-G., Liao, H.-H., Liu, C., et al. (2017). Mechanisms contributing to cardiac remodelling. Clinical Science., 131(18), 2319–2345.PubMedCrossRef Wu, Q.-Q., Xiao, Y., Yuan, Y., Ma, Z.-G., Liao, H.-H., Liu, C., et al. (2017). Mechanisms contributing to cardiac remodelling. Clinical Science., 131(18), 2319–2345.PubMedCrossRef
38.
go back to reference Mortezaee, K., & Najafi, M. (2021). Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Critical Reviews in Oncology/Hematology., 157, 103180.PubMedCrossRef Mortezaee, K., & Najafi, M. (2021). Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Critical Reviews in Oncology/Hematology., 157, 103180.PubMedCrossRef
41.
go back to reference Ranpura, V., Hapani, S., Chuang, J., & Wu, S. (2010). Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncologica, 49(3), 287–297.PubMedCrossRef Ranpura, V., Hapani, S., Chuang, J., & Wu, S. (2010). Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncologica, 49(3), 287–297.PubMedCrossRef
42.
go back to reference Economopoulou, P., Kotsakis, A., Kapiris, I., & Kentepozidis, N. (2015). Cancer therapy and cardiovascular risk: Focus on bevacizumab. Cancer Management and Research, 7, 133.PubMedPubMedCentralCrossRef Economopoulou, P., Kotsakis, A., Kapiris, I., & Kentepozidis, N. (2015). Cancer therapy and cardiovascular risk: Focus on bevacizumab. Cancer Management and Research, 7, 133.PubMedPubMedCentralCrossRef
43.
go back to reference Ghatalia, P., Morgan, C. J., Je, Y., Nguyen, P. L., Trinh, Q.-D., Choueiri, T. K., et al. (2015). Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Critical Reviews in Oncology/Hematology, 94(2), 228–237.PubMedCrossRef Ghatalia, P., Morgan, C. J., Je, Y., Nguyen, P. L., Trinh, Q.-D., Choueiri, T. K., et al. (2015). Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Critical Reviews in Oncology/Hematology, 94(2), 228–237.PubMedCrossRef
44.
go back to reference Khakoo, A. Y., Kassiotis, C. M., Tannir, N., Plana, J. C., Halushka, M., Bickford, C., et al. (2008). Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer: Interdisciplinary International Journal of the American Cancer Society., 112(11), 2500–2508.CrossRef Khakoo, A. Y., Kassiotis, C. M., Tannir, N., Plana, J. C., Halushka, M., Bickford, C., et al. (2008). Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer: Interdisciplinary International Journal of the American Cancer Society., 112(11), 2500–2508.CrossRef
45.
go back to reference Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research., 315(7), 1302–1312.PubMedPubMedCentralCrossRef Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research., 315(7), 1302–1312.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Harel, S., Mayaki, D., Sanchez, V., & Hussain, S. N. (2017). NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascular Pharmacology, 92, 22–32.PubMedCrossRef Harel, S., Mayaki, D., Sanchez, V., & Hussain, S. N. (2017). NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascular Pharmacology, 92, 22–32.PubMedCrossRef
48.
go back to reference Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., Del Razo, L. M., Quintanilla-Vega, B., et al. (2014). Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxidants & Redox Signaling., 21(1), 66–85.CrossRef Navarro-Yepes, J., Burns, M., Anandhan, A., Khalimonchuk, O., Del Razo, L. M., Quintanilla-Vega, B., et al. (2014). Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxidants & Redox Signaling., 21(1), 66–85.CrossRef
51.
go back to reference Palaskas, N., Patel, A., & Yusuf, S. W. (2019). Radiation and cardiovascular disease. Annals of Translational Medicine S371. Palaskas, N., Patel, A., & Yusuf, S. W. (2019). Radiation and cardiovascular disease. Annals of Translational Medicine S371.
52.
go back to reference Wang, B., Wang, H., Zhang, M., Ji, R., Wei, J., Xin, Y., et al. (2020). Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. Journal of Cellular and Molecular Medicine, 24(14), 7717–7729.PubMedPubMedCentralCrossRef Wang, B., Wang, H., Zhang, M., Ji, R., Wei, J., Xin, Y., et al. (2020). Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. Journal of Cellular and Molecular Medicine, 24(14), 7717–7729.PubMedPubMedCentralCrossRef
53.
go back to reference Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., & Voipio-Pulkki, L.-M. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research, 60(7), 1789–1792.PubMed Arola, O. J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., & Voipio-Pulkki, L.-M. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research, 60(7), 1789–1792.PubMed
54.
go back to reference Dhingra, R., Margulets, V., Chowdhury, S. R., Thliveris, J., Jassal, D., Fernyhough, P., et al. (2014). Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences., 111(51), E5537–E5544.CrossRef Dhingra, R., Margulets, V., Chowdhury, S. R., Thliveris, J., Jassal, D., Fernyhough, P., et al. (2014). Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences., 111(51), E5537–E5544.CrossRef
57.
go back to reference Farhood, B., Ashrafizadeh, M., Hoseini-Ghahfarokhi, M., Afrashi, S., Musa, A. E., & Najafi, M. (2020). Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sciences., 250, 117570.PubMedCrossRef Farhood, B., Ashrafizadeh, M., Hoseini-Ghahfarokhi, M., Afrashi, S., Musa, A. E., & Najafi, M. (2020). Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sciences., 250, 117570.PubMedCrossRef
58.
go back to reference Wijerathne, H., Langston, J., Yang, Q., Sun, S., Miyamoto, C., Kilpatrick, L. E., et al. (2021). Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiotherapy and Oncology., 158, 21–32.PubMedPubMedCentralCrossRef Wijerathne, H., Langston, J., Yang, Q., Sun, S., Miyamoto, C., Kilpatrick, L. E., et al. (2021). Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiotherapy and Oncology., 158, 21–32.PubMedPubMedCentralCrossRef
61.
go back to reference Tada, Y., & Suzuki, J.-I. (2016). Oxidative stress and myocarditis. Current Pharmaceutical Design., 22(4), 450–71.PubMedCrossRef Tada, Y., & Suzuki, J.-I. (2016). Oxidative stress and myocarditis. Current Pharmaceutical Design., 22(4), 450–71.PubMedCrossRef
62.
go back to reference Bagchi, A. K., Malik, A., Akolkar, G., Jassal, D. S., & Singal, P. K. (2021). Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants., 10(12), 1897.PubMedPubMedCentralCrossRef Bagchi, A. K., Malik, A., Akolkar, G., Jassal, D. S., & Singal, P. K. (2021). Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants., 10(12), 1897.PubMedPubMedCentralCrossRef
64.
go back to reference Mahmood, S. S., Fradley, M. G., Cohen, J. V., Nohria, A., Reynolds, K. L., Heinzerling, L. M., et al. (2018). Myocarditis in patients treated with immune checkpoint inhibitors. Journal of the American College of Cardiology., 71(16), 1755–1764.PubMedPubMedCentralCrossRef Mahmood, S. S., Fradley, M. G., Cohen, J. V., Nohria, A., Reynolds, K. L., Heinzerling, L. M., et al. (2018). Myocarditis in patients treated with immune checkpoint inhibitors. Journal of the American College of Cardiology., 71(16), 1755–1764.PubMedPubMedCentralCrossRef
65.
go back to reference Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., et al. (2016). Fulminant myocarditis with combination immune checkpoint blockade. New England Journal of Medicine., 375(18), 1749–1755.PubMedCrossRef Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., et al. (2016). Fulminant myocarditis with combination immune checkpoint blockade. New England Journal of Medicine., 375(18), 1749–1755.PubMedCrossRef
66.
go back to reference Ji, C., Roy, M. D., Golas, J., Vitsky, A., Ram, S., Kumpf, S. W., et al. (2019). Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clinical Cancer Research., 25(15), 4735–4748.PubMedCrossRef Ji, C., Roy, M. D., Golas, J., Vitsky, A., Ram, S., Kumpf, S. W., et al. (2019). Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clinical Cancer Research., 25(15), 4735–4748.PubMedCrossRef
67.
go back to reference Berner, A., Sharma, A., Agarwal, S., Al-Sam, S., & Nathan, P. (2018). Fatal autoimmune myocarditis with anti–PD-L1 and tyrosine kinase inhibitor therapy for renal cell cancer. European Journal of Cancer., 101, 287–290.PubMedCrossRef Berner, A., Sharma, A., Agarwal, S., Al-Sam, S., & Nathan, P. (2018). Fatal autoimmune myocarditis with anti–PD-L1 and tyrosine kinase inhibitor therapy for renal cell cancer. European Journal of Cancer., 101, 287–290.PubMedCrossRef
68.
go back to reference Burke, M. J., Walmsley, R., Munsey, T. S., & Smith, A. J. (2019). Receptor tyrosine kinase inhibitors cause dysfunction in adult rat cardiac fibroblasts in vitro. Toxicology in Vitro., 58, 178–186.PubMedCrossRef Burke, M. J., Walmsley, R., Munsey, T. S., & Smith, A. J. (2019). Receptor tyrosine kinase inhibitors cause dysfunction in adult rat cardiac fibroblasts in vitro. Toxicology in Vitro., 58, 178–186.PubMedCrossRef
69.
go back to reference Rocca, C., De Francesco, E. M., Pasqua, T., Granieri, M. C., De Bartolo, A., Gallo Cantafio, M. E., et al. (2022). Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines., 10(3), 520.PubMedPubMedCentralCrossRef Rocca, C., De Francesco, E. M., Pasqua, T., Granieri, M. C., De Bartolo, A., Gallo Cantafio, M. E., et al. (2022). Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines., 10(3), 520.PubMedPubMedCentralCrossRef
70.
go back to reference Truell, J. S., Fishbein, M. C., & Figlin, R. (2005). Myocarditis temporally related to the use of gefitinib (Iressa). Archives of Pathology & Laboratory Medicine., 129(8), 1044–1046.CrossRef Truell, J. S., Fishbein, M. C., & Figlin, R. (2005). Myocarditis temporally related to the use of gefitinib (Iressa). Archives of Pathology & Laboratory Medicine., 129(8), 1044–1046.CrossRef
73.
go back to reference Najafi, M., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9(2), 139–148.PubMedPubMedCentralCrossRef Najafi, M., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9(2), 139–148.PubMedPubMedCentralCrossRef
81.
go back to reference Yang, C.-M., Lee, I.-T., Hsu, R.-C., Chi, P.-L., & Hsiao, L.-D. (2013). NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicology and Applied Pharmacology, 272(2), 431–442.PubMedCrossRef Yang, C.-M., Lee, I.-T., Hsu, R.-C., Chi, P.-L., & Hsiao, L.-D. (2013). NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicology and Applied Pharmacology, 272(2), 431–442.PubMedCrossRef
82.
go back to reference Mann, D. L., & Spinale, F. G. (1998). Activation of matrix metalloproteinases in the failing human heart: Breaking the tie that binds. Circulation, 98(17), 1699–1702.PubMedCrossRef Mann, D. L., & Spinale, F. G. (1998). Activation of matrix metalloproteinases in the failing human heart: Breaking the tie that binds. Circulation, 98(17), 1699–1702.PubMedCrossRef
83.
go back to reference Kizaki, K., Ito, R., Okada, M., Yoshioka, K., Uchide, T., Temma, K., et al. (2006). Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacological Research., 53(4), 341–346.PubMedCrossRef Kizaki, K., Ito, R., Okada, M., Yoshioka, K., Uchide, T., Temma, K., et al. (2006). Enhanced gene expression of myocardial matrix metalloproteinases 2 and 9 after acute treatment with doxorubicin in mice. Pharmacological Research., 53(4), 341–346.PubMedCrossRef
85.
go back to reference Slezak, J., Kura, B., Babal, P., Barancik, M., Ferko, M., Frimmel, K., et al. (2017). Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Canadian Journal of Physiology and Pharmacology., 95(10), 1190–1203.PubMedCrossRef Slezak, J., Kura, B., Babal, P., Barancik, M., Ferko, M., Frimmel, K., et al. (2017). Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Canadian Journal of Physiology and Pharmacology., 95(10), 1190–1203.PubMedCrossRef
86.
go back to reference Bai, P., Mabley, J. G., Liaudet, L., Virág, L., Szabó, C., & Pacher, P. (2004). Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 11(2), 505–508.PubMed Bai, P., Mabley, J. G., Liaudet, L., Virág, L., Szabó, C., & Pacher, P. (2004). Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 11(2), 505–508.PubMed
87.
go back to reference O’Hanlon, R., Grasso, A., Roughton, M., Moon, J. C., Clark, S., Wage, R., et al. (2010). Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. Journal of the American College of Cardiology., 56(11), 867–874.PubMedCrossRef O’Hanlon, R., Grasso, A., Roughton, M., Moon, J. C., Clark, S., Wage, R., et al. (2010). Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. Journal of the American College of Cardiology., 56(11), 867–874.PubMedCrossRef
90.
go back to reference de Groot, C., Beukema, J. C., Langendijk, J. A., van der Laan, H. P., van Luijk, P., van Melle, J. P., et al. (2021). Radiation-induced myocardial fibrosis in long-term esophageal cancer survivors. International Journal of Radiation Oncology Biology Physics, 110(4), 1013–1021.PubMedCrossRef de Groot, C., Beukema, J. C., Langendijk, J. A., van der Laan, H. P., van Luijk, P., van Melle, J. P., et al. (2021). Radiation-induced myocardial fibrosis in long-term esophageal cancer survivors. International Journal of Radiation Oncology Biology Physics, 110(4), 1013–1021.PubMedCrossRef
92.
go back to reference Tandri, H., Saranathan, M., Rodriguez, E. R., Martinez, C., Bomma, C., Nasir, K., et al. (2005). Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. Journal of the American College of Cardiology., 45(1), 98–103.PubMedCrossRef Tandri, H., Saranathan, M., Rodriguez, E. R., Martinez, C., Bomma, C., Nasir, K., et al. (2005). Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. Journal of the American College of Cardiology., 45(1), 98–103.PubMedCrossRef
94.
go back to reference Zhou, Z., Xu, L., Wang, R., Varga-Szemes, A., Durden, J. A., Joseph Schoepf, U., et al. (2019). Quantification of doxorubicin-induced interstitial myocardial fibrosis in a beagle model using equilibrium contrast-enhanced computed tomography: A comparative study with cardiac magnetic resonance T1-mapping. International Journal of Cardiology., 281, 150–155. https://doi.org/10.1016/j.ijcard.2019.01.021CrossRefPubMed Zhou, Z., Xu, L., Wang, R., Varga-Szemes, A., Durden, J. A., Joseph Schoepf, U., et al. (2019). Quantification of doxorubicin-induced interstitial myocardial fibrosis in a beagle model using equilibrium contrast-enhanced computed tomography: A comparative study with cardiac magnetic resonance T1-mapping. International Journal of Cardiology., 281, 150–155. https://​doi.​org/​10.​1016/​j.​ijcard.​2019.​01.​021CrossRefPubMed
95.
go back to reference Zhou, Z., Wang, R., Wang, H., Liu, Y., Lu, D., Sun, Z., et al. (2021). Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: A synthetic hematocrit method using 3T cardiac magnetic resonance. Quantitative Imaging in Medicine and Surgery., 11(2), 510–520. https://doi.org/10.21037/qims-20-501CrossRefPubMedPubMedCentral Zhou, Z., Wang, R., Wang, H., Liu, Y., Lu, D., Sun, Z., et al. (2021). Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: A synthetic hematocrit method using 3T cardiac magnetic resonance. Quantitative Imaging in Medicine and Surgery., 11(2), 510–520. https://​doi.​org/​10.​21037/​qims-20-501CrossRefPubMedPubMedCentral
96.
go back to reference De Angelis, A., Urbanek, K., Cappetta, D., Piegari, E., Ciuffreda, L. P., Rivellino, A., et al. (2016). Doxorubicin cardiotoxicity and target cells: A broader perspective. Cardio-Oncology., 2(1), 1–8.CrossRef De Angelis, A., Urbanek, K., Cappetta, D., Piegari, E., Ciuffreda, L. P., Rivellino, A., et al. (2016). Doxorubicin cardiotoxicity and target cells: A broader perspective. Cardio-Oncology., 2(1), 1–8.CrossRef
97.
go back to reference Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., et al. (2013). Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology., 108(2), 1–18.CrossRef Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., et al. (2013). Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology., 108(2), 1–18.CrossRef
100.
go back to reference Farhood, B., Hoseini-Ghahfarokhi, M., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A. E., & Najafi, M. (2020). TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacological Research., 155, 104745.PubMedCrossRef Farhood, B., Hoseini-Ghahfarokhi, M., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A. E., & Najafi, M. (2020). TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacological Research., 155, 104745.PubMedCrossRef
101.
go back to reference Amini, P., Rezapoor, S., Shabeeb, D., Musa, A. E., Najafi, M., & Motevaseli, E. (2018). Evaluating the protective effect of a combination of curcumin and selenium-L-methionine on radiation induced dual oxidase upregulation. Pharmaceutical Sciences., 24(4), 340–345.CrossRef Amini, P., Rezapoor, S., Shabeeb, D., Musa, A. E., Najafi, M., & Motevaseli, E. (2018). Evaluating the protective effect of a combination of curcumin and selenium-L-methionine on radiation induced dual oxidase upregulation. Pharmaceutical Sciences., 24(4), 340–345.CrossRef
102.
go back to reference Lin, F., Wang, N., & Zhang, T. C. (2012). The role of endothelial–mesenchymal transition in development and pathological process. IUBMB Life, 64(9), 717–723.PubMedCrossRef Lin, F., Wang, N., & Zhang, T. C. (2012). The role of endothelial–mesenchymal transition in development and pathological process. IUBMB Life, 64(9), 717–723.PubMedCrossRef
103.
go back to reference Song, S., Zhang, R., Cao, W., Fang, G., Yu, Y., Wan, Y., et al. (2019). Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. Journal of Cellular Physiology., 234(6), 9052–9064.PubMedCrossRef Song, S., Zhang, R., Cao, W., Fang, G., Yu, Y., Wan, Y., et al. (2019). Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. Journal of Cellular Physiology., 234(6), 9052–9064.PubMedCrossRef
104.
go back to reference Choi, K. J., Nam, J.-K., Kim, J.-H., Choi, S.-H., & Lee, Y.-J. (2020). Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Experimental & Molecular Medicine., 52(5), 781–792.CrossRef Choi, K. J., Nam, J.-K., Kim, J.-H., Choi, S.-H., & Lee, Y.-J. (2020). Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Experimental & Molecular Medicine., 52(5), 781–792.CrossRef
107.
go back to reference Tsai, T.-H., Lin, C.-J., Hang, C.-L., & Chen, W.-Y. (2019). Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells, 8(8), 865.PubMedCentralCrossRef Tsai, T.-H., Lin, C.-J., Hang, C.-L., & Chen, W.-Y. (2019). Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells, 8(8), 865.PubMedCentralCrossRef
108.
go back to reference Nie, L., Liu, M., Chen, J., Wu, Q., Li, Y., Yi, J., et al. (2021). Hydrogen sulfide ameliorates doxorubicin-induced myocardial fibrosis in rats via the PI3K/AKT/mTOR pathway. Molecular Medicine Reports, 23(4), 1–11.CrossRef Nie, L., Liu, M., Chen, J., Wu, Q., Li, Y., Yi, J., et al. (2021). Hydrogen sulfide ameliorates doxorubicin-induced myocardial fibrosis in rats via the PI3K/AKT/mTOR pathway. Molecular Medicine Reports, 23(4), 1–11.CrossRef
110.
go back to reference Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.PubMedCrossRef Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.PubMedCrossRef
111.
go back to reference Saleh, M. A., Antar, S. A., Hazem, R. M., & El-Azab, M. F. (2020). Pirfenidone and vitamin D ameliorate cardiac fibrosis induced by doxorubicin in ehrlich ascites carcinoma bearing mice: Modulation of monocyte chemoattractant protein-1 and Jun N-terminal kinase-1 pathways. Pharmaceuticals, 13(11), 348.PubMedCentralCrossRef Saleh, M. A., Antar, S. A., Hazem, R. M., & El-Azab, M. F. (2020). Pirfenidone and vitamin D ameliorate cardiac fibrosis induced by doxorubicin in ehrlich ascites carcinoma bearing mice: Modulation of monocyte chemoattractant protein-1 and Jun N-terminal kinase-1 pathways. Pharmaceuticals, 13(11), 348.PubMedCentralCrossRef
112.
go back to reference Sahna, E., Parlakpinar, H., Ozer, M. K., Ozturk, F., Ozugurlu, F., & Acet, A. (2003). Melatonin protects against myocardial doxorubicin toxicity in rats: Role of physiological concentrations. Journal of Pineal Research, 35(4), 257–261.PubMedCrossRef Sahna, E., Parlakpinar, H., Ozer, M. K., Ozturk, F., Ozugurlu, F., & Acet, A. (2003). Melatonin protects against myocardial doxorubicin toxicity in rats: Role of physiological concentrations. Journal of Pineal Research, 35(4), 257–261.PubMedCrossRef
113.
go back to reference Shaty, M. H., Arif, I. S., Al-Ezzi, M. I., & Hanna, D. B. (2018). Metformin attenuate fibrosis in both acute and chronic doxorubicin cardiotoxicity in rabbits. Journal of Pharmaceutical Sciences and Research, 10(6), 1559–1565. Shaty, M. H., Arif, I. S., Al-Ezzi, M. I., & Hanna, D. B. (2018). Metformin attenuate fibrosis in both acute and chronic doxorubicin cardiotoxicity in rabbits. Journal of Pharmaceutical Sciences and Research, 10(6), 1559–1565.
114.
go back to reference Katamura, M., Iwai-Kanai, E., Nakaoka, M., Okawa, Y., Ariyoshi, M., Mita, Y., et al. (2014). Curcumin attenuates doxorubicin-induced cardiotoxicity by inducing autophagy via the regulation of JNK phosphorylation. Journal of Clinical and Experimental Cardiology, 5(09), 1–8.CrossRef Katamura, M., Iwai-Kanai, E., Nakaoka, M., Okawa, Y., Ariyoshi, M., Mita, Y., et al. (2014). Curcumin attenuates doxorubicin-induced cardiotoxicity by inducing autophagy via the regulation of JNK phosphorylation. Journal of Clinical and Experimental Cardiology, 5(09), 1–8.CrossRef
116.
go back to reference Vatanen, A., Sarkola, T., Ojala, T. H., Turanlahti, M., Jahnukainen, T., Saarinen-Pihkala, U. M., et al. (2015). Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatric Blood & Cancer, 62(11), 2000–2006.CrossRef Vatanen, A., Sarkola, T., Ojala, T. H., Turanlahti, M., Jahnukainen, T., Saarinen-Pihkala, U. M., et al. (2015). Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatric Blood & Cancer, 62(11), 2000–2006.CrossRef
117.
go back to reference Huang, T. L., Hsu, H. C., Chen, H. C., Lin, H. C., Chien, C. Y., Fang, F. M., et al. (2013). Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiation Oncology., 8(1), 1–6.CrossRef Huang, T. L., Hsu, H. C., Chen, H. C., Lin, H. C., Chien, C. Y., Fang, F. M., et al. (2013). Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiation Oncology., 8(1), 1–6.CrossRef
119.
go back to reference Berliner, S., Rahima, M., Sidi, Y., Teplitsky, Y., Zohar, Y., Nussbaum, B., et al. (1990). Acute coronary events following cisplatin-based chemotherapy. Cancer Investigation, 8(6), 583–586.PubMedCrossRef Berliner, S., Rahima, M., Sidi, Y., Teplitsky, Y., Zohar, Y., Nussbaum, B., et al. (1990). Acute coronary events following cisplatin-based chemotherapy. Cancer Investigation, 8(6), 583–586.PubMedCrossRef
121.
go back to reference Vogelzang, N. J., Frenning, D. H., & Kennedy, B. J. (1980). Coronary artery disease after treatment with bleomycin and vinblastine. Cancer Treatment Reports, 64(10–11), 1159–1160.PubMed Vogelzang, N. J., Frenning, D. H., & Kennedy, B. J. (1980). Coronary artery disease after treatment with bleomycin and vinblastine. Cancer Treatment Reports, 64(10–11), 1159–1160.PubMed
124.
go back to reference Haubner, F., Ohmann, E., Pohl, F., Prantl, L., Strutz, J., & Gassner, H. G. (2013). Effects of radiation on the expression of adhesion molecules and cytokines in a static model of human dermal microvascular endothelial cells. Clinical Hemorheology and Microcirculation, 54(4), 371–379. https://doi.org/10.3233/ch-2012-1626CrossRefPubMed Haubner, F., Ohmann, E., Pohl, F., Prantl, L., Strutz, J., & Gassner, H. G. (2013). Effects of radiation on the expression of adhesion molecules and cytokines in a static model of human dermal microvascular endothelial cells. Clinical Hemorheology and Microcirculation, 54(4), 371–379. https://​doi.​org/​10.​3233/​ch-2012-1626CrossRefPubMed
126.
go back to reference Hoving, S., Heeneman, S., Gijbels, M. J., te Poele, J. A., Russell, N. S., Daemen, M. J., et al. (2008). Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. International Journal of Radiation Oncology Biology Physics, 71(3), 848–857. https://doi.org/10.1016/j.ijrobp.2008.02.031CrossRefPubMed Hoving, S., Heeneman, S., Gijbels, M. J., te Poele, J. A., Russell, N. S., Daemen, M. J., et al. (2008). Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. International Journal of Radiation Oncology Biology Physics, 71(3), 848–857. https://​doi.​org/​10.​1016/​j.​ijrobp.​2008.​02.​031CrossRefPubMed
131.
go back to reference Carta, S., Castellani, P., Delfino, L., Tassi, S., Vene, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: The role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549–555.PubMedCrossRef Carta, S., Castellani, P., Delfino, L., Tassi, S., Vene, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: The role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549–555.PubMedCrossRef
135.
go back to reference Sato, A., Yoshihisa, A., Miyata-Tatsumi, M., Oikawa, M., Kobayashi, A., Ishida, T., et al. (2019). Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Molecular and Clinical Oncology, 10(1), 37–42.PubMed Sato, A., Yoshihisa, A., Miyata-Tatsumi, M., Oikawa, M., Kobayashi, A., Ishida, T., et al. (2019). Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Molecular and Clinical Oncology, 10(1), 37–42.PubMed
136.
go back to reference Cella, L., Oh, J. H., Deasy, J. O., Palma, G., Liuzzi, R., D’avino, V., et al. (2015). Predicting radiation-induced valvular heart damage. Acta Oncologica., 54(10), 1796–1804.PubMedCrossRef Cella, L., Oh, J. H., Deasy, J. O., Palma, G., Liuzzi, R., D’avino, V., et al. (2015). Predicting radiation-induced valvular heart damage. Acta Oncologica., 54(10), 1796–1804.PubMedCrossRef
137.
go back to reference Bijl, J. M., Roos, M. M., van Leeuwen-Segarceanu, E. M., Vos, J. M., Bos, W.-J.W., Biesma, D. H., et al. (2016). Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy±chemotherapy. The American Journal of Cardiology., 117(4), 691–696.PubMedCrossRef Bijl, J. M., Roos, M. M., van Leeuwen-Segarceanu, E. M., Vos, J. M., Bos, W.-J.W., Biesma, D. H., et al. (2016). Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy±chemotherapy. The American Journal of Cardiology., 117(4), 691–696.PubMedCrossRef
138.
go back to reference Gujral, D. M., Lloyd, G., & Bhattacharyya, S. (2016). Radiation-induced valvular heart disease. Heart, 102(4), 269–276.PubMedCrossRef Gujral, D. M., Lloyd, G., & Bhattacharyya, S. (2016). Radiation-induced valvular heart disease. Heart, 102(4), 269–276.PubMedCrossRef
139.
go back to reference Nadlonek, N. A., Weyant, M. J., Jessica, A. Y., Cleveland, J. C., Jr., Reece, T. B., Meng, X., et al. (2012). Radiation induces osteogenesis in human aortic valve interstitial cells. The Journal of Thoracic and Cardiovascular Surgery., 144(6), 1466–1470.PubMedPubMedCentralCrossRef Nadlonek, N. A., Weyant, M. J., Jessica, A. Y., Cleveland, J. C., Jr., Reece, T. B., Meng, X., et al. (2012). Radiation induces osteogenesis in human aortic valve interstitial cells. The Journal of Thoracic and Cardiovascular Surgery., 144(6), 1466–1470.PubMedPubMedCentralCrossRef
141.
go back to reference Barrick, C. J., Roberts, R. B., Rojas, M., Rajamannan, N. M., Suitt, C. B., O’Brien, K. D., et al. (2009). Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. American Journal of Physiology-Heart and Circulatory Physiology., 297(1), H65–H75.PubMedPubMedCentralCrossRef Barrick, C. J., Roberts, R. B., Rojas, M., Rajamannan, N. M., Suitt, C. B., O’Brien, K. D., et al. (2009). Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. American Journal of Physiology-Heart and Circulatory Physiology., 297(1), H65–H75.PubMedPubMedCentralCrossRef
147.
go back to reference Grela-Wojewoda, A., Niemiec, J., Sas-Korczyńska, B., Zemełka, T., Puskulluoglu, M., & Wysocki, W. M. et al. (2022). Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Polish Archives of Internal Medicine. Grela-Wojewoda, A., Niemiec, J., Sas-Korczyńska, B., Zemełka, T., Puskulluoglu, M., & Wysocki, W. M. et al. (2022). Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Polish Archives of Internal Medicine.
148.
go back to reference Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31(6), 459–467.PubMedCrossRef Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31(6), 459–467.PubMedCrossRef
150.
go back to reference Saiki, H., Moulay, G., Guenzel, A. J., Liu, W., Decklever, T. D., Classic, K. L., et al. (2017). Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology-Heart and Circulatory Physiology., 313(2), H392–H407.PubMedPubMedCentralCrossRef Saiki, H., Moulay, G., Guenzel, A. J., Liu, W., Decklever, T. D., Classic, K. L., et al. (2017). Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology-Heart and Circulatory Physiology., 313(2), H392–H407.PubMedPubMedCentralCrossRef
153.
go back to reference Luk, A., Ahn, E., Soor, G. S., & Butany, J. (2009). Dilated cardiomyopathy: A review. Journal of Clinical Pathology., 62(3), 219–225.PubMedCrossRef Luk, A., Ahn, E., Soor, G. S., & Butany, J. (2009). Dilated cardiomyopathy: A review. Journal of Clinical Pathology., 62(3), 219–225.PubMedCrossRef
156.
go back to reference Maisel, W. H., & Stevenson, L. W. (2003). Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. The American Journal of Cardiology., 91(6), 2–8.CrossRef Maisel, W. H., & Stevenson, L. W. (2003). Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. The American Journal of Cardiology., 91(6), 2–8.CrossRef
157.
go back to reference Stevenson, W. G., & Stevenson, L. W. (1999). Atrial fibrillation in heart failure (pp. 910–911). Waltham: Mass Medical Soc. Stevenson, W. G., & Stevenson, L. W. (1999). Atrial fibrillation in heart failure (pp. 910–911). Waltham: Mass Medical Soc.
158.
go back to reference O’Neal, W. T., Lakoski, S. G., Qureshi, W., Judd, S. E., Howard, G., Howard, V. J., et al. (2015). Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). The American Journal of Cardiology., 115(8), 1090–1094.PubMedPubMedCentralCrossRef O’Neal, W. T., Lakoski, S. G., Qureshi, W., Judd, S. E., Howard, G., Howard, V. J., et al. (2015). Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). The American Journal of Cardiology., 115(8), 1090–1094.PubMedPubMedCentralCrossRef
164.
go back to reference Benjanuwattra, J., Siri-Angkul, N., Chattipakorn, S. C., & Chattipakorn, N. (2020). Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacological Research., 151, 104542.PubMedCrossRef Benjanuwattra, J., Siri-Angkul, N., Chattipakorn, S. C., & Chattipakorn, N. (2020). Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacological Research., 151, 104542.PubMedCrossRef
166.
go back to reference Zhao, L. (2019). Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology., 22(5), 232.PubMedPubMedCentral Zhao, L. (2019). Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology., 22(5), 232.PubMedPubMedCentral
167.
go back to reference Darling, H. (2015). Cisplatin induced bradycardia. International Journal of Cardiology., 182, 304–306.PubMedCrossRef Darling, H. (2015). Cisplatin induced bradycardia. International Journal of Cardiology., 182, 304–306.PubMedCrossRef
Metadata
Title
Cardiac Remodelling Following Cancer Therapy: A Review
Authors
Tan Panpan
Du Yuchen
Shi Xianyong
Liu Meng
He Ruijuan
Dong Ranran
Zhang Pengyan
Li Mingxi
Xie Rongrong
Publication date
25-07-2022
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 9/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09762-6

Other articles of this Issue 9/2022

Cardiovascular Toxicology 9/2022 Go to the issue